
2006 JavaOneSM Conference | Session TS-6037 |

To Know the Dependencies
Is to Understand the
Architecture
Neeraj Sangal
President
Lattix, Inc.
http://www.lattix.com

TS-6037

2006 JavaOneSM Conference | Session TS-6037 | 2

Prevent software architecture from eroding

Dependencies Are Key to Managing
Software Architecture

Learn a new approach to representing
and managing software architecture by
utilizing inter-module dependencies. This
session includes an actual demo and
several real life examples.

2006 JavaOneSM Conference | Session TS-6037 | 3

Agenda

New Representation for Software
Architecture Using Dependency
Structure Matrix
Architectural Patterns
Design Rules
Architectural Evolution (Demo)
Examples of Real Projects
Q&A

2006 JavaOneSM Conference | Session TS-6037 | 4

Agenda

New Representation for Software
Architecture Using Dependency
Structure Matrix
Architectural Patterns
Design Rules
Architectural Evolution (Demo)
Examples of Real Projects
Q&A

2006 JavaOneSM Conference | Session TS-6037 | 5

The Dependency Model Approach

● Provides a precise big picture view of the
architecture

● Enables explicit management of architectural
evolution

● Lightweight approach that does not disrupt
development

● Has been applied to dozens of applications
written in the Java™ language ranging in size
from 100 classes to 20,000 classes

2006 JavaOneSM Conference | Session TS-6037 | 6

What Is a DSM?

1 2 3
1
2 X
3 X

Module D
Module A-C
Module B

1 2 3 4
1 X X
2 X
3 X X
4

Module A
Module B
Module C
Module D

Fig 1: A Simple DSM Fig 3: Lower Triangular

1 2 3 4
1

Module A 2 X X
Module C 3 X X

4 XModule B

A
-C

Module D
1 2 3 4

1
2 X X
3 X X
4 X

Module D
Module A
Module C
Module B

Fig 2: Block Triangular
After Partitioning

Fig 4: Hierarchical

2006 JavaOneSM Conference | Session TS-6037 | 7

What’s a Dependency?

● Module A depends on a module B if there
are explicit references in A to syntactic
elements of B

● Simple but effective notion of dependency
that works well for understanding design
dependencies, in which modifications to one
module might affect another

● Extraction of dependencies can be decoupled
from their analysis

2006 JavaOneSM Conference | Session TS-6037 | 8

Agenda

New Representation for Software
Architecture using Dependency
Structure Matrix
Architectural Patterns
Design Rules
Architectural Evolution (Demo)
Examples of Real Projects
Q&A

2006 JavaOneSM Conference | Session TS-6037 | 9

Architectural Patterns—I

Layered System

Strictly Layered System

2006 JavaOneSM Conference | Session TS-6037 | 10

Architectural Patterns—II

Imperfectly Layered
System

Change
Propagator

2006 JavaOneSM Conference | Session TS-6037 | 11

Architectural Patterns—III

Private Components

Not Visible
Outside “Domain”

2006 JavaOneSM Conference | Session TS-6037 | 12

Agenda

New Representation for Software
Architecture using Dependency
Structure Matrix
Architectural Patterns
Design Rules
Architectural Evolution (Demo)
Examples of Real Projects
Q&A

2006 JavaOneSM Conference | Session TS-6037 | 13

Design Rules

● Succinct specification of acceptable and
unacceptable dependencies between
subsystems

● Each cell of the DSM represents design intent
● DSM offers a powerful way to visualize and

specify design rules

Dependency Model = DSM + Design Rules

2006 JavaOneSM Conference | Session TS-6037 | 14

Design Rules
DSM with Rules View

Green Triangle—Dependency Acceptable

Yellow Triangle—Dependency Unacceptable

Red Triangle—Rule Violation Discovered

Rules for Layering
1. $root can-use $root
2. model cannot-use application
3. domain cannot-use application, model
4. framework cannot use application,

model, domain
5. util cannot-use application, model,

domain, framework

2006 JavaOneSM Conference | Session TS-6037 | 15

ANT Conceptual Architecture
Layered

Architecture
with Three

Subsystems

Tasks Use
Common

Infrastructure

Key Goal:
Allow

Independent
Development

of Tasks

2006 JavaOneSM Conference | Session XXXX | 16

DEMO
The Evolution of ANT

2006 JavaOneSM Conference | Session TS-6037 | 17

Agenda

New Representation for Software
Architecture using Dependency
Structure Matrix
Architectural Patterns
Design Rules
Architectural Evolution (Demo)
Examples of Real Projects
Q&A

2006 JavaOneSM Conference | Session TS-6037 | 18

Example: JUNIT

A Layered System with
Independent User Interfaces

2006 JavaOneSM Conference | Session TS-6037 | 19

Example: jEdit

Monolithic System ?

2006 JavaOneSM Conference | Session TS-6037 | 20

Example: NetBeans™ Platform

2006 JavaOneSM Conference | Session TS-6037 | 21

Conceptual Architecture for NetBeans™

Precise Big Picture
View Derived From
The Dependencies

View Shows
Accurate Layering

And Vertical
Splitting

2006 JavaOneSM Conference | Session TS-6037 | 22

Summary: Big Picture View
That Scales

● Highly scalable—Represent massive systems
to give you a precise big picture view

● Formalize design intent and prevent
architectural erosion

● Easy to adopt—Use it at any stage of the
lifecycle

● Critical visibility of the architecture is achieved
very quickly—try it out on your own software!

2006 JavaOneSM Conference | Session TS-6037 | 23

For More Information
● Information on DSMs: http://www.dsmweb.org
● Neeraj Sangal, Ev Jordan, Vineet Sinha, Daniel

Jackson, “Using Dependency Models to Manage
Complex Software Architecture”, OOPSLA 2005
http://sdg.lcs.mit.edu/pubs/2005/oopsla05-dsm.pdf

● Steven D. Eppinger, “Innovation at the Speed of
Information”, Harvard Business Review,
January 2001

● Baldwin, C.Y. and Clark K.B., The Power of
Modularity Volume 1, MIT Press, Cambridge, MA,
2000

● Lattix: http://www.lattix.com

2006 JavaOneSM Conference | Session XXXX | 24

Q&A
Neeraj Sangal

2006 JavaOneSM Conference | Session TS-6037 |

To Know the Dependencies
Is to Understand the
Architecture
Neeraj Sangal
President
Lattix, Inc.
http://www.lattix.com

TS-6037

	To Know the Dependencies Is to Understand the Architecture
	Dependencies Are Key to Managing Software Architecture
	Agenda
	Agenda
	The Dependency Model Approach
	What Is a DSM?
	What’s a Dependency?
	Agenda
	Architectural Patterns—I
	Architectural Patterns—II
	Architectural Patterns—III
	Agenda
	Design Rules
	Design Rules
	ANT Conceptual Architecture
	DEMO
	Agenda
	Example: JUNIT
	Example: jEdit
	Example: NetBeans™ Platform
	Conceptual Architecture for NetBeans™
	Summary: Big Picture ViewThat Scales
	For More Information
	Q&A
	To Know the Dependencies Is to Understand the Architecture

