
2006 JavaOneSM Conference | Session TS-3625 |

Scaling the Java™
Technology Environment
in Four Dimensions
Jim Waldo
Distinguished Engineer
Sun Microsystems Laboratories
http://research.sun.com

Session TS-3625
Copyright © 2006, Sun Microsystems, Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-3625 | 2

Learn how to identify and refer to
services that may change their location
over time, as a first step to building
long-lived systems

Goal of This Talk

2006 JavaOneSM Conference | Session TS-3625 | 3

Agenda

Setting the Stage
Current Remote References
Sketch of the Solution
Extensible Pure Names
A UuidDirectory
Refreshable References
In Conclusion

2006 JavaOneSM Conference | Session TS-3625 | 4

Agenda

Setting the Stage
Current Remote References
Sketch of the Solution
Extensible Pure Names
A UuidDirectory
Refreshable References
In Conclusion

2006 JavaOneSM Conference | Session TS-3625 | 5

Medical sensing
The Driving Application

• Suppose you could
• Place medical sensors on everyone
• Record the information all the time

• We have the sensor technology
• We have the network infrastructure
• We don’t have the back-end technology

2006 JavaOneSM Conference | Session TS-3625 | 6

A Multi-Purpose Infrastructure

• Practicing physicians
• Allow better diagnosis
• Enable triage at a distance

• Public health
• Real-time monitoring

• Research
• A rich data set for longitudinal studies

2006 JavaOneSM Conference | Session TS-3625 | 7

Such a System Would Require

• A distributed solution
• Nothing else could scale
• Nothing else would give appropriate security

• A reliable solution
• A federated solution

• There is not central medical authