@ Sun

INNAWIORKS

Smart tools. Smark \hobie—ava.

Squeezing the Last Byte and

Last Ounce of Performance
from Your MIDlets

Stephen Cheng

CEO
Innaworks
WWW.innaworks.com

1S-3418

2006 JavaOne®™ Conference | Session TS-3418 | jaua.sun.com /'ji':IUEIOI'IE.fo

¢ JavaOne

Goal of This Talk
What You Will Learn

2006 JavaOnes™ Conference | Session TS-3418 | 2 java.sun.com/javaone/sf

@ Sun

Agenda

Why Size and Performance Matters
Under the hood of a Java ME MIDlet
Optimization Strategy

Optimization Techniques

Demo

2006 JavaOne®™ Conference | Session TS-3418 | 3 iava .sun.com/iavaone/sf

Why Size and Performance Matters

Adoption = Potential Market Size
X Value to User
X Marketing

@Sun 2006 JavaOnes™ Conference | Session TS-3418 | 4 java.sun.com/javaone/sf

Why Size and Performance Matters

Adoption = Potential Market Size
X Value to User
X Marketing

Volume Matters

@SM?} 2006 JavaOne® Conference | Session TS-3418 | 5 iava .sun.com/iavaone/sf

Why Size and Performance Matters

Adoption = Potential Market Size
X Value to User
X Marketing

Perceived Quality Matters
Cost Matters

@SM?} 2006 JavaOne® Conference | Session TS-3418 | 6 iava .sun.com/iavaone/sf

Constraints of Consumer Handsets

JAR Heap

Size Memory
Nokia S40 v1 (3300 etc) = 64kB 370kB
Nokia S40 v2 (6230 etc) = 128kB 512kB
Sharp GX22 100kB 512kB
Doda 2.5 (m420i) 30kB 1.5MB

15% Game Sales for Handsets < 64kB JAR Size
35% Game Sales for Handsets < 128kB JAR Size

Source: Nokia, Samsung, Bouygues Telecom, Innaworks Customer Study

@Sun 2006 JavaOnes™ Conference | Session TS-3418 | 7 java.sun.com/javaone/sf

Data Fee for Casual Users

Fee/Month Free Data Per kB

Sprint PCS Casual None None $0.02
Cingular Data Connect $19.99 5MB $0.008
T-Mobile Basic Plus $20.00 Unlimited N/A
Rogers Small Data Plan C$25 3MB C$0.01

Average Java ME Game in US Costs $3.99

Your 200kB FREE Application could cost US$4
to download on Sprint Network

Source: Cingular, T-Mobile, Sprint Websites and NetSize 2006 Report
@f@Sun 2006 JavaOne®™ Conference | Session TS-3418 | 8 java.sun.com/iavaone/sf

@ Sun

Agenda

Why Size and Performance Matters
Under the hood of a Java ME MIDlet
Optimization Strategy

Optimization Techniques

Demo

2006 JavaOne®™ Conference | Session TS-3418 | 9 iava .sun.com/iavaone/sf

What Is in a MIDlet JAR File?

e H shlexamples, jartcomseriesal)examplesim3gimaze3d - ZIP archive, unp %

Marme

=

Emntent

ErrarScreen, class
Graphics3DProperties, class
Maze.class
MazeCanvas.class
MazeMIDlet. class
MenuList,class

Plane.class

Size

1,610
2,258
5,379

14,347
4,291
2,455
2,114

Packed

750
1,017
2,795
7,046
1,764
1,236
1,054

* > 70 bytes JAR file overhead per file
- Compression does not work across files

* Overhead depends on path length

Source: Innaworks’ Customer Study
@Sun

2006 JavaOneS™ Conference | Session TS-3418 | 10

java.sun.com/javaone/sf

Classfile versus Resource Files

Typical
Business or
Consumer App

Typical

_ 2D Game
Java Classfiles

50kB
Java Classfiles

85kB

Resources

50kB
Resources

15kB

Source: Innaworks’ Customer Study

@Sun 2006 JavaOne® Conference | Session TS-3418 | 11 java.sun.com/javaone/sf

sssssssssss

Classfile Size Breakdown

App
Constants' signature

Fields 12%

49 Constants
0

15%

Method
Stack Maps

16%

Methods
(Excluding Stack Map)

52%

Source: Innaworks’ Customer Study

@Szm 2006 JavaOne®™ Conference | Session TS-3418 | 12 iava .sun.com/iavaone/sf

sssssssssss

Java ME Toolchain

Source Java o Preverified
Code Compiler Obfuscator Preverifier Classfiles

ZIP
Compressor

Other
Resources

JAR
File

@Sun 2006 JavaOne® Conference | Session TS-3418 | 13 java.sun.com/javaone/sf

sssssssssssss

Stackmap

What Does the Preverifier Do?

* Preverifier inserts stackmap
* Assists verification
* Increases classfile size

+ Stackmap entries added at:
* Control flow merge point
* Exception handler

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 14 java.sun.com/javaone/sf

Stackmap

int speed = 10;
Monster[] monsters = getMonsters() ;

for (int i = 0; i < monsters.length; i++) {
// This is a merge point - stackmap here
// Variable slot 1 = int (speed)

// Variable slot 2 = Monster[] (monster)
// Variable slot 3 = int (i)

doSomethingToMonster (monsters|[i]) ;

}

// This is a merge point - stackmap here
// Variable slot 1 = int (speed)
// Variable slot 2 = Monster[] (monster)

2006 JavaOneS™ Conference | Session TS-3418 | 15

java.sun.com/javaone/sf

Java Technology Philosophy
Java SE Platform and Java EE Platform Philosophies:

* JVM™ performs optimization

* Run-time profiling to identify hot code
* Dynamic class loading

* Compiler generates mostly unoptimized code

Better than C++ Performance on
Java SE/Java EE Platforms

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 16 java.sun.com/javaone/sf

Java Compiler

* Designed to work with J2SE/J2EE Java VMs
* Generate “clean” code

* Almost no size or performance optimization
* No method inlining
* No redundancy elimination
* No dead class elimination
* No dead code elimination
* No code layout optimization
* Has String and StringBuffer optimization

@Sun 2006 JavaOnes™ Conference | Session TS-3418 | 17 java.sun.com/javaone/sf

Java

Java ME Virtual Machines
Targeted to Handset Constraints

CLDC Hotspot
KVM “Monty”

Memory Footprint 256kB 1MB

Bytecode Execution Interpreter Adaptive
Single-Pass Compiler

Optimizations Constant Folding,
Constant Peeling,
Loop Peeling,
Method Inlining

Source: Sun Microsystems

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 18 java.sun.com/javaone/sf

Performance Bottleneck

* JVM performance
- /0O

* Network
* File

* Ul
* Graphics
* Images

sssssssssssss

2006 JavaOneS™ Conference | Session TS-3418 | 19

java.sun.com/javaone/sf

Agenda

Why Size and Performance Matters
Under the hood of a Java ME MIDlet
Optimization Strategy

Optimization Techniques

Demo

2006 JavaOnes Conference | Session TS-3418 | 20 java.sun.com/javaone/sf

What Are the Key
Technical Problems?

g microsystems

* JAR size

* Heap memory

* Performance

* Handset bugs and quirks

2006 JavaOneS™ Conference

Session TS-3418 | 21

java.sun.com/javaone/sf

Optimization Tradeoffs

Optimality

Maintainability Low Effort

Please Pick Any Two

@Sun 2006 JavaOnes™ Conference | Session TS-3418 | 22 java.sun.com/javaone/sf

sssssssssss

Basic Optimization Rules
Rule #1

Be Absolutely Clear What Your Objectives Are

@Sun 2006 JavaOne® Conference | Session TS-3418 | 23 java.sun.com/javaone/sf

sssssssssssss

Basic Optimization Rules
Rule #2

80—-20 Rule

Measure, Measure, and Measure

@Sun 2006 JavaOne® Conference | Session TS-3418 | 24 java.sun.com/javaone/sf

sssssssssss

Basic Optimization Rules
Rule #3

Don’t Do It
or
Automate the Mechanical Optimizations

@Sun 2006 JavaOnes Conference | Session TS-3418 | 25 java.sun.com/javaone/sf

sssssssssss

Size Optimization

Most Optimizations Are Mechanical
and Can Be “Automated”

Complete the Coding and Testing, then
Refactor According to a Set of Strict Rules

@Sun 2006 JavaOnes Conference | Session TS-3418 | 26 java.sun.com/javaone/sf

sssssssssss

Performance Optimization

Focus on the Architecture or Framework

Much Harder to Fix Later

@Sun 2006 JavaOne® Conference | Session TS-3418 | 27 java.sun.com/javaone/sf

sssssssssss

Available Tools

* Obfuscator
* PNG optimizer
* ZIP compressor

sssssssssss

2006 JavaOneS™ Conference | Session TS-3418 | 28

java.sun.com/javaone/sf

@ Sun

Available Tools—Obfuscator

Rename class,

methods and fields [2]

[3]
[4]
[5]
[6]

Reduces the size
and number of
constant pool
entries

[1]
[2]
[3]
[4]

Example: Proguard

2006 JavaOne®M Conference |

[1] UTFS8:

innaworks
UTF8: ClassA
UTF8: m
Class: [1].[2]

NameAndType: void [3] (int) ;

MethodRef: [1].[5]
\4

UTF8: a

Class:[1l].[1]

NameAndType: void [1] (int) ;
MethodRef: [1].[3]

Session TS-3418 | 29 java.sun.com/javaone/sf

Available Tools—PNG Optimizer

* Removes unnecessary information in PNG file
* Makes PNG data more compressible
* Example: PngCrush, AdvOpt

2006 JavaOne®™ Conference | Session TS-3418 | 30 java .sun.com/iavaone/sf

Available Tools—ZIP Compressor

+ Standard JAR uses ZLIB deflate engine;
up to 10% improvements with advance
ZIP compressors

* Look out for operator restrictions
* Example: 7Zip, mBoosterZip

2006 JavaOnes" Conference | Session TS-3418 | 31 java.sun.com/javaone/sf

Agenda

Why Size and Performance Matters
Under the hood of a Java ME MIDlet
Optimization Strategy

Optimization Techniques

Demo

2006 JavaOneS Conference | Session TS-3418 | 32 java.sun.com/javaone/sf

Where Should We Focus?

Typi.cal App
Business or 7\ Constants signature
(1)
Consumer 'fol/?s 12% " Constants
15%
Java Classfiles %%

Method
Stack Maps

85kB

16%

Methods
(Excluding Stack Map)

52%

Resources
15kB

Source: Innaworks’ Customer Study

@Szm 2006 JavaOne®M Conference | Session TS-3418 | 33 iava.sun.com/iavaone/sf

sssssssssss

Don’t Reinvent the Wheel

Make Use of Library APl Whenever Possible

@Sun 2006 JavaOne® Conference | Session TS-3418 | 34 java.sun.com/javaone/sf

sssssssssss

Merging Classes

Takes Two Classes and Combines Them

Reduces the ZIP overhead
Removes Java Class Overhead
Reduces Signature Constant Entries
Shares App Constant Entries
Increases Opportunities for Method Inlining

@SM?} 2006 JavaOne® Conference | Session TS-3418 | 35 iava .sun.com/iavaone/sf

Merging Abstract Class with

Concrete Class
Original:

abstract class AbstractSoundPlayer ({
String play(String soundFile) {...};

}

// Only class to extend AbstractSoundPlayer
class SamsungSoundPlayer extends
AbstractSoundPlayer {

void play(String soundFile) {

};

é’f@SMﬂ 2006 JavaOneSM Conference | Session TS-3418 | 36 java .sun.com/javaone/sf

Merging Abstract Class with

Concrete Class
Optimized:

class SamsungSoundPlayer
void play(String soundFile) ({

};

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 37 java.sun.com/javaone/sf

Merging Interface with Implementer
Original:

interface SoundPlayer {
String play(String soundFile) {...};

}

// Only class to implement SoundPlayer
class SamsungSoundPlayer implements
SoundPlayer ({

void play(String soundFile) ({

};...
}

@f@Sun 2006 JavaOne®™ Conference | Session TS-3418 | 38 java .sun.com/javaone/sf

Merging Interface with Implementer
Optimized:

class SamsungSoundPlayer
void play(String soundFile) ({

};

‘%%SM?} 2006 JavaOne® Conference | Session TS-3418 | 39 iava .sun.com/iavaone/sf

Merging Sibling Classes

Original:

abstract class AbstractMonster {
abstract void doSomething() ;

void runAway () {...};
void drinkMore() {...};

}

class TimidMonster extends AbstractMonster {
void doSomething() {runAway() ;}

}

class DrunkMonster extends AbstractMonster {
void doSomething() {drinkMore() ;}

}

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 40 java.sun.com/javaone/sf

Merging Sibling Classes
Optimized:

// Combined the TimidMonster and
// DrunkMonster into one class
class CombinedMonster extends Monster ({
int monsterType; // O=TimidMonster,
// 1l=DrunkMonster
void doSomething () {
switch (monsterType) {
case 0: runAway (), break;
case 1: drinkMore(); break;

@Sun 2006 JavaOnes Conference | Session TS-3418 | 41 java.sun.com/javaone/sf

sssssssssss

Merging Classes
Very Powerful and Dangerous
* Look out for traps:

* Instance of and casting

* Arrays

* Reflection

* Class initialization order

* Can increase heap usage
* Maintainability and extensibility

of’f@SZﬂ’l 2006 JavaOne®" Conference | Session TS-3418 | 42

java.sun.com/javaone/sf

Eliminating Local Variables

Combine Two Local Variables into One and
Eliminate Temporary Local Variables

Reduces the Size of Stackmap Entries
Less Computation

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 43 java.sun.com/javaone/sf

Eliminating Temporary Variables
Original:
Pos myPos = getMyPos () ;

Pos monsterPos = getMonsterPos () ;

int dist = getDistance (myPos, monsterPos);

Smaller and faster:

dist = getDistance (getMyPos (),
getMonsterPos ()) ;

2006 JavaOnes Conference | Session TS-3418 | 44 java.sun.com/javaone/sf

Coalescing Local Variables
Original:
void someMethod () {

int location =

doSomeCalculation (location) ;

// location is not used from here onwards

int damage =
if (damage > 10) { ... }

@Sun 2006 JavaOne® Conference | Session TS-3418 | 45 java.sun.com/javaone/sf

sssssssssssss

Coalescing Local Variables
Optimized:
void someMethod () {

int mergedVar =

doSomeCalculation (mergedVar) ;

mergedVar =
if (mergedvar > 10) { ... }

@Sun 2006 JavaOnes Conference | Session TS-3418 | 46 java.sun.com/javaone/sf

sssssssssssss

Method Inlining

Combine Two Methods Into One

Increases Opportunities for Intraprocedural
Optimizations

Increases Opportunities for Eliminating Local Variables

@Sun 2006 JavaOne® Conference | Session TS-3418 | 47 java.sun.com/javaone/sf

sssssssssssss

Method Inlining

* How many places is the method
called from?

* Is the call site a polymorphic call site?
* How big is the method?
* Is it called from the same class?

2006 JavaOneS™ Conference | Session TS-3418 | 48

java.sun.com/javaone/sf

Method Inlining

Powerful and Works Well with Class Merging

Some Java VMs (e.g. HotSpot Based Java VMs) Impose
Limits on Method Size to Compile to Native Code

Maintainability and Extensibility

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 49 java.sun.com/javaone/sf

Flattening 2D Arrays

Convert 2D Arrays to 1D Arrays

Less Array Bounds Checks
Less Dereferencing
Less array.length

@Sun 2006 JavaOne® Conference | Session TS-3418 | 50 iava .sun.com/iavaone/sf

sssssssssssss

Flattening 2D Arrays
Original:

boolean[] [] enemyMap = new boolean[5] [12];

// Check for any enemy next to us

// Assumes wrap around

if (enemyMap[myX+1l] [myY+1] ||
enemyMap [myX-1] [myY+1] ||
enemyMap [myX+1] [my¥Y-1] ||
enemyMap [myX-1] [myY¥-1] } {

@Sun 2006 JavaOnes™ Conference | Session TS-3418 | 51 java.sun.com/javaone/sf

Flattening 2D Arrays
Optimized:
boolean[] enemyMap = new boolean[5*12];

