
2006 JavaOneSM Conference | Session TS-3757 |

Mobile Java™ Technology JSR
232 Architecture and Benefits
Jon Bostrom
Director, Architecture
Nokia
http://www.nokia.com/

Gábor Pécsy
Software Technology Specialist

TS-3757

2006 JavaOneSM Conference | Session TS-3757 | 2

Goal of the Talk

Understand how a Service Oriented
Architecture Creates New Opportunities
for Mobile Java Technology

2006 JavaOneSM Conference | Session TS-3757 | 3

The New Mobile Service Economy
Requires Faster Cycle and Lower Costs
The old way to create mobile services is just too slow:

• Standardize technology, specify static terminal
APIs, Manufacturers implement these in
products, ensure vendor compatibility, wait for
terminal volumes, and then, finally announce
the service
• Compare this to the way how services spread in

fixed Internet (Skype, Google search etc.)
• Using JSR 232 operators can dynamically

customize the service offering available to their
development community
Speed of innovation in internet services sets a
reference for innovation in mobile services

2006 JavaOneSM Conference | Session TS-3757 | 4

Why Next Generation
Mobile Java Technology
• Mobile Java technology is the Standard technology

for connecting mobile devices into the Operator Service
Environment, the new WEB 2.0 Network Service
Environment, and the Enterprise environment

• Mobile Java programming environment is the best
development environment to enable developers to take
advantage of the key capabilities of mobile terminals
while connecting to network services

• Java technology provides the best integration with
Enterprise development by leveraging a component
based Service Oriented Architecture and allowing
mobile terminals to use the capabilities of the emerging
Enterprise Service Bus (ESB)

2006 JavaOneSM Conference | Session TS-3757 | 5

Terminal API Evolution
1st Generation APIs… Slow but DONE

• Static APIs to Basic Terminal features

2nd Generation Terminal APIs… Slow but DONE
• Static APIs to Services running in the native OS platform

3rd Generation APIs reflecting Network Services…
• Continuously Evolving! Mobile Operational Management

(JSR 232)/OSGi
• Dynamic APIs to Services running in the network… Web 2.0 and

Operator Network Services
• Service APIs are dynamically available and updatable for the

application developer
• Services shield the application developer from implementation,

protocol, and networking details
• Services can be created and deployed with the assurance of security

and authority

2006 JavaOneSM Conference | Session TS-3757 | 6

The Network Service Environment
(Web 2.0)
• Web 2.0 is a term often applied to the ongoing transition

of the World Wide Web from a collection of websites to a
full-fledged computing platform serving web applications
to end users

• Web 2.0 is the network… as a platform, spanning all
connected devices

• Web 2.0 paradigm shifts:
• A network platform enabling the utilization of distributed services
• The phenomenon describing the transformation of the web from a

publication medium to a platform for distributed services

• Examples are Google, Yahoo, Amazon, Network Operators,
many others that are creating a Service Platform from the
World Wide Web by opening their service APIs to third party
developers

2006 JavaOneSM Conference | Session TS-3757 | 7

Mobile Java Technology Innovation
and Time to Market Developers Utilizing the Next

Generation Mobile Java
Platform:

• Go to the Google website
• Take the Google Service API

Adapt as a Mobile Java
Service with all communication
self contained including mobile
specific QOS

• Publish the Service API to
developers

• Result: The Google service would be instantly available to be
embedded in any application running in the Java environment,
with any customized UI the application designer wants

• Cost… several hours of skilled programmer time
• Benefit…Huge market advantage to evolve and react at WEB speed

2006 JavaOneSM Conference | Session TS-3757 | 8

Next Generation Mobile Java Technology…
Innovation in Assembly… “Mobile Mash-ups”

• End developer focuses on application experience

• Operator adds value by providing Mashup
services which hide the complexity of
mobile communications and interactions
from the developer

• Services can be used without having to
understand all of the various web protocols
and XML constructions

• End developer can easily combine with
services offered by the terminal; PIM,
messaging etc to create innovative
applications

• These services will be developed using
existing WEB 2.0 and operator network
services and no server code will need to
be created

A mobile mash-up is a value added service that seamlessly combines services
from more than one source into an integrated experience for the Mobile Java
platform end application developer

