
2006 JavaOneSM Conference | Session TS-3097 |

Beyond JUnit:
Introducing TestNG
The Next Generation in Testing
Hani Suleiman
CTO
Formicary
http://www.formicary.net

hani@formicary.net
TS 3097

2006 JavaOneSM Conference | Session TS-3097 | 2

Testing

• Renewed enthusiasm for testing
• No more ‘real developers’ vs. ‘QA developers’
• Partially due to

‘Extreme programming” (XP)
• Test Driven

Development (TDD)
• Testing is cool again!

2006 JavaOneSM Conference | Session TS-3097 | 3

JUnit

• No real introduction needed!
• Simple JavaTM technology

testing framework, based
on introspection,
test methods, classes,
and suites.

• First mainstream testing
framework created and
now a de facto standard.

2006 JavaOneSM Conference | Session TS-3097 | 4

JUnit Strengths

• Simple to understand: test methods,
classes, suites

• Easy to implement: extend TestCase, prefix
method with ‘test’

• Use setUp and tearDown for initialization
and cleanup

• Use TestRunner for text or graphical results
• Tests can be combined into suites
• Lots of add-ons: db testing, gui testing, reporting

2006 JavaOneSM Conference | Session TS-3097 | 5

JUnit Problems
Does this test pass or fail?
public class Test1 extends TestCase {
 private int count = 0;
 private void test1() {
 count++;
 assertEquals(count, 1);
 }
 public void test2() {
 count++;
 assertEquals(count, 1);
}

2006 JavaOneSM Conference | Session TS-3097 | 6

It Passes!
• JUnit instantiates your class before

invoking each test method
• By design?

• How do you keep state across
invocations?
• Use statics!

• Many downsides:
• Not ‘same-Java VM’ friendly
• Redundant with setUp()
• Goes against intuitive class/constructor

behaviour
• Replacing one flaw (reinstantiation)

with another (statics)

2006 JavaOneSM Conference | Session TS-3097 | 7

JUnit Problems

• How do you run an individual method?
• Comment out all the other ones!

• How do you keep enable/disable certain
methods?
• Modify your suite, recompile, and rerun

• Note: Existing IDE’s and JUnit add-ons help
address these issues

2006 JavaOneSM Conference | Session TS-3097 | 8

JUnit Problems
• Victim of its own success. Initially designed for

unit testing only, but now used for all sorts of
testing
• Very limited for anything but unit-testing

• Updates are very few and far between
• Intrusive (forces superlcass and ‘magic’ method

naming)
• Static programming model

(recompile unnecessarily)
• Doesn’t use latest Java technology features

(annotations, asserts)

2006 JavaOneSM Conference | Session TS-3097 | 9

Introducing TestNG
• Annotations (JDKTM 5 software

or JavadocTM tool)
• Flexible runtime

configuration (xml)
• Introduces ‘test groups’ , to

separate statics (test contents)
from dynamics (which tests to run)

• Dependent test methods,
parallel testing, load testing,
partial failure.

• Flexible plug-in API

2006 JavaOneSM Conference | Session TS-3097 | 10

TestNG Example (JDK 1.4 software)
public class SimpleTest {
 /**
 * @testng.configuration beforeTestClass = true
 */
 public void init() {
 // code that will be invoked when test is instantiated
 }
 /**
 * @testng.test groups = “functest”
 */
 public void serverIsRunning() {
 // your test code
 }
}

2006 JavaOneSM Conference | Session TS-3097 | 11

TestNG Example (JDK 5 software)
import org.testng.annotations.*;

public class SimpleTest {
 @Configuration(beforeTestClass = true)
 public void init() {
 // invoked when test is instantiated
 }
 @Test(groups = { "functest" })
 public void serverIsRunning() {
 // your test code
 }
}

2006 JavaOneSM Conference | Session TS-3097 | 12

TestNG Example

• No need to extend a base class
• No magic ‘test’ prefix for method names
• Configuration methods can be given meaningful

names (not just setUp and tearDown), you can
have as many as you want, and they can be
around methods, classes, or suites

• Test methods can be parametrized (not shown,
but discussed later)

2006 JavaOneSM Conference | Session TS-3097 | 13

Running the Test
Runtime specified in testng.xml. Mostly: list of classes and list of groups to
include/exclude:

<test name=“Simple">
 <groups>
 <run>
 <include name=“functest"/>
 </run>
 </groups>
 <classes>
 <class name=“SimpleTest" />
 </classes>
 </test>
Note: testng.xml is optional, can use ant/command line

2006 JavaOneSM Conference | Session TS-3097 | 14

Annotations
• @Test

• Identify a test method

• @Configuration
• Identify a method used to configure tests

• @ExpectedExceptions
• Indicate that a method is expected to throw one or more

exceptions

• @DataProvider
• Provide parameters to pass to test methods

• @Factory
• Create your own test objects at runtime

2006 JavaOneSM Conference | Session TS-3097 | 15

TestNG Terminology

• Suite—each suite contains:
• Tests—each test contains:
• Classes—each class contains:
• Methods
• @Configuration can wrap each of the

scopes above

2006 JavaOneSM Conference | Session TS-3097 | 16

testng.xml
<suite name="TestNG JDK 1.5“ parallel="true" thread-count=“5">
 <test name="Nopackage">
 <classes>
 <class name="NoPackageTest1" />
 <class name="NoPackageTest2" />
 </classes>
 </test>
 <test name="Regression1" >
 <packages>
 <package name="test.regression.*" />
 </package>
 </test>
</suite>

