
2006 JavaOneSM Conference | Session TS-3418 |

Squeezing the Last Byte and

Last Ounce of Performance
from Your MIDlets
Stephen Cheng
CEO
Innaworks
www.innaworks.com

TS-3418

2006 JavaOneSM Conference | Session TS-3418 | 2

Pushing the size and performance
limits on today’s handsets

What You Will Learn
Goal of This Talk

2006 JavaOneSM Conference | Session TS-3418 | 3

Agenda

Why Size and Performance Matters
Under the hood of a Java ME MIDlet
Optimization Strategy
Optimization Techniques
Demo

2006 JavaOneSM Conference | Session TS-3418 | 4

Why Size and Performance Matters

 Adoption = Potential Market Size
x Value to User
x Marketing

2006 JavaOneSM Conference | Session TS-3418 | 5

Why Size and Performance Matters

 Adoption = Potential Market Size
x Value to User
x Marketing

Volume Matters

2006 JavaOneSM Conference | Session TS-3418 | 6

Why Size and Performance Matters

 Adoption = Potential Market Size
x Value to User
x Marketing

Perceived Quality Matters
Cost Matters

2006 JavaOneSM Conference | Session TS-3418 | 7

Constraints of Consumer Handsets

Source: Nokia, Samsung, Bouygues Telecom, Innaworks Customer Study

JAR Heap
Size Memory

Nokia S40 v1 (3300 etc) 64kB 370kB
Nokia S40 v2 (6230 etc) 128kB 512kB
Sharp GX22 100kB 512kB
DoJa 2.5 (m420i) 30kB 1.5MB

15% Game Sales for Handsets < 64kB JAR Size
35% Game Sales for Handsets < 128kB JAR Size

2006 JavaOneSM Conference | Session TS-3418 | 8

Data Fee for Casual Users

Source: Cingular, T-Mobile, Sprint Websites and NetSize 2006 Report

Fee/Month Free Data Per kB
Sprint PCS Casual None None $0.02
Cingular Data Connect $19.99 5MB $0.008
T-Mobile Basic Plus $20.00 Unlimited N/A
Rogers Small Data Plan C$25 3MB C$0.01

Average Java ME Game in US Costs $3.99
Your 200kB FREE Application could cost US$4

to download on Sprint Network

2006 JavaOneSM Conference | Session TS-3418 | 9

Agenda

Why Size and Performance Matters
Under the hood of a Java ME MIDlet
Optimization Strategy
Optimization Techniques
Demo

2006 JavaOneSM Conference | Session TS-3418 | 10

What Is in a MIDlet JAR File?

• > 70 bytes JAR file overhead per file
• Compression does not work across files
• Overhead depends on path length

Source: Innaworks’ Customer Study

2006 JavaOneSM Conference | Session TS-3418 | 11

Classfile versus Resource Files

Source: Innaworks’ Customer Study

Typical
2D Game

Typical
Business or
Consumer App

Java Classfiles
85kB

Resources
15kB

Java Classfiles
50kB

Resources
50kB

2006 JavaOneSM Conference | Session TS-3418 | 12

Classfile Size Breakdown

Source: Innaworks’ Customer Study

Signature
Constants

15%

App
Constants

12%

Methods
(Excluding Stack Map)

52%

Method
Stack Maps

16%

Fields
4%

2006 JavaOneSM Conference | Session TS-3418 | 13

Java ME Toolchain

ZIP
Compressor

JAR
File

Other
Resources

Preverified
ClassfilesPreverifier

Graphics

Obfuscator
Source
Code

Java
Compiler

2006 JavaOneSM Conference | Session TS-3418 | 14

Stackmap

• Preverifier inserts stackmap
• Assists verification
• Increases classfile size
• Stackmap entries added at:

• Control flow merge point
• Exception handler

What Does the Preverifier Do?

