@ Sun

Beyond JUnit:
Introducing TestNG
The Next Generation in Testing

Hani Suleiman

CTO
~ormicary
nttp://www.formicary.net

nani@formicary.net
TS 3097

2006 JavaOne®™ Conference | Session TS-3097 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

Testing

Renewed enthusiasm for testing
No more ‘real developers’ vs. ‘QA developers’

Partially due to
‘Extreme programming” (XP)

Test Driven
Development (TDD)

Testing is cool again!

2006 JavaOne®™ Conference | Session TS-3097 | 2 iava .sun.com/iavaone/sf

>,

JUnit

No real introduction needed!

Simple JavaTM technology
testing framework, based
on introspection,

test methods, classes,

and suites.

First mainstream testing
framework created and
now a de facto standard.

2006 JavaOneS™ Conference | Session TS-3097 | 3

java.sun.com/javaone/sf

>,

JUnit Strengths

Simple to understand: test methods,
classes, suites

Easy to implement: extend TestCase, prefix
method with ‘test’

Use setUp and tearDown for initialization
and cleanup

Use TestRunner for text or graphical results
Tests can be combined into suites
Lots of add-ons: db testing, gui testing, reporting

2006 JavaOnes" Conference | Session TS-3097 | 4 java.sun.com/javaone/sf

JUnit Problems

Does this test pass or fail?

public class Testl extends TestCase {
private int count = 0;

private void testl () {
count++;
assertEquals (count, 1) ;

}

public void test2() {
count++;
assertEquals (count, 1);

of’f@SZﬂ’l 2006 JavaOne®™ Conference | Session TS-3097 | 5 iava .sun.com/iavaone/sf

It Passes!

*JUnit instantiates your class before
Invoking each test method

* By design?

* How do you keep state across
invocations?

* Use statics!

* Many downsides:
* Not ‘same-Java VM’ friendly
* Redundant with setUp()

* Goes against intuitive class/constructor
behaviour

* Replacing one flaw (reinstantiation)
with another (statics

2006 JavaOneS™ Conference | Session TS-3097 | 6

java.sun.com/javaone/sf

JUnit Problems

* How do you run an individual method?
* Comment out all the other ones!

* How do you keep enable/disable certain
methods?

* Modify your suite, recompile, and rerun

* Note: Existing IDE’s and JUnit add-ons help
address these issues

2006 JavaOne®™ Conference | Session TS-3097 | 7 java .sun.com/javaone/sf

>,

JUnit Problems

Victim of its own success. Initially designed for

unit testing only, but now used for all sorts of
testing

Very limited for anything but unit-testing
Updates are very few and far between

Intrusive (forces supericass and ‘magic’ method
naming)

Static programming model
(recompile unnecessarily)

Doesn’t use latest Java technology features
(annotations, asserts)

2006 JavaOne®™ Conference | Session TS-3097 | 8 iava.sun.com/iavaone/sf

Introducing TestNG

Annotations (JDKTM 5 software

or JavadocTM tool)

Flexible runtime
configuration (xml)

Introduces ‘test groups’, to
separate statics (test contents)

from dynamics (which tests to run)

Dependent test methods,
parallel testing, load testing,

partial failure.
Flexible plug-in API

2006 JavaOneS™ Conference

Session TS-3097 | 9

java.sun.com/javaone/sf

TestNG Example (JDK 1.4 software)

public class SimpleTest ({

/**
* @testng.configuration beforeTestClass = true
*/

public void init() {

// code that will be invoked when test is instantiated

}

/**
* @testng.test groups = “functest”
*/

public void serverIsRunning() {

// your test code

@Sun 2006 JavaOnes" Conference | Session TS-3097 | 10 java.sun.com/javaone/sf

TestNG Example (JDK 5 software)

import org.testng.annotations.*;

public class SimpleTest {
@Configuration (beforeTestClass = true)
public void init () {
// invoked when test is instantiated
}
@Test (groups = { "functest" })
public void serverIsRunning() ({

// your test code

@Sun 2006 JavaOnes™ Conference | Session TS-3097 | 11 java.sun.com/javaone/sf

>,

TestNG Example

No need to extend a base class
No magic ‘test’ prefix for method names

Configuration methods can be given meaningful
names (not just setUp and tearDown), you can
have as many as you want, and they can be
around methods, classes, or suites