OS and Native
Services

Yahoo

Google

Other

Operator
Store

Search
Feed
Billing

Scoring
IM

Location
Community

Other

Operator
Presence

Operator and
WEB 2.0 Services

Mobile Mash-up

2006 JavaOneSM Conference | Session TS-3757 | 9

Service-Oriented Architecture
• SOA is often mistaken

with web services
• Service orientation is more

general and is founded on
the concepts of

• Late non-explicit bindings
• Functionality description
• Discovery

• OSGi architecture is an
intra-VM realization of
SOA concepts

Service
Registry

Service
Provider

Service
Consumer

Service
Description

Publish Find

Bind/Interact

• Simple, scalable architecture
• Self-contained services
• Loose coupling

2006 JavaOneSM Conference | Session TS-3757 | 10

What We Have in the Box—
High-level Architecture

Core Framework

Service Registry

Foreign A
pplication A

ccess

A
pplication C

ontainers

A
pplications

Application Lifecycle Management

Configuration Admin

Log Service

Monitor Admin

Deployment Admin

Conditional Permission Admin

Application Components /
Third-party Middleware

D
M

T A
dm

in P
rotocol

A
dapter

P
rotocol

A
dapter

M
anagem

ent
S

erver
M

anagem
ent

S
erver

2006 JavaOneSM Conference | Session TS-3757 | 11

Core Framework

Core Framework

Service Registry

Foreign A
pplication A

ccess

A
pplication C

ontainers

A
pplications

Application Lifecycle Management

Configuration Admin

Log Service

Monitor Admin

Deployment Admin

Conditional Permission Admin

Application Components /
Third-party Middleware

D
M

T A
dm

in P
rotocol

A
dapter

P
rotocol

A
dapter

M
anagem

ent
S

erver
M

anagem
ent

S
erver

2006 JavaOneSM Conference | Session TS-3757 | 12

JSR 232 Architecture = A Layered
Core Framework + Services

Service Model (L3)

Lifecycle (L2)

Java (L0)

Modularity (L1)
Execution environment:

• CDC/FP
• OSGi/Minimum EE
• Java SE platform

Manages Lifecycle of Bundles
and Provides a Bundle
Repository

Decouples Bundles and
Provides a Service Registry

Supports Bundles as Modules

B
undle 1

B
undle 2

B
undle 3

B
undle n

2006 JavaOneSM Conference | Session TS-3757 | 13

JSR 232 Component Model—Bundles
• Bundle is a unit of encapsulation in JSR 232

• A JAR file containing different resources and metadata
• Visibility of resources can be public or private

• Own class loader each bundle is a separate namespace.

• Metadata is included in the Manifest.mf
• Bundle identification (name, version)
• Dependencies on external packages (imports)
• Provided packages (exports)
• Information for bundle management (e.g. lifecycle management)

• Can be dynamically installed and removed
• Framework resolves the packages dependencies

2006 JavaOneSM Conference | Session TS-3757 | 14

Lifecycle of a Bundle

2006 JavaOneSM Conference | Session TS-3757 | 15

SOA in OSGi—Service Registry
• Bundles register their services

• Service is defined by a Java interface
• Arbitrary service attributes

• Consumers look up services by
interface
• Filtering based on service attributes:

(&(service.vendor=Nokia)
(com.nokia.custom.attr=42))

• Service is accessed via direct
method calls

• Notification mechanism
• Stateless and stateful services
• Framework tracks the usage of

services

Core Framework

Service Registry

B
undle 1

B
undle 2

B
undle n

« register »
« use »

« keep track »

Service
Registry

Service
Provider

Service
Consumer

Service
Description

Publish Find

Bind/Interact

2006 JavaOneSM Conference | Session TS-3757 | 16

Manageability

Core Framework

Service Registry

Foreign A
pplication A

ccess

A
pplication C

ontainers

A
pplications

Application Lifecycle Management

Configuration Admin

Log Service

Monitor Admin

Deployment Admin

Conditional Permission Admin

Application Components /
Third-party Middleware

D
M

T A
dm

in P
rotocol

A
dapter

P
rotocol

A
dapter

M
anagem

ent
S

erver
M

anagem
ent

S
erver

2006 JavaOneSM Conference | Session TS-3757 | 17

Management Server Specific

Standard

Management Architecture

Traditional Approaches

JSR 232 Management

Management
Server

Device

Mgmt Agent

Management
Object

Managed
Function

Device

Mgmt Agent

Management
Object

Managed
Function

« mgmt protocol »