2006 JavaOneSM Conference | Session TS-3418 | 15

Stackmap
int speed = 10;
Monster[] monsters = getMonsters();
for (int i = 0; i < monsters.length; i++){
// This is a merge point – stackmap here
// Variable slot 1 = int (speed)
// Variable slot 2 = Monster[] (monster)
// Variable slot 3 = int (i)

doSomethingToMonster(monsters[i]);
}
// This is a merge point – stackmap here
// Variable slot 1 = int (speed)
// Variable slot 2 = Monster[] (monster)

2006 JavaOneSM Conference | Session TS-3418 | 16

Java Technology Philosophy

• JVM™ performs optimization
• Run-time profiling to identify hot code
• Dynamic class loading

• Compiler generates mostly unoptimized code

Java SE Platform and Java EE Platform Philosophies:

Better than C++ Performance on
Java SE/Java EE Platforms

2006 JavaOneSM Conference | Session TS-3418 | 17

Java Compiler

• Designed to work with J2SE/J2EE Java VMs
• Generate “clean” code

• Almost no size or performance optimization
• No method inlining
• No redundancy elimination
• No dead class elimination
• No dead code elimination
• No code layout optimization
• Has String and StringBuffer optimization

2006 JavaOneSM Conference | Session TS-3418 | 18

Java ME Virtual Machines

Source: Sun Microsystems

CLDC Hotspot
KVM “Monty”

Memory Footprint 256kB 1MB
Bytecode Execution Interpreter Adaptive

Single-Pass Compiler
Optimizations Constant Folding,

Constant Peeling,
Loop Peeling,
Method Inlining

Targeted to Handset Constraints

2006 JavaOneSM Conference | Session TS-3418 | 19

Performance Bottleneck

• JVM performance
• I/O

• Network
• File

• UI
• Graphics
• Images

2006 JavaOneSM Conference | Session TS-3418 | 20

Agenda

Why Size and Performance Matters
Under the hood of a Java ME MIDlet
Optimization Strategy
Optimization Techniques
Demo

2006 JavaOneSM Conference | Session TS-3418 | 21

What Are the Key
Technical Problems?

• JAR size
• Heap memory
• Performance
• Handset bugs and quirks

2006 JavaOneSM Conference | Session TS-3418 | 22

Optimization Tradeoffs

Please Pick Any Two

Optimality

Low EffortMaintainability

2006 JavaOneSM Conference | Session TS-3418 | 23

Basic Optimization Rules

Be Absolutely Clear What Your Objectives Are

Rule #1

2006 JavaOneSM Conference | Session TS-3418 | 24

Basic Optimization Rules

80–20 Rule

Measure, Measure, and Measure

Rule #2

2006 JavaOneSM Conference | Session TS-3418 | 25

Basic Optimization Rules

Don’t Do It
or

Automate the Mechanical Optimizations

Rule #3

2006 JavaOneSM Conference | Session TS-3418 | 26

Size Optimization

Most Optimizations Are Mechanical
and Can Be “Automated”

Complete the Coding and Testing, then
Refactor According to a Set of Strict Rules

2006 JavaOneSM Conference | Session TS-3418 | 27

Performance Optimization

Focus on the Architecture or Framework

Much Harder to Fix Later

2006 JavaOneSM Conference | Session TS-3418 | 28

Available Tools

• Obfuscator
• PNG optimizer
• ZIP compressor

2006 JavaOneSM Conference | Session TS-3418 | 29

Available Tools—Obfuscator

• Rename class,
methods and fields

• Reduces the size
and number of
constant pool
entries

• Example: Proguard

 [1] UTF8: innaworks
[2] UTF8: ClassA
[3] UTF8: m
[4] Class: [1].[2]
[5] NameAndType: void [3](int);
[6] MethodRef: [1].[5]

 ▼
[1] UTF8: a
[2] Class:[1].[1]
[3] NameAndType: void [1](int);
[4] MethodRef: [1].[3]

2006 JavaOneSM Conference | Session TS-3418 | 30

Available Tools—PNG Optimizer

• Removes unnecessary information in PNG file
• Makes PNG data more compressible
• Example: PngCrush, AdvOpt

2006 JavaOneSM Conference | Session TS-3418 | 31

Available Tools—ZIP Compressor

• Standard JAR uses ZLIB deflate engine;
up to 10% improvements with advance
ZIP compressors

• Look out for operator restrictions
• Example: 7Zip, mBoosterZip

2006 JavaOneSM Conference | Session TS-3418 | 32

Agenda

Why Size and Performance Matters
Under the hood of a Java ME MIDlet
Optimization Strategy
Optimization Techniques
Demo

2006 JavaOneSM Conference | Session TS-3418 | 33

Typical
Business or
Consumer
AppJava Classfiles

85kB

Resources
15kB

Where Should We Focus?