Test methods can be parametrized (not shown,
but discussed later)

2006 JavaOneS Conference | Session TS-3097 | 12 java.sun.com/javaone/sf

Running the Test

Runtime specified in testng.xml. Mostly: list of classes and list of groups to
include/exclude:

<test name="Simple'">
<groups>
<run>
<include name=“functest"/>
</run>
</groups>
<classes>
<class name=“SimpleTest" />
</classes>

</test>
Note: testng.xml is optional, can use ant/command line

@Sun 2006 JavaOnes" Conference | Session TS-3097 | 13 java.sun.com/javaone/sf

Annotations

@Test

* ldentify a test method

@Configuration

* ldentify a method used to configure tests

@ExpectedExceptions

* Indicate that a method is expected to throw one or more
exceptions

@DataProvider

* Provide parameters to pass to test methods

@Factory

* Create your own test objects at runtime

2006 JavaOnes Conference | Session TS-3097 | 14 java.sun.com/javaone/sf

TestNG Terminology

* Suite—each suite contains:

* Tests—each test contains:

* Classes—each class contains:
* Methods

* @Configuration can wrap each of the
scopes above

2006 JavaOneS™ Conference | Session TS-3097 | 15

java.sun.com/javaone/sf

testng.xml

<suite name="TestNG JDK 1.5"“ parallel="true" thread-count="5">
<test name="Nopackage">
<classes>
<class name="NoPackageTestl" />
<class name="NoPackageTest2" />
</classes>
</test>
<test name="Regressionl" >
<packages>
<package name="test.regression.*" />
</package>
</test>

</suite>

@Sun 2006 JavaOnes" Conference | Session TS-3097 | 16 java.sun.com/javaone/sf

TestNG Annotations

* @Configuration
before TestMethod/afterTestMethod

* JUnit: setup/tearDown
beforeTestClass/afterTestClass

* JUnit: No equivalent
beforeSuite/afterSuite

* JUnit: No equivalent
beforeTest/afterTest

* Junit: No equivalent

* You can have multiple @Configuration methods

* @Configuration methods can be grouped/have
dependencies

@Sun 2006 JavaOnes" Conference | Session TS-3097 | 17 java.sun.com/javaone/sf

TestNG Annotations

@Test
Groups: The groups this method belongs to

Parameters: The parameters that will be passed to
your test methods, as declared in testng.xml

DependsOnGroups: The list of groups this method
depends on

Timeout: The maximum duration of this test before it
IS considered a failure

@Test (groups = { “functional” }, timeOut = 10000,
dependsOnGroups = “serverIsUp”)

public void sendHttpRequest() ({
// ..

2006 JavaOnes Conference | Session TS-3097 | 18 java.sun.com/javaone/sf

>,

testng.xml

Where all runtime
information goes:

Test methods, classes,
and packages

Which groups should be
run (include-groups)

Which groups should be
excluded (exclude-groups)

Define additional groups
(groups of groups)

Whether tests should be
run in parallel

Parameters
JUnit mode

L
Temporal lobe

Cerebrum

2006 JavaOneS™ Conference | Session TS-3097 | 19

Pons —"

Brain stem

= Parietal lobe

QOccipital
lobe

" il

S
= Cerebellum

java.sun.com/javaone/sf

>,

Eclipse and IDEA

TestNG Plug-in exists

for Eclipse and IDEA J' Inte"U

Run a test class,
method, or group

Easy selection of
groups and testng.xml files

Visual feedback
(red/green bar, just like JUnit!)

