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Goal of the Talk

Understand how a Service Oriented  
Architecture Creates New Opportunities 
for Mobile Java Technology
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The New Mobile Service Economy 
Requires Faster Cycle and Lower Costs
The old way to create mobile services is just too slow:

• Standardize technology, specify static terminal 
APIs, Manufacturers implement these in 
products, ensure vendor compatibility, wait for 
terminal volumes, and then, finally announce 
the service
• Compare this to the way how services spread in 

fixed Internet (Skype, Google search etc.)
• Using JSR 232 operators can dynamically 

customize the service offering available to their 
development community
Speed of innovation in internet services sets a 
reference for innovation in mobile services
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Why Next Generation 
Mobile Java Technology
• Mobile Java technology is the Standard technology

for connecting mobile devices into the Operator Service 
Environment, the new WEB 2.0 Network Service 
Environment, and the Enterprise environment

• Mobile Java programming environment is the best 
development environment to enable developers to take 
advantage of the key capabilities of mobile terminals 
while connecting to network services

• Java technology provides the best integration with 
Enterprise development by leveraging a component 
based Service Oriented Architecture and allowing 
mobile terminals to use the capabilities of the emerging 
Enterprise Service Bus (ESB)
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Terminal API Evolution
1st Generation APIs… Slow but DONE

• Static APIs to Basic Terminal features

2nd Generation Terminal APIs… Slow but DONE
• Static APIs to Services running in the native OS platform

3rd Generation APIs reflecting Network Services… 
• Continuously Evolving! Mobile Operational Management 

(JSR 232)/OSGi
• Dynamic APIs to Services running in the network… Web 2.0 and  

Operator Network Services
• Service APIs are dynamically available and updatable for the 

application developer
• Services shield the application developer from implementation, 

protocol, and networking details
• Services can be created and deployed with the assurance of security 

and authority
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The Network Service Environment  
(Web 2.0)
• Web 2.0 is a term often applied to the ongoing transition 

of the World Wide Web from a collection of websites to a 
full-fledged computing platform serving web applications 
to end users 

• Web 2.0 is the network… as a platform, spanning all 
connected devices 

• Web 2.0 paradigm shifts:
• A network platform enabling the utilization of distributed services
• The phenomenon describing the transformation of the web from a 

publication medium to a platform for distributed services 

• Examples are Google, Yahoo, Amazon, Network Operators, 
many others that are creating a Service Platform from the 
World Wide Web by opening their service APIs to third party 
developers
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Mobile Java Technology Innovation 
and Time  to Market Developers Utilizing the Next 

Generation Mobile Java 
Platform:

• Go to the Google website
• Take the Google Service API 

Adapt as a Mobile Java 
Service with all communication 
self contained including mobile 
specific QOS

• Publish the Service API to 
developers

• Result: The Google service would be instantly available to be 
embedded in any application running in the Java environment, 
with any customized UI the application designer wants

• Cost… several hours of skilled programmer time
• Benefit…Huge market advantage to evolve and react at WEB speed
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Next Generation Mobile Java Technology… 
Innovation in Assembly… “Mobile Mash-ups”

• End developer focuses on application experience

• Operator adds value by providing Mashup 
services which hide the complexity of 
mobile communications and interactions 
from the developer

• Services can be used without having to 
understand all of the various web protocols 
and XML constructions

• End developer can easily combine with 
services offered by the terminal; PIM, 
messaging etc to create innovative 
applications

• These services will be developed using 
existing WEB 2.0 and operator network 
services and no server code will need to 
be created

A mobile mash-up is a value added service that seamlessly combines services 
from more than one source into an integrated experience for the Mobile Java 
platform end application developer

OS and Native 
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Scoring
IM

Location
Community

Other
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Operator and 
WEB 2.0 Services
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Service-Oriented Architecture
• SOA is often mistaken 

with web services
• Service orientation is more 

general and is founded on 
the concepts of

• Late non-explicit bindings
• Functionality description
• Discovery 

• OSGi architecture is an 
intra-VM realization of 
SOA concepts 

Service 
Registry

Service 
Provider

Service 
Consumer

Service
Description

Publish Find

Bind/Interact

• Simple, scalable architecture
• Self-contained services
• Loose coupling
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High-level Architecture
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JSR 232 Architecture = A Layered 
Core Framework + Services

Service Model (L3)

Lifecycle (L2)

Java (L0)

Modularity (L1)
Execution environment:

• CDC/FP
• OSGi/Minimum EE
• Java SE platform

Manages Lifecycle of Bundles 
and Provides a Bundle 
Repository

Decouples Bundles and 
Provides a Service Registry

Supports Bundles as Modules
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JSR 232 Component Model—Bundles
• Bundle is a unit of encapsulation in JSR 232

• A JAR file containing different resources and metadata
• Visibility of resources can be public or private

• Own class loader each bundle is a separate namespace.