// Check for any enemy next to us
// Assumes wrap around
int myLoc = myX*12 + myY;
if (enemyMap|[myLoc+1l] ||
enemyMap [myLoc-1] ||
enemyMap [myLoc+12] | |
enemyMap [myLoc-12] } {

2006 JavaOneS Conference | Session TS-3418 | 52 java.sun.com/javaone/sf

Array Initialization

* What code is generated by the
Java compiler?

int[] map = {0, 1, 2, 3, ..};

@Sun 2006 JavaOne® Conference | Session TS-3418 | 53 iava .sun.com/iavaone/sf

sssssssssss

Array Initialization

* What code is generated by the
Java compiler?

int[] map = {0,

Javac generated code is equivalent to:
map[0] = O;
map [1]
map [2]

map [3.

=

2006 JavaOne®™ Conference | Session TS-3418 | 54 iava .sun.com/iavaone/sf

Array Initialization
Optimized: Generate the Array at Run-Time

map = new int[100];

for (int 1 = 0; 1 < map.length; i++)

map[i] = 1;

@Szm 2006 JavaOne® Conference | Session TS-3418 | 55 iava .sun.com/iavaone/sf

sssssssssss

Array Initialization
Optimized: Store the Array Data in a Resource

DataInputStream dis = new
DataInputStream(“map.dat”) ;

int len = dis.readInt()
int[] array = new int[len];
for (int 1=0; i<len; i++)

array[i] = dis.readInt();

dis.close() ;

2006 JavaOneS™ Conference | Session TS-3418 | 56

java.sun.com/javaone/sf

Resource Packing

MIDlet JAR File MIDlet JAR File

Class Files Class Files

Modified

I Pack File

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 57 java.sun.com/javaone/sf

Resource Packing

public Image readImage (String file) {

InputStream is = getResourceAsStream(pakfile);

// Determine offset and filesize for file

is.skip(offset) ;

byte[] buffer = new byte[filesize];

for (int i = 0; i < buffer.length; i++)
buffer[i] = is.read();

inputstream.close() ;
return Image.createImage (buffer,0,buffer.length) ;

2006 JavaOne®™ Conference | Session TS-3418 | 58 iava .sun.com/iavaone/sf

Resource Packing

Reduces the ZIP Overhead
Increases Compressability

Can Increase Heap Usage
Can Slow Resource File Access

@Sun 2006 JavaOne® Conference | Session TS-3418 | 59 iava .sun.com/iavaone/sf

sssssssssssss

Sharing Palette Across PNG Files

Improve Compressibility when Used in
Conjunction with Resource Packing, By:

Reducing Palette of Each Subsequent PNG
to 2 Bytes (Compressed)

Increasing Compressibility of Image Data

@f@Sun 2006 JavaOne®™ Conference | Session TS-3418 | 60 java .sun.com/javaone/sf

Optimization Summary
Tuned for Minimum JAR Size

JAR Size Heap Usage Speed

Class Merging VVVY A A

Eliminating Variables ¥

Method Inlining vy \4 A
Flattening 2D Arrays A A
Array Initialization vy A \4
Resource Packing \A A4 A A \4
Sharing Palette v

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 61 java.sun.com/javaone/sf

DEMO

2006 JavaOnes" Conference | Session TS-3418 | 62 java.sun.com/javaone/sf

Summary

* Size and performance matter especially for
consumer applications

* 80-20 rule applies—focus on your effort where
it counts

* Optimizations are highly interdependent
* Automate where possible

2006 JavaOne®™ Conference | Session TS-3418 | 63 java .sun.com/javaone/sf

Q&A

Stephen Cheng

2006 JavaOnes" Conference | Session TS-3418 | 64 java.sun.com/javaone/sf

@ Sun

INNAWIORKS

Smart tools. Smark \hobie—ava.