Directly jump to failures

‘quickfix/intentions’ to one-click
migrate JUnit tests

. .
eclipse

THEAECLIPSE PROJECT

2006 JavaOnes" Conference | Session TS-3097 | 20 java.sun.com/javaone/sf

7% TestNG X

Fesults of this test run

Passed: 115 B Failed: 0 B Skipped: 0

" Failed tests | [tz All tests = Failure exception i

=-Hii] TesthG IDK 1.5 (115/0/0/0) &

Suites: 1/1 I Tests: 22/22 Methods: 115/115

=] Nopackage (1/0/0/0)
=| Regression1 (17/0/0/0)

| i B

=| Regression2 { 16/0/0/0)

[N gy e xRl iy e

I
g |

=] Basic (3/0/0/0)

= test,sample.Basic1.basicl

=| test.sample.Basic2.basic2

= test.Misc. makeSureSetUpWithParameterWithMNoParametersF =

=| Exdusion (4/0/0,0)
= Dependents (23,/0/0/0)

=| Inheritance {4fofo/0)

=| Junit { 3/0/0/0)
=| Test outer scope (1/0/0/0)

=| Test inner scope (1/0/0/0)
=| AfterClassCalledAtEnd { 3/0/0/0)

=| Triangle (3/0/0/0)

= ChedkTrianglePost { 1/0/0/0)
=] Test dass groups 1 { 3/0/0f0)

g B R i N o - R - - O g A o
By i i .t by S R B g bl) W) B R LIy)

| Test dass groups 2 { 3/0/0/0)
= Factory { 5/0/0/0) ¥/

] | @ @ I ¥

2006 JavaOne$™ Conference | Session TS-3097 | 21 java.sun.com/javaone/sf

Create, manage, and run configurations

€3 Project not spedfied

Configurations:

----- # Edipse Application

----- =] Java Applet

----- [7] Java Application

----- Ju Jnit

----- Ji 2Unit Plug-in Test

----- Remate Java Application
----- =7 SWT Application

=i TestNG
@ Mew_configuration

Mew Delete

Marne: | Mew_configuration

W Test |W= Argumentsl . Classpath | =1} JREl B Emrironmentl

~Project
I Browse... |
—Run...
* dass | Browse... |
. Groups | Browse... |
- Suite I Browse... |
— Runtime
Compliance level (the test sources are needed for 10K 1.4) |1.4 vI
Log level (0-10) I?_ vI

Apply | Rewert |

| Debug I Close

2006 JavaOne®™ Conference | Session TS-3097 | 22

java.sun.com/javaone/sf

pp Done:90of 9 Failed: 3 (12.31s) |HNHNENENENNERERERERENERENENANE NN RN RN AN AN AN AR A R RN

g1 O Test Results 45 {Dutput | Statisticsj
¥ () examplel _ _
I] verifyLastNameShouldFail 1
-
L

v @ Testl throwExpectedException?ShouldPass
* (I verifyLastNameShou about to test something...

i@ throwExpectedExce testiethods
i#h throwExpectedExce
i#h testMethod 1

(I throwExce ptionShou
(= testMethod2

€)) A

Custom suite
Total tests run: 9, Failures: 3, Skips: 0

O >+
! Test |

X8un 2006 JavaOne®M Conference | Session TS-3097 | 23 iava .sun.com/iavaone/sf

microsystems

I Applet ™ Application B Orion | [EE JUnit 5 Remote I TestNG | «k Plugin]-—

A Mame: Test

Test: (o) Adl in Package () Suite) GCroup) Class () Method
Test

Package:

examplel |_|

Search for tests: () In whole project (*) In single module () Across module dependencies

[JDK Settings = Test Parameters J

VM parameters:

)

ir Test runner parameters:

)

Working directory:

Use classpath and JDK of module:
[=3 tests 2]

[l Use alternative |RE:

Es—)
ngs before running /debugging [1 Make module before running,/debugging/reloading

[# run | [Cancel || Apolv | [Helo

@Sun 2006 JavaOnes" Conference | Session TS-3097 | 24 java.sun.com/javaone/sf

Integration with Other Frameworks

Maven plugin (v1 and v2)
© Spring framework

Glassfish Unified Test Framework
* TestNG Based
* Development Ongoing

* Quality Portal at
http://wiki.java.net/bin/view/Projects/GlassFishQuality

* Mailing List: quality@glassfish.dev.java.net
* Comparisons with JUnit 4

* Integration is straightforward in most cases
(setUp/tearDown)

2006 JavaOnes" Conference | Session TS-3097 | 25 java.sun.com/javaone/sf

Converting from JUnit

* JUnitConverter can convert entire codebase to
TestNG in a few seconds

* Plugin in Eclipse or IDEA can also do so

@Sun 2006 JavaOnes" Conference | Session TS-3097 | 26 java.sun.com/javaone/sf

@ Sun

Expected Exceptions

* Throwing exceptions is common from Java code
* Easy to test with TestNG:

@ExpectedExceptions ({
java.lang.NumberFormatException.class })

@Test
public void validateNumber () {

2006 JavaOnes Conference | Session TS-3097 | 27 java.sun.com/javaone/sf

@ Sun

Rerunning Failed Tests

* Most of our work is fixing tests that fail

* TestNG knows which tests failed in a run and
makes it easy to rerun just these tests.