2006 JavaOneSM Conference | Session TS-3097 | 17

TestNG Annotations
• @Configuration

• beforeTestMethod/afterTestMethod
● JUnit: setup/tearDown

• beforeTestClass/afterTestClass
● JUnit: No equivalent

• beforeSuite/afterSuite
● JUnit: No equivalent

• beforeTest/afterTest
● Junit: No equivalent

• You can have multiple @Configuration methods
• @Configuration methods can be grouped/have

dependencies

2006 JavaOneSM Conference | Session TS-3097 | 18

TestNG Annotations
• @Test

• Groups: The groups this method belongs to
• Parameters: The parameters that will be passed to

your test methods, as declared in testng.xml
• DependsOnGroups: The list of groups this method

depends on
• Timeout: The maximum duration of this test before it

is considered a failure
@Test(groups = { “functional” }, timeOut = 10000,
 dependsOnGroups = “serverIsUp”)
public void sendHttpRequest() {
 // …
}

2006 JavaOneSM Conference | Session TS-3097 | 19

testng.xml
• Where all runtime

information goes:
• Test methods, classes,

and packages
• Which groups should be

run (include-groups)
• Which groups should be

excluded (exclude-groups)
• Define additional groups

(groups of groups)
• Whether tests should be

run in parallel
• Parameters
• JUnit mode

2006 JavaOneSM Conference | Session TS-3097 | 20

Eclipse and IDEA
• TestNG Plug-in exists

for Eclipse and IDEA
• Run a test class,

method, or group
• Easy selection of

groups and testng.xml files
• Visual feedback

(red/green bar, just like JUnit!)
• Directly jump to failures
• ‘quickfix/intentions’ to one-click

migrate JUnit tests

2006 JavaOneSM Conference | Session TS-3097 | 21

2006 JavaOneSM Conference | Session TS-3097 | 22

2006 JavaOneSM Conference | Session TS-3097 | 23

2006 JavaOneSM Conference | Session TS-3097 | 24

2006 JavaOneSM Conference | Session TS-3097 | 25

Integration with Other Frameworks

• Maven plugin (v1 and v2)
• Spring framework
• Glassfish Unified Test Framework

• TestNG Based
• Development Ongoing
• Quality Portal at

http://wiki.java.net/bin/view/Projects/GlassFishQuality
• Mailing List: quality@glassfish.dev.java.net
• Comparisons with JUnit 4

• Integration is straightforward in most cases
(setUp/tearDown)

2006 JavaOneSM Conference | Session TS-3097 | 26

Converting from JUnit

• JUnitConverter can convert entire codebase to
TestNG in a few seconds

• Plugin in Eclipse or IDEA can also do so

2006 JavaOneSM Conference | Session TS-3097 | 27

Expected Exceptions

• Throwing exceptions is common from Java code
• Easy to test with TestNG:

@ExpectedExceptions({
java.lang.NumberFormatException.class })

@Test
public void validateNumber() {
 …
}

2006 JavaOneSM Conference | Session TS-3097 | 28

Rerunning Failed Tests
• Most of our work is fixing tests that fail
• TestNG knows which tests failed in a run and

makes it easy to rerun just these tests.
• testng-failed.xml

• Typical session:
$ java org.testng.TestNG testng.xml
$ java org.testng.TestNG testng-failed.xml

2006 JavaOneSM Conference | Session TS-3097 | 29

DataProviders

• TestNG supports Data-Driven testing
• Example: Testing a parser
@Test
public void parseGoodString(String s) {
 new Parser().parse(s);
}
@ExpectedExceptions({ ParserException.class })
@Test
public void parseBadString(String s) {
 new Parser().parse(s);
}

2006 JavaOneSM Conference | Session TS-3097 | 30

DataProviders
@Test(dataProvider = “good-strings”)
public void parseGoodString(String s) {
 new Parser().parse(s);
}
@DataProvider(name = “good-strings")
public Object[][] createGoodStrings() {
 return new Object[][] {
 new Object[] { “2 * 2” },
 new Object[] { “3 + 2” };

}
}

2006 JavaOneSM Conference | Session TS-3097 | 31

DataProviders

• DataProviders allow you to separate data
from logic

• Data can come from Java technology, flat file,
database, network, etc.

• You can have as many DataProviders as
you like; for example, “good-strings”,
“bad-strings”, etc.

2006 JavaOneSM Conference | Session TS-3097 | 32

Testing Thread Safety

• Not even sure how to do this in JUnit:
public void testCachePutShouldBeThreadSafe() {
 // Create pool of threads (5? 10? 50?)
 // Create workers invoking cache.put() (100? 200?)
 // Launch the pool
 // Wait for termination
 // Abort laggards (exception if any)
 // If no exception verify that no data has been thrashed
}
Phew!

2006 JavaOneSM Conference | Session TS-3097 | 33

Testing Thread Safety

• TestNG:
@Test(invocationCount=1000, threadPoolSize=10)
public void cachePut() {
 m_cache.put(“foo”, “bar”);
}

Need a timeout?
@Test(invocationCount=1000, threadPoolSize=10,
 timeOut=10000 /* 10 seconds */)

2006 JavaOneSM Conference | Session TS-3097 | 34

Excluding Groups
• Sometimes, tests break and you cannot fix them immediately
• JUnit: comment them out or rename method, and with

luck, turn them back on before shipping
• TestNG: define “broken” group and have it excluded

in all test runs. Move any fails to this group
• Later: Look for tests in “broken” group and fix.
<test name=“DBTest">
 <groups>
 <run>
 <exclude name=“broken.*" />
 <include name=“functional.*” />
 </run>
 </groups>

2006 JavaOneSM Conference | Session TS-3097 | 35

Programmatic Invocation

• Convenient for in-container testing
TestNG testng = new TestNG();
testng.setTestClasses(new Class[] {
 Run1.class, Run2.class
});
testng.setGroups(new String[] { “functional”, “db”});
TestListenerAdapter tla = new TestListenerAdapter();
testng.addListener(tla);
testng.run();
// inspect results in tla

2006 JavaOneSM Conference | Session TS-3097 | 36

Beanshell
• Sometimes, including and excluding groups is

not enough
• What if we need to run certain tests during the week,

and a different set during the weekend?
• Use beanshell!

<test name="Basic">
 <script language="beanshell"><![CDATA[
 int today = Calendar.getInstance().
 get(Calendar.DAY_OF_WEEK);
 return today == Calendar.SATURDAY ||
 today == Calendar.SUNDAY;
]]></script>

2006 JavaOneSM Conference | Session TS-3097 | 37

Partial Failure
• “invocationCount” allows us to specify the number of

times to execute a test.
• Used with “successPercentage” allows us to define

partial failure tests:

@Test(invocationCount = 1000,
 successPercentage = 98)
public void sendSmsMessage(String msg)
{ … }

2006 JavaOneSM Conference | Session TS-3097 | 38

Plug-in API
• TestNG exposes a plug-in API that makes it easy to

monitor test progress and invocation:
• Test started
• Test ended
• Test result…etc

• Possible to also modify TestNG core
• Four proofs of concept:

• JUnit mode
• Default HTML reports
• JUnitReport HTML plug-in
• TestNG’s own testing

2006 JavaOneSM Conference | Session TS-3097 | 39

Dependent Methods
• Problem: certain methods depend on the

success of previous methods
• Example: testing a server:

• One test method to launch the server: launch()
• One test method to ping the server: ping()
• Twenty methods to verify server functionality test1()…test20()

• Problem: Server is launched but ping() fails
• Scenario difficult to achieve with Junit
• Result: 1 PASSED and 21 FAILURES
• Result: QA freaks out and calls you on Sunday

during your golf game

2006 JavaOneSM Conference | Session TS-3097 | 40

Dependent Methods

• Need a way to order methods;
not just individual methods, but collections of
methods grouped logically

• Need a mechanism to accurately report failures
due to failed dependency (avoid PRFTS: Post
Run Failure Trauma Syndrome)

2006 JavaOneSM Conference | Session TS-3097 | 41

Dependent Methods

• Back to the server testing example:
• Dependencies: launch  init  tests

@Test(groups = “launch”)
public void launchServer() {…}
@Test(groups = “init”, dependsOnGroups = { “launch” })
public void ping() { …}
@Test(dependsOnGroups = { “init” })
public void test1() { … }
• Outcome: 1 SUCCESS, 1 FAIL, 20 SKIPS

2006 JavaOneSM Conference | Session TS-3097 | 42

Reporting

• TestNG issues an HTML report by default
• Plug-in API makes it easy to write your own

report (for example, JUnitReporter plug-in)

2006 JavaOneSM Conference | Session TS-3097 | 43

2006 JavaOneSM Conference | Session TS-3097 | 44

Summary

• JUnit has the right idea, but suffers from old age
and limitations for real (non-unit) testing.

• TestNG offers the following benefits:
• Non-intrusive (annotations)
• Clean separation of programming model from runtime
• Covers more than unit testing, with features like

dependencies, groups, parameters, and partial failure
• Powerful plugin API for custom reports or

modifications to core functionality
• Whether you choose TestNG or JUnit, think

differently about testing!

2006 JavaOneSM Conference | Session TS-3097 | 45

For More Information

• Hosted on java.net, available via CVS

• Download and documentation available on
http://testng.org

• Authors:
• Cedric Beust (cbeust@google.com)
• Alexandru Popescu (the_mindstorm@evolva.ro)

2006 JavaOneSM Conference | Session TS-3097 | 46

Q&A

2006 JavaOneSM Conference | Session TS-3097 |

Beyond JUnit:
Introducing TestNG
The Next Generation
in Testing
Hani Suleiman
CTO
Formicary
http://www.formicary.net

hani@formicary.net
TS 3097