Management
Server

« mgmt protocol »

Protocol Based API Based

Device

Mgmt Agent

Management
Object

Managed
Function

Management
Server

« mgmt protocol »

2006 JavaOneSM Conference | Session TS-3757 | 18

Management Architecture

• Combines the protocol and API based approaches
• Protocol-based approach is simpler for management servers
• API-based approach is easier for application developers

• Management Objects for the most common
management services are defined,
• Format: Based on Device Management Tree model defined in

OMA DM

• Plug-in architecture
• Pluggable management agents enable interoperability with

different management servers
• Support for local management applications as well

• Pluggable Management Objects to extend DMT

2006 JavaOneSM Conference | Session TS-3757 | 19

Management Services

• Log service
– Creating log entries
– Log listeners
– Log search

• Configuration admin
– Create, update and delete

configuration objects
– Push and pull models

• Monitor admin
– Publish status variables

• Different collection
methods

– Monitoring jobs

• Application lifecycle
management
– Start and stop applications
– Event triggered execution
– Scheduled execution

• Deployment admin
– Deployment package format
– Install, update, uninstall
– Pluggable resource processors

2006 JavaOneSM Conference | Session TS-3757 | 20

Configuration Management—
Example
Application Developer’s View:

Administrator’s View:

private static final String MYPID =
ManagedMidlet.class.getName();

ApplicationContext context;
Configuration myConfig;

protected void startApp()
throws MIDletStateChangeException {

context = Framework.getApplicationContext(this);
ConfigurationAdmin configAdmin =

(ConfigurationAdmin)context.locateService(“config”);

myConfig = this.configAdmin.getConfiguration(MYPID);

Dictionary config = this.myConfiguration.getProperties();
hostname = (String)config.get(“hostname”);
port = (Integer)config.get(“port”);

}

2006 JavaOneSM Conference | Session TS-3757 | 21

Managed Application Deployment

• Deployment Package: A packaging format for Mobile
Java based application
• Based on JAR file format
• Can contain bundles and other resources
• It is a unit of deployment: Installed, updated and uninstalled

atomically
• Special variant: Fix pack—Contains the delta between versions

• Deployment Admin: Processes the deployment package
• Plug-in architecture to customize deployment process

• Plug-ins called Resource Processors
• A standard Resource Processor: Autoconf

2006 JavaOneSM Conference | Session TS-3757 | 22

Auto Configuration

• Autoconf script is an XML resource in a DP
• RP: org.osgi.deployment.rp.autoconf

• Structural description of configuration data
• Name, type, human readable description of

configuration item
• The definition of configuration objects

• To be added to Configuration Admin
• The metadata can be used to automatically

create a user-friendly configuration UI

2006 JavaOneSM Conference | Session TS-3757 | 23

Auto Configuration—Example
<?xml version="1.0" encoding="UTF-8"?>

<MetaData xmlns="http://www.osgi.org/xmlns/metatype/v1.0.0“ >

<OCD name="ManagedMidlet Configuration" id="MidletConfiguration">

<AD id="hostname" type=“java.lang.String" name=”Host name”/>
<AD id="port" type=“java.lang.Integer" name=”Port Number”/>

</OCD>

<Designate pid="com.nokia.mj.sample.ManagedMidlet"

bundle="osgi-dp:ManagedApplication1">

<Object ocdref="MidletConfiguration">
<Attribute adref="hostname" content="forum.nokia.com"/>