* testng-failed.xml

* Typical session:

$ java org.testng.TestNG testng.xml
$ java org.testng.TestNG testng-failed.xml

2006 JavaOnes Conference | Session TS-3097 | 28 java.sun.com/javaone/sf

DataProviders

* TestNG supports Data-Driven testing
* Example: Testing a parser

@Test
public void parseGoodString(String s) ({

new Parser () .parse(s);

}

@ExpectedExceptions ({ ParserException.class })

@QTest
public void parseBadString(String s) {

new Parser () .parse(s);

}

2006 JavaOneSM™ Conference | Session TS-3097 | 29

java.sun.com/javaone/sf

DataProviders

@Test (dataProvider = “good-strings”)

public void parseGoodString(String s) {
new Parser () .parse(s);
}
@DataProvider (name = “good-strings")
public Object[][] createGoodStrings () {
return new Object[][] {
new Object[] { “2 * 2" },

new Object[] { “3 + 2”7 };
}

@SM?} 2006 JavaOne®™ Conference | Session TS-3097 | 30

java.sun.com/javaone/sf

DataProviders

* DataProviders allow you to separate data
from logic

* Data can come from Java technology, flat file,
database, network, etc.

* You can have as many DataProviders as
you like; for example, “good-strings”,
“bad-strings”, etc.

2006 JavaOnes Conference | Session TS-3097 | 31 java.sun.com/javaone/sf

Testing Thread Safety

* Not even sure how to do this in JUnit:
public void testCachePutShouldBeThreadSafe () {
// Create pool of threads (52 10? 507?)
// Create workers invoking cache.put() (100? 2007?)
// Launch the pool
// Wait for termination
// BAbort laggards (exception if any)

// If no exception verify that no data has been thrashed

Phew!

@Sun 2006 JavaOnes" Conference | Session TS-3097 | 32 java.sun.com/javaone/sf

®Sun

Testing Thread Safety

* TestNG:

@Test (invocationCount=1000, threadPoolSize=10)
public void cachePut() {
m cache.put(“foo”, "“bar”);

Need a timeout?

@Test (invocationCount=1000, threadPoolSize=10,
timeOut=10000 /* 10 seconds */)

2006 JavaOnesM Conference | Session TS-3097 | 33 iava .sun.com/javaone/sf

Excluding Groups

© Sometimes, tests break and you cannot fix them immediately

* JUnit: comment them out or rename method, and with
luck, turn them back on before shipping

* TestNG: define “broken” group and have it excluded
in all test runs. Move any fails to this group

* Later: Look for tests in “broken” group and fix.

<test name="“DBTest'">
<groups>
<run>
<exclude name=“broken.*" />
<include name=“functional.*” />

</run>

</groups>

@Sun 2006 JavaOnes" Conference | Session TS-3097 | 34 java.sun.com/javaone/sf

Programmatic Invocation

* Convenient for in-container testing

TestNG testng = new TestNG() ;
testng.setTestClasses (new Class[] {

Runl.class, Run2.class
}) g
testng.setGroups (new String[] { “functional”, “db”});
TestListenerAdapter tla = new TestListenerAdapter() ;
testng.addListener (tla) ;
testng.run() ;

// inspect results in tla

2006 JavaOneSM™ Conference | Session TS-3097 | 35

java.sun.com/javaone/sf

Beanshell

© Sometimes, including and excluding groups is
not enough

* What if we need to run certain tests during the week,

and a different set during the weekend?
* Use beanshell!