Source: Innaworks’ Customer Study

Signature
Constants

15%

App
Constants

12%

Methods
(Excluding Stack Map)

52%

Method
Stack Maps

16%

Fields
4%

2006 JavaOneSM Conference | Session TS-3418 | 34

Don’t Reinvent the Wheel

Make Use of Library API Whenever Possible

2006 JavaOneSM Conference | Session TS-3418 | 35

Merging Classes

Takes Two Classes and Combines Them

Reduces the ZIP overhead
Removes Java Class Overhead

Reduces Signature Constant Entries
Shares App Constant Entries

Increases Opportunities for Method Inlining

2006 JavaOneSM Conference | Session TS-3418 | 36

Merging Abstract Class with
Concrete Class

abstract class AbstractSoundPlayer {
String play(String soundFile) {...};

}
// Only class to extend AbstractSoundPlayer
class SamsungSoundPlayer extends
AbstractSoundPlayer {
void play(String soundFile) {
 ...
};

}

Original:

2006 JavaOneSM Conference | Session TS-3418 | 37

Merging Abstract Class with
Concrete Class

class SamsungSoundPlayer {
void play(String soundFile) {

 ...
 };
}

Optimized:

2006 JavaOneSM Conference | Session TS-3418 | 38

Merging Interface with Implementer

interface SoundPlayer {
String play(String soundFile) {...};

}
// Only class to implement SoundPlayer
class SamsungSoundPlayer implements
SoundPlayer {
 void play(String soundFile) {
 ...
 };
}

Original:

2006 JavaOneSM Conference | Session TS-3418 | 39

Merging Interface with Implementer

class SamsungSoundPlayer {
void play(String soundFile) {

 ...
 };
}

Optimized:

2006 JavaOneSM Conference | Session TS-3418 | 40

Merging Sibling Classes

abstract class AbstractMonster {
abstract void doSomething();
void runAway() {...};
void drinkMore() {...};

}
class TimidMonster extends AbstractMonster {
void doSomething() {runAway();}

}
class DrunkMonster extends AbstractMonster {
void doSomething() {drinkMore();}

}

Original:

2006 JavaOneSM Conference | Session TS-3418 | 41

Merging Sibling Classes

// Combined the TimidMonster and
// DrunkMonster into one class
class CombinedMonster extends Monster {
int monsterType; // 0=TimidMonster,

// 1=DrunkMonster
void doSomething() {
switch (monsterType) {

case 0: runAway(); break;
case 1: drinkMore(); break;

}
}

}

Optimized:

2006 JavaOneSM Conference | Session TS-3418 | 42

Merging Classes

• Look out for traps:
• Instance of and casting
• Arrays
• Reflection
• Class initialization order

• Can increase heap usage
• Maintainability and extensibility

Very Powerful and Dangerous

2006 JavaOneSM Conference | Session TS-3418 | 43

Eliminating Local Variables

Combine Two Local Variables into One and
Eliminate Temporary Local Variables

Reduces the Size of Stackmap Entries
Less Computation

2006 JavaOneSM Conference | Session TS-3418 | 44

Eliminating Temporary Variables

Pos myPos = getMyPos();
Pos monsterPos = getMonsterPos();
int dist = getDistance(myPos, monsterPos);

Smaller and faster:
dist = getDistance(getMyPos(),

getMonsterPos());

Original:

2006 JavaOneSM Conference | Session TS-3418 | 45

void someMethod() {
int location = ...
doSomeCalculation(location);
// location is not used from here onwards

int damage = ...
if (damage > 10) { ... }

}

Coalescing Local Variables
Original:

2006 JavaOneSM Conference | Session TS-3418 | 46

Coalescing Local Variables

void someMethod() {
int mergedVar = ...
doSomeCalculation(mergedVar);

mergedVar = ...
if (mergedVar > 10) { ... }

}

Optimized:

2006 JavaOneSM Conference | Session TS-3418 | 47

Method Inlining

Combine Two Methods Into One

Increases Opportunities for Intraprocedural
Optimizations

Increases Opportunities for Eliminating Local Variables

2006 JavaOneSM Conference | Session TS-3418 | 48

Method Inlining

• How many places is the method
called from?

• Is the call site a polymorphic call site?
• How big is the method?
• Is it called from the same class?