<Attribute adref="port" content=“80"/>

</Object>

</Designate>

</MetaData>

2006 JavaOneSM Conference | Session TS-3757 | 24

Application Access

Core Framework

Service Registry

Foreign A
pplication A

ccess

A
pplication C

ontainers

A
pplications

Application Lifecycle Management

Configuration Admin

Log Service

Monitor Admin

Deployment Admin

Conditional Permission Admin

Application Components /
Third-party Middleware

D
M

T A
dm

in P
rotocol

A
dapter

P
rotocol

A
dapter

M
anagem

ent
S

erver
M

anagem
ent

S
erver

2006 JavaOneSM Conference | Session TS-3757 | 25

Foreign Application Access

• Enables access to the platform for applications
• Supports existing application models like MIDP
• Application must have managed lifecycle
• Application must be packaged as a JAR

• Application JAR installed to as bundles
• Application container recognizes these “bundles” and provides

the necessary environment

• Applications can import shared packages
• Declare dependencies using Import-Package

• Applications can register and use services
• Service dependencies declared in XML descriptor

2006 JavaOneSM Conference | Session TS-3757 | 26

Example Application Descriptor
<?xml version="1.0" ?>

<descriptor xmlns="http://www.osgi.org/xmlns/app/v1.0.0">

<application class="com.nokia.mj.sample.ManagedMidlet">

<reference

name="log“

interface="org.osgi.service.log.LogService"/>

<reference

name="config“

interface="org.osgi.service.cm.ConfigurationAdmin"/>

</application>

</descriptor>

2006 JavaOneSM Conference | Session TS-3757 | 27

Component Development

Core Framework

Service Registry

Foreign A
pplication A

ccess

A
pplication C

ontainers

A
pplications

Application Lifecycle Management

Configuration Admin

Log Service

Monitor Admin

Deployment Admin

Conditional Permission Admin

Application Components /
Third-party Middleware

D
M

T A
dm

in P
rotocol

A
dapter

P
rotocol

A
dapter

M
anagem

ent
S

erver
M

anagem
ent

S
erver

2006 JavaOneSM Conference | Session TS-3757 | 28

Components
• Bundles can share packages and provide services
• Shared packages

• Class libraries
• Loaded only once, static elements are shared

• Services—Like daemon processes
• Autonomous operation
• Own execution context
• Lifecycle independent from clients lifecycle

• Under the control of Java 2 based permissions—
Fine-grained access control
• Exporting and importing packages—On package level
• Service lookup and registration—On service level

2006 JavaOneSM Conference | Session TS-3757 | 29

Creating Service Components

Application
UI

Service
Component:
MyValue

Service
Component:
CustomerInfo

Service
Component:
StockQuote

Interface: MyValue Interface: CustomerInfo

Interface: StockQuote

reference
name=“customerinfo”
interface=“CustomerInfo”

reference
name=“stockquote”
interface=“StockQuote”

reference
name=“myvalue”
interface=“MyValue”

• A simple stock-value calculator; Service MyValue calculates
the actual values of a persons stock
• Stock price is obtained from StockQuote service
• The number and type of owned stocks read from the CustomerInfo

service—one customer owns one type of stocks

2006 JavaOneSM Conference | Session TS-3757 | 30

Creating Service Components
package com.isv.service.customerinfo;

public interface CustomerInfo {
public Customer getCustomer(String customerID););

}

CustomerInfo.java

package com.isv.service.stockquote;

public interface StockQuote {
public float getQuote(String symbol);

}

package com.isv.service.customerinfo;

public interface Customer {
public String getCustNo();
public String getFirstName();
public String getLastName();
public String getSymbol();
public int getNumShares();

}
StockQuote.java

Customer.java

2006 JavaOneSM Conference | Session TS-3757 | 31

Creating Service Components—
The Service Interface
package com.isv.process.myvalue;

public interface MyValue {
public float getMyValue(String customerID);

}

MyValue.java

Manifest-Version: 1.0
Bundle-SymbolicName: com.isv.service.myvalue
Bundle-Verison: 1.0.0
Bundle-Vendor: Acme Inc.
Export-Package: com.isv.service.myvalue; specification-
version=1.0

• Service defined as an interface
• Bundle exports the package of service interface definition

• Specification version is used during dependency resolution

• Implementation will be in a different package
• Implementation package is not exported to hide it from other bundles

Bundle manifest:

2006 JavaOneSM Conference | Session TS-3757 | 32

Creating Service Components—
Implementing Business Logic
package com.isv.process.myvalue.impl;

public class MyValueImpl implements MyValue {…

protected void activate(ComponentContext context) {
this.context = context;