<test name="Basic'">
<script language="beanshell"><! [CDATA |
int today = Calendar.getInstance().
get (Calendar.DAY OF WEEK) ;
return today == Calendar.SATURDAY | |
today == Calendar.SUNDAY;

11></script>

‘%%SM?} 2006 JavaOne®" Conference | Session TS-3097 | 36

java.sun.com/javaone/sf

®Sun

Partial Failure

* “invocationCount” allows us to specify the number of
times to execute a test.

* Used with “successPercentage™ allows us to define
partial failure tests:

@Test (invocationCount = 1000,
successPercentage 98)
public void sendSmsMessage (String msg)

{ ..}

2006 JavaOnes Conference | Session TS-3097 | 37 java.sun.com/javaone/sf

Plug-in API

TestNG exposes a plug-in API that makes it easy to

monitor test progress and invocation:
* Test started

* Test ended

* Testresult...etc

Possible to also modify TestNG core

Four proofs of concept:

* JUnit mode

* Default HTML reports

* JUnitReport HTML plug-in
* TestNG’s own testing

2006 JavaOneSM™ Conference | Session TS-3097 | 38

java.sun.com/javaone/sf

>,

Dependent Methods

Problem: certain methods depend on the
success of previous methods

Example: testing a server:
One test method to launch the server: launch()
One test method to ping the server: ping()
Twenty methods to verify server functionality test1()...test20()

Problem: Server is launched but ping() fails
Scenario difficult to achieve with Junit
Result: 1 PASSED and 21 FAILURES

Result: QA freaks out and calls you on Sunday
during your golf game

2006 JavaOne®™ Conference | Session TS-3097 | 39 iava.sun.com/iavaone/sf

Dependent Methods

* Need a way to order methods;
not just individual methods, but collections of
methods grouped logically

* Need a mechanism to accurately report failures
due to failed dependency (avoid PRFTS: Post
Run Failure Trauma Syndrome)

@Sun 2006 JavaOnes" Conference | Session TS-3097 | 40 java.sun.com/javaone/sf

@ Sun

Dependent Methods

* Back to the server testing example:
* Dependencies: launch - init - tests

@Test (groups = “launch”)

public void launchServer () {..}

@Test (groups = “init”, dependsOnGroups = { “launch” })
public void ping() { ..}

@Test (dependsOnGroups = { “init” })

public void testl() { .. }

* Qutcome: 1 SUCCESS, 1 FAIL, 20 SKIPS

2006 JavaOne®™ Conference | Session TS-3097 | 41

java.sun.com/javaone/sf

Reporting

* TestNG issues an HTML report by default

* Plug-in APl makes it easy to write your own
report (for example, JUnitReporter plug-in)

@Sun 2006 JavaOnes" Conference | Session TS-3097 | 42 java.sun.com/javaone/sf

¢ JavaOne

e e e e

.Y
Results for TestNG

DK 1.5 Dependents
. A)

Include

Excluded groups:

[

@ Sun 2006 JavaOnes" Conference | Session TS-3097 | 43 java.sun.com/javaone/sf

Java

>,

Summary

JUnit has the right idea, but suffers from old age
and limitations for real (non-unit) testing.

TestNG offers the following benefits:
Non-intrusive (annotations)
Clean separation of programming model from runtime

Covers more than unit testing, with features like
dependencies, groups, parameters, and partial failure

Powerful plugin API for custom reports or
modifications to core functionality

Whether you choose TestNG or JUnit, think
differently about testing!

2006 JavaOnes" Conference | Session TS-3097 | 44 java.sun.com/javaone/sf

For More Information

* Hosted on java.net, available via CVS

* Download and documentation available on
http://testng.org

* Authors:

 Cedric Beust (cbeust@google.com)
* Alexandru Popescu (the _mindstorm@evolva.ro)

2006 JavaOnes Conference | Session TS-3097 | 45 java.sun.com/javaone/sf

2006 JavaOnes" Conference | Session TS-3097 | 46 java.sun.com/javaone/sf

Beyond JUnit:
Introducing TestNG
The Next Generation
In Testing

Hani Suleiman

CTO
~ormicary
nttp://www.formicary.net

nani@formicary.net
TS 3097

2006 JavaOneSM Conference

Session TS-3097 |

@ Sun

java.sun.com/javaone/sf