2006 JavaOneSM Conference | Session TS-3418 | 49

Method Inlining

Powerful and Works Well with Class Merging

Some Java VMs (e.g. HotSpot Based Java VMs) Impose
Limits on Method Size to Compile to Native Code

Maintainability and Extensibility

2006 JavaOneSM Conference | Session TS-3418 | 50

Flattening 2D Arrays

Convert 2D Arrays to 1D Arrays

Less Array Bounds Checks
Less Dereferencing
Less array.length

2006 JavaOneSM Conference | Session TS-3418 | 51

Flattening 2D Arrays

boolean[][] enemyMap = new boolean[5][12];
// Check for any enemy next to us
// Assumes wrap around
if (enemyMap[myX+1][myY+1] ||
 enemyMap[myX-1][myY+1] ||
 enemyMap[myX+1][myY-1] ||
 enemyMap[myX-1][myY-1] } {
 . . .
}

Original:

2006 JavaOneSM Conference | Session TS-3418 | 52

Flattening 2D Arrays

boolean[] enemyMap = new boolean[5*12];
// Check for any enemy next to us
// Assumes wrap around
int myLoc = myX*12 + myY;
if (enemyMap[myLoc+1] ||
 enemyMap[myLoc-1] ||
 enemyMap[myLoc+12] ||
 enemyMap[myLoc-12] } {
 . . .
}

Optimized:

2006 JavaOneSM Conference | Session TS-3418 | 53

Array Initialization

• What code is generated by the
Java compiler?
int[] map = {0, 1, 2, 3, …};

2006 JavaOneSM Conference | Session TS-3418 | 54

Array Initialization

• What code is generated by the
Java compiler?
int[] map = {0, 1, 2, 3, …};

• Javac generated code is equivalent to:
map[0] = 0;
map[1] = 1;
map[2] = 2;
map[3] = 3;

 ...

2006 JavaOneSM Conference | Session TS-3418 | 55

Array Initialization

map = new int[100];
for (int i = 0; i < map.length; i++)

map[i] = i;

Optimized: Generate the Array at Run-Time

2006 JavaOneSM Conference | Session TS-3418 | 56

Array Initialization
DataInputStream dis = new
DataInputStream(“map.dat”);

int len = dis.readInt();
int[] array = new int[len];
for (int i=0; i<len; i++)

array[i] = dis.readInt();

dis.close();

Optimized: Store the Array Data in a Resource

2006 JavaOneSM Conference | Session TS-3418 | 57

Resource Packing

MIDlet JAR File

Pack File

Class Files,
Modified

Resource
#1

Resource
#2

MIDlet JAR File

Class Files

Resource
#1

Resource
#2

2006 JavaOneSM Conference | Session TS-3418 | 58

Resource Packing
public Image readImage(String file) {

InputStream is = getResourceAsStream(pakfile);

// Determine offset and filesize for file
is.skip(offset);
byte[] buffer = new byte[filesize];
for (int i = 0; i < buffer.length; i++)

buffer[i] = is.read();
inputstream.close();
return Image.createImage(buffer,0,buffer.length);

}

2006 JavaOneSM Conference | Session TS-3418 | 59

Resource Packing

Reduces the ZIP Overhead
Increases Compressability

Can Increase Heap Usage
Can Slow Resource File Access

2006 JavaOneSM Conference | Session TS-3418 | 60

Sharing Palette Across PNG Files

Improve Compressibility when Used in
Conjunction with Resource Packing, By:

Reducing Palette of Each Subsequent PNG
to 2 Bytes (Compressed)

Increasing Compressibility of Image Data

2006 JavaOneSM Conference | Session TS-3418 | 61

JAR Size Heap Usage Speed
Class Merging ▼▼▼▼ ▲▲
Eliminating Variables ▼
Method Inlining ▼▼ ▼ ▲
Flattening 2D Arrays ▲ ▲
Array Initialization ▼▼ ▲ ▼
Resource Packing ▼▼▼ ▲▲ ▼
Sharing Palette ▼