Squeezing the Last Byte and

Last Ounce of Performance
from Your MIDlets

Stephen Cheng

CEO
Innaworks
WWW.innaworks.com

1S-3418

2006 JavaOne®™ Conference | Session TS-3418 | jaua.sun.com /'ji':IUEIOI'IE.fo

Supplementary Slides

2006 JavaOnes" Conference | Session TS-3418 | 66 java.sun.com/javaone/sf

Your Mission Is
To develop a web browser:

* Runs on the widest varieties of
Java™ Platform Micro Edition
(Java ME) handsets

* Fits in 64kB

* (Good user experience and performance

* Supports full HTML, stylesheets, and a
wide range of graphics formats

Is it a Mission Impossible?

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 67 java.sun.com/javaone/sf

A Look at Opera Mini

Opera for Opera
Windows Mini
Operating System Windows Java ME
Program Size 3.6MB < 64kB
Processor Pentium N/A
RAM 16MB < 205kB
Source: Opera Website
@ Sun 2006 JavaOne® Conference | Session TS-3418 | 68 java.sun.com/javaone/sf

Nokia 7260 PC 1988

Processor ARM-7 40MHz? 16MHz 386
RAM Approx. 1MB 2MB

Screen Size 128 x 128 VGA

Graphics CPU CPU

Storage 4MB Flash 20MB Hard Disk

Source: Nokia Developer Website and mobileburns.com
@Sun 2006 JavaOnes" Conference | Session TS-3418 | 69 java.sun.com/javaone/sf

Nokia 7260 PC 2006
Processor ARM-7 40MHz? 2GHz AMD
RAM Approx 1MB 512MB
Screen Size 128 x 128 XVGA
Graphics CPU Accelerated
Storage 4MB Flash 60GB Hard Disk

Source: Nokia Developer Website and mobileburns.com

2006 JavaOneS™ Conference

Session TS-3418 | 70 java.sun.com/javaone/sf

Why Size and Performance Matters

Adoption = Potential Market Size
X Value to User
X Marketing

Volume Matters

* Application feature set
* Addressable handsets
* Addressable carriers

* Emerging markets

@Sun 2006 JavaOnes™ Conference | Session TS-3418 | 71 java.sun.com/javaone/sf

Why Size and Performance Matters

Adoption = Potential Market Size
X Value to User
X Marketing

Perceived Quality Matters
Cost Matters

* Does the application satisfy needs?

* What is perceived quality?

° Does it feel polished and professional?
* What is the real cost of owning the app?

2006 JavaOneS Conference | Session TS-3418 | 72 java.sun.com/javaone/sf

Signature Constants
What Are Signature Constants?

* Name of a referenced field, method or class

Constant Pool of innaworks.ClassA

[1]
[2]
[3]
[4]
[5]
[6]

UTF8: innaworks

UTF8: ClassA

UTF8: m

Class: [1l].[2]

NameAndType: void [3] (int) ;
MethodRef: [1].[5]

2006 JavaOneS™ Conference | Session TS-3418 | 73

java.sun.com/javaone/sf

Java ME Toolchain

Java Preverified
Compiler

Obfuscator Preverifier Classfiles

Graphics

ZIP
Compressor

Other
Resources

JAR
File

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 74 java.sun.com/javaone/sf

sssssssssss

Method Inlining

* If JAR size is critical:
* Always inline getters and setters
* Always inline small methods

* Inline methods that are called from a single
non-polymorphic callsite

* If performance is critical:
* Inline methods that are frequently called

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 75 java.sun.com/javaone/sf

Flattening 2D Arrays

Greatly Improve Performance
for 2D Array Heavy Code

@Sun 2006 JavaOnes Conference | Session TS-3418 | 76 java.sun.com/javaone/sf

sssssssssss

Array Initialization

Reduces the ZIP Overhead
Increases Compressability

Storing Array Data in Resource Slows Startup

@Sun 2006 JavaOne® Conference | Session TS-3418 | 77 java.sun.com/javaone/sf

sssssssssssss

Optimization Summary
Tuned for JAR Size and Heap Usage

JAR Size Heap Usage Speed

Class Merging vy v

Eliminating Variables ¥

Method Inlining \A/ \/ A
Flattening 2D Arrays A A
Array Initialization \A/ A \/
Resource Packing \A4 A \/

Sharing Palette v

@Sun 2006 JavaOnes" Conference | Session TS-3418 | 78 java.sun.com/javaone/sf