}

public float getMyValue(String customerID) {
CustomerInfo cInfo =

(CustomerInfo)context.locateService("customerInfo");

Customer customer = cInfo.getCustomer(customerID);

StockQuote sQuote =
(StockQuote)context.locateService("stockQuote");

float quote = sQuote.getQuote(customer.getSymbol());
return (quote * customer.getNumShares());

}

• The declared policy/cardinality ensures that locateService
returns valid service objects

2006 JavaOneSM Conference | Session TS-3757 | 33

Creating Service Components—
Component Descriptor
<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="com.isv.process.myvalue.MyValue"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.0.0">

<implementation
class="com.isv.process.myvalue.impl.MyValueImpl"/>

<service>
<provide interface="com.isv.process.myvalue.MyValue"/>

</service>

<reference name="customerInfo"
interface="com.isv.service.customerinfo.CustomerInfo"
cardinality="1..1"
policy="static"/>

<reference name="stockQuote"
interface="com.isv.service.stockquote.StockQuote"
cardinality="1..1"
policy="static"/>

</scr:component>

• Component descriptor specifies the implementation class,
provided services, service dependencies

2006 JavaOneSM Conference | Session TS-3757 | 34

Creating Service Components—
Creating the Bundle
…
Import-Package: org.osgi.framework; specification-version=1,
org.osgi.service.component,
com.isv.service.customerinfo,
com.isv.service.stockquote

Service-Component: com/isv/process/myvalue/impl/myvalue.xml

Additions to manifest:

• Import the packages for the interface of the used services
• Component descriptor file is listed in Service-Component

header
• Package it in a JAR

META-INF\MANIFEST.MF

com/isv/process/myvalue/MyValue.class

com/isv/process/myvalue/impl/MyValueImpl.class

com/isv/process/myvalue/impl/myvalue.xml

2006 JavaOneSM Conference | Session TS-3757 | 35

Summary…

• Provides an intra-VM realization of SOA
concepts, including
• Component model
• Service model, with efficient, direct API call based

interaction model
• Enables a new, modular architecture for mobile

applications
• Enables extending the platform with new

functionality—Mobile middleware
• Supports the management of components

through their whole lifecycle

The 232 Platform

2006 JavaOneSM Conference | Session TS-3757 | 36

Meet Us!

• See our JSR-232 demos at Nokia booth; Booth
number 1114

• 20:30 today: BOF-0157: The OSGi Service
Architecture, From Embedded to Enterprise

2006 JavaOneSM Conference | Session TS-3757 |

Mobile Java™ Technology JSR
232 Architecture and Benefits
Jon Bostrom
Director, Architecture
Nokia
http://www.nokia.com/

Gábor Pécsy
Software Technology Specialist

TS-3757

	Mobile Java™ Technology JSR 232 Architecture and Benefits
	Goal of the Talk
	The New Mobile Service Economy Requires Faster Cycle and Lower Costs
	Why Next Generation Mobile Java Technology
	Terminal API Evolution
	The Network Service Environment (Web 2.0)
	Mobile Java Technology Innovation and Time to Market
	Next Generation Mobile Java Technology… Innovation in Assembly… “Mobile Mash-ups”
	Service-Oriented Architecture
	What We Have in the Box—High-level Architecture
	Core Framework
	JSR 232 Architecture = A Layered Core Framework + Services
	JSR 232 Component Model—Bundles
	Lifecycle of a Bundle
	SOA in OSGi—Service Registry
	Manageability
	Management Architecture
	Management Architecture
	Management Services
	Configuration Management—Example
	Managed Application Deployment
	Auto Configuration
	Auto Configuration—Example
	Application Access
	Foreign Application Access
	Example Application Descriptor
	Component Development
	Components
	Creating Service Components
	Creating Service Components
	Creating Service Components—The Service Interface
	Creating Service Components—Implementing Business Logic
	Creating Service Components—Component Descriptor
	Creating Service Components—Creating the Bundle
	Summary…
	Meet Us!
	Mobile Java™ Technology JSR 232 Architecture and Benefits