• Metadata is included in the Manifest.mf
• Bundle identification (name, version) 
• Dependencies on external packages (imports)
• Provided packages (exports)
• Information for bundle management (e.g. lifecycle management)

• Can be dynamically installed and removed
• Framework resolves the packages dependencies
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Lifecycle of a Bundle
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SOA in OSGi—Service Registry
• Bundles register their services

• Service is defined by a Java interface
• Arbitrary service attributes

• Consumers look up services  by 
interface
• Filtering based on service attributes: 

(&(service.vendor=Nokia) 
(com.nokia.custom.attr=42))

• Service is accessed via direct 
method calls

• Notification mechanism
• Stateless and stateful services
• Framework tracks the usage of 

services

Core Framework

Service Registry

B
undle 1

B
undle 2

B
undle n

« register »
« use »

« keep track »

Service 
Registry

Service 
Provider

Service 
Consumer

Service
Description

Publish Find

Bind/Interact



2006 JavaOneSM Conference   |   Session TS-3757   | 16
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Management Server Specific
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Management Architecture

• Combines the protocol and API based approaches
• Protocol-based approach is simpler for management servers
• API-based approach is easier for application developers

• Management Objects for the most common 
management services are defined,
• Format: Based on Device Management Tree model defined in 

OMA DM

• Plug-in architecture
• Pluggable management agents enable interoperability with 

different management servers
• Support for local management applications as well

• Pluggable Management Objects to extend DMT
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Management Services

• Log service
– Creating log entries
– Log listeners
– Log search

• Configuration admin
– Create, update and delete 

configuration objects
– Push and pull models

• Monitor admin
– Publish status variables 

• Different collection 
methods

– Monitoring jobs

• Application lifecycle 
management
– Start and stop applications
– Event triggered execution 
– Scheduled execution

• Deployment admin
– Deployment package format
– Install, update, uninstall
– Pluggable resource processors
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Configuration Management—
Example
Application Developer’s View:

Administrator’s View:

private static final String MYPID =
ManagedMidlet.class.getName();

ApplicationContext context;
Configuration myConfig;

protected void startApp() 
throws MIDletStateChangeException {

context = Framework.getApplicationContext(this);
ConfigurationAdmin configAdmin = 

(ConfigurationAdmin)context.locateService(“config”);

myConfig = this.configAdmin.getConfiguration(MYPID);

Dictionary config = this.myConfiguration.getProperties();
hostname = (String)config.get(“hostname”);
port = (Integer)config.get(“port”);

}



2006 JavaOneSM Conference   |   Session TS-3757   | 21

Managed Application Deployment

• Deployment Package: A packaging format for Mobile 
Java based application
• Based on JAR file format
• Can contain bundles and other resources
• It is a unit of deployment: Installed, updated and uninstalled 

atomically
• Special variant: Fix pack—Contains the delta between versions

• Deployment Admin: Processes the deployment package
• Plug-in architecture to customize deployment process

• Plug-ins called Resource Processors
• A standard Resource Processor: Autoconf
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Auto Configuration

• Autoconf script is an XML resource in a DP
• RP: org.osgi.deployment.rp.autoconf

• Structural description of configuration data
• Name, type, human readable description of 

configuration item
• The definition of configuration objects 

• To be added to Configuration Admin
• The metadata can be used to automatically 

create a user-friendly configuration UI
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Auto Configuration—Example 
<?xml version="1.0" encoding="UTF-8"?>

<MetaData xmlns="http://www.osgi.org/xmlns/metatype/v1.0.0“ >

<OCD name="ManagedMidlet Configuration" id="MidletConfiguration">

<AD id="hostname" type=“java.lang.String" name=”Host name”/>
<AD id="port" type=“java.lang.Integer" name=”Port Number”/>

</OCD>

<Designate pid="com.nokia.mj.sample.ManagedMidlet" 

bundle="osgi-dp:ManagedApplication1">

<Object ocdref="MidletConfiguration">
<Attribute adref="hostname"  content="forum.nokia.com"/>

<Attribute adref="port" content=“80"/>

</Object>

</Designate>

</MetaData>
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Foreign Application Access

• Enables access to the platform for applications
• Supports existing application models like MIDP
• Application must have managed lifecycle 
• Application must be packaged as a JAR

• Application JAR installed to as bundles
• Application container recognizes these “bundles” and provides 

the necessary environment

• Applications can import shared packages
• Declare dependencies using Import-Package

• Applications can register and use services
• Service dependencies declared in XML descriptor
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Example Application Descriptor
<?xml version="1.0" ?>

