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Prevent software architecture from eroding

Dependencies Are Key to Managing 
Software Architecture

Learn a new approach to representing 
and managing software architecture by 
utilizing inter-module dependencies. This 
session includes an actual demo and 
several real life examples.
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The Dependency Model Approach

● Provides a precise big picture view of the 
architecture

● Enables explicit management of architectural 
evolution

● Lightweight approach that does not disrupt 
development

● Has been applied to dozens of applications 
written in the Java™ language ranging in size 
from 100 classes to 20,000 classes
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What Is a DSM?
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What’s a Dependency?

● Module A depends on a module B if there
are explicit references in A to syntactic
elements of B

● Simple but effective notion of dependency 
that works well for understanding design 
dependencies, in which modifications to one 
module might affect another

● Extraction of dependencies can be decoupled 
from their analysis



2006 JavaOneSM Conference   |   Session TS-6037   | 8

Agenda

New Representation for Software 
Architecture using Dependency 
Structure Matrix
Architectural Patterns
Design Rules
Architectural Evolution (Demo)
Examples of Real Projects
Q&A



2006 JavaOneSM Conference   |   Session TS-6037   | 9

Architectural Patterns—I

Layered System

Strictly Layered System
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Architectural Patterns—II

Imperfectly Layered 
System

Change
Propagator
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Architectural Patterns—III

Private Components

Not Visible
Outside “Domain”
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Design Rules

● Succinct specification of acceptable and 
unacceptable dependencies between 
subsystems

● Each cell of the DSM represents design intent
● DSM offers a powerful way to visualize and 

specify design rules

Dependency Model = DSM + Design Rules
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Design Rules
DSM with Rules View

Green Triangle—Dependency Acceptable

Yellow Triangle—Dependency Unacceptable

Red Triangle—Rule Violation Discovered

Rules for Layering
1. $root can-use $root
2. model cannot-use application
3. domain cannot-use application, model
4. framework cannot use application, 

model, domain
5. util cannot-use application, model, 

domain, framework
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ANT Conceptual Architecture
Layered 

Architecture 
with Three 

Subsystems

Tasks Use  
Common 

Infrastructure

Key Goal: 
Allow 

Independent 
Development

of Tasks
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DEMO
The Evolution of ANT



2006 JavaOneSM Conference   |   Session TS-6037   | 17

Agenda

New Representation for Software 
Architecture using Dependency 
Structure Matrix
Architectural Patterns
Design Rules
Architectural Evolution (Demo)
Examples of Real Projects
Q&A



2006 JavaOneSM Conference   |   Session TS-6037   | 18

Example:  JUNIT

A Layered System with 
Independent User Interfaces
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Example: jEdit

Monolithic System ?
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Example: NetBeans™ Platform
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Conceptual Architecture for NetBeans™

Precise Big Picture 
View Derived From 
The Dependencies

View Shows 
Accurate Layering 

And Vertical 
Splitting
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Summary: Big Picture View
That Scales

● Highly scalable—Represent massive systems
to give you a precise big picture view

● Formalize design intent and prevent 
architectural erosion

● Easy to adopt—Use it at any stage of the 
lifecycle

● Critical visibility of the architecture is achieved 
very quickly—try it out on your own software!
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For More Information
● Information on DSMs: http://www.dsmweb.org
● Neeraj Sangal, Ev Jordan, Vineet Sinha, Daniel 

Jackson, “Using Dependency Models to Manage 
Complex Software Architecture”, OOPSLA 2005 
http://sdg.lcs.mit.edu/pubs/2005/oopsla05-dsm.pdf

● Steven D. Eppinger, “Innovation at the Speed of 
Information”, Harvard Business Review,
January 2001

● Baldwin, C.Y. and Clark K.B., The Power of 
Modularity Volume 1, MIT Press, Cambridge, MA, 
2000

● Lattix: http://www.lattix.com



2006 JavaOneSM Conference   |   Session XXXX   | 24

Q&A
Neeraj Sangal
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