Optimization Summary
Tuned for Minimum JAR Size

2006 JavaOneSM Conference | Session TS-3418 | 62

DEMO

2006 JavaOneSM Conference | Session TS-3418 | 63

Summary

• Size and performance matter especially for
consumer applications

• 80–20 rule applies—focus on your effort where
it counts

• Optimizations are highly interdependent
• Automate where possible

2006 JavaOneSM Conference | Session TS-3418 | 64

Q&A
Stephen Cheng

2006 JavaOneSM Conference | Session TS-3418 |

Squeezing the Last Byte and

Last Ounce of Performance
from Your MIDlets
Stephen Cheng
CEO
Innaworks
www.innaworks.com

TS-3418

2006 JavaOneSM Conference | Session TS-3418 | 66

Supplementary Slides

2006 JavaOneSM Conference | Session TS-3418 | 67

Your Mission Is

• Runs on the widest varieties of
Java™ Platform Micro Edition
(Java ME) handsets

• Fits in 64kB
• Good user experience and performance
• Supports full HTML, stylesheets, and a

wide range of graphics formats

To develop a web browser:

Is it a Mission Impossible?

2006 JavaOneSM Conference | Session TS-3418 | 68

Opera for Opera
Windows Mini

Operating System Windows Java ME
Program Size 3.6MB < 64kB
Processor Pentium N/A
RAM 16MB < 205kB

A Look at Opera Mini

Source: Opera Website

2006 JavaOneSM Conference | Session TS-3418 | 69

The Power of a Consumer Handset

Source: Nokia Developer Website and mobileburns.com

Nokia 7260 PC 1988
Processor ARM-7 40MHz? 16MHz 386
RAM Approx. 1MB 2MB
Screen Size 128 x 128 VGA
Graphics CPU CPU
Storage 4MB Flash 20MB Hard Disk

2006 JavaOneSM Conference | Session TS-3418 | 70

The Power of a Consumer Handset

Nokia 7260 PC 2006
Processor ARM-7 40MHz? 2GHz AMD
RAM Approx 1MB 512MB
Screen Size 128 x 128 XVGA
Graphics CPU Accelerated
Storage 4MB Flash 60GB Hard Disk

Source: Nokia Developer Website and mobileburns.com

2006 JavaOneSM Conference | Session TS-3418 | 71

Why Size and Performance Matters

 Adoption = Potential Market Size
x Value to User
x Marketing

Volume Matters

• Application feature set
• Addressable handsets
• Addressable carriers
• Emerging markets

2006 JavaOneSM Conference | Session TS-3418 | 72

Why Size and Performance Matters

 Adoption = Potential Market Size
x Value to User
x Marketing

Perceived Quality Matters
Cost Matters

• Does the application satisfy needs?
• What is perceived quality?
• Does it feel polished and professional?
• What is the real cost of owning the app?

2006 JavaOneSM Conference | Session TS-3418 | 73

Signature Constants

• Name of a referenced field, method or class

Constant Pool of innaworks.ClassA
[1] UTF8: innaworks
[2] UTF8: ClassA
[3] UTF8: m
[4] Class: [1].[2]
[5] NameAndType: void [3](int);
[6] MethodRef: [1].[5]

What Are Signature Constants?

2006 JavaOneSM Conference | Session TS-3418 | 74

Java ME Toolchain

ZIP
Compressor

JAR
File

Other
Resources

Preverified
ClassfilesPreverifier

Graphics

Obfuscator
Source
Code

Java
Compiler

2006 JavaOneSM Conference | Session TS-3418 | 75

Method Inlining

• If JAR size is critical:
• Always inline getters and setters
• Always inline small methods
• Inline methods that are called from a single

non-polymorphic callsite
• If performance is critical:

• Inline methods that are frequently called

2006 JavaOneSM Conference | Session TS-3418 | 76

Flattening 2D Arrays

Greatly Improve Performance
for 2D Array Heavy Code

2006 JavaOneSM Conference | Session TS-3418 | 77

Array Initialization

Reduces the ZIP Overhead
Increases Compressability

Storing Array Data in Resource Slows Startup

2006 JavaOneSM Conference | Session TS-3418 | 78

JAR Size Heap Usage Speed
Class Merging ▼▼ ▼
Eliminating Variables ▼
Method Inlining ▼▼ ▼ ▲
Flattening 2D Arrays ▲ ▲
Array Initialization ▼▼ ▲ ▼
Resource Packing ▼▼ ▲ ▼
Sharing Palette ▼

Optimization Summary
Tuned for JAR Size and Heap Usage