<descriptor xmlns="http://www.osgi.org/xmlns/app/v1.0.0">

<application class="com.nokia.mj.sample.ManagedMidlet">

<reference

name="log“

interface="org.osgi.service.log.LogService"/>

<reference

name="config“

interface="org.osgi.service.cm.ConfigurationAdmin"/>

</application>

</descriptor>
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Components
• Bundles can share packages and provide services
• Shared packages

• Class libraries
• Loaded only once, static elements are shared

• Services—Like daemon processes 
• Autonomous operation
• Own execution context
• Lifecycle independent from clients lifecycle

• Under the control of Java 2 based permissions—
Fine-grained access control
• Exporting and importing packages—On package level
• Service lookup and registration—On service level
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Creating Service Components

Application 
UI

Service 
Component:
MyValue

Service
Component:
CustomerInfo

Service
Component:
StockQuote

Interface: MyValue Interface: CustomerInfo

Interface: StockQuote

reference
name=“customerinfo”
interface=“CustomerInfo”

reference
name=“stockquote”
interface=“StockQuote”

reference
name=“myvalue”
interface=“MyValue”

• A simple stock-value calculator; Service MyValue calculates 
the actual values of a persons stock
• Stock price is obtained from StockQuote service
• The number and type of owned stocks read from the CustomerInfo

service—one customer owns one type of stocks
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Creating Service Components
package com.isv.service.customerinfo;

public interface CustomerInfo {
public Customer getCustomer(String customerID););

}

CustomerInfo.java

package com.isv.service.stockquote;

public interface StockQuote {
public float getQuote(String symbol);

}

package com.isv.service.customerinfo;

public interface Customer {
public String getCustNo();
public String getFirstName();
public String getLastName();
public String getSymbol();
public int    getNumShares();

}
StockQuote.java

Customer.java
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Creating Service Components—
The Service Interface
package com.isv.process.myvalue;

public interface MyValue {
public float getMyValue(String customerID);

}

MyValue.java

Manifest-Version: 1.0
Bundle-SymbolicName: com.isv.service.myvalue
Bundle-Verison: 1.0.0
Bundle-Vendor: Acme Inc.
Export-Package: com.isv.service.myvalue; specification-
version=1.0

• Service defined as an interface
• Bundle exports the package of service interface definition

• Specification version is used during dependency resolution

• Implementation will be in a different package
• Implementation package is not exported to hide it from other bundles

Bundle manifest:
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Creating Service Components—
Implementing Business Logic
package com.isv.process.myvalue.impl;

public class MyValueImpl implements MyValue {…

protected void activate(ComponentContext context) {
this.context = context;

}

public float getMyValue(String customerID) {   
CustomerInfo cInfo =

(CustomerInfo)context.locateService("customerInfo");

Customer customer = cInfo.getCustomer(customerID);

StockQuote sQuote = 
(StockQuote)context.locateService("stockQuote");

float quote =  sQuote.getQuote(customer.getSymbol());
return (quote * customer.getNumShares());

}

• The declared policy/cardinality ensures that locateService
returns valid service objects
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Creating Service Components—
Component Descriptor
<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="com.isv.process.myvalue.MyValue"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.0.0">

<implementation 
class="com.isv.process.myvalue.impl.MyValueImpl"/>

<service>
<provide interface="com.isv.process.myvalue.MyValue"/>

</service>

<reference name="customerInfo"
interface="com.isv.service.customerinfo.CustomerInfo"
cardinality="1..1"
policy="static"/>

<reference name="stockQuote"
interface="com.isv.service.stockquote.StockQuote"
cardinality="1..1"
policy="static"/>

</scr:component>

• Component descriptor specifies the implementation class, 
provided services, service dependencies
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Creating Service Components—
Creating the Bundle
…
Import-Package: org.osgi.framework; specification-version=1,
org.osgi.service.component,
com.isv.service.customerinfo, 
com.isv.service.stockquote

Service-Component: com/isv/process/myvalue/impl/myvalue.xml

Additions to manifest:

• Import the packages for the interface of the used services
• Component descriptor file is listed in Service-Component 

header
• Package it in a JAR

META-INF\MANIFEST.MF

com/isv/process/myvalue/MyValue.class

com/isv/process/myvalue/impl/MyValueImpl.class

com/isv/process/myvalue/impl/myvalue.xml
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Summary…

• Provides an intra-VM realization of SOA 
concepts, including
• Component model
• Service model, with efficient, direct API call based 

interaction model
• Enables a new, modular architecture for mobile 

applications
• Enables extending the platform with new 

functionality—Mobile middleware
• Supports the management of components 

through their whole lifecycle

The 232 Platform
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Meet Us!

• See our JSR-232 demos at Nokia booth; Booth 
number 1114

• 20:30 today: BOF-0157: The OSGi Service 
Architecture, From Embedded to Enterprise
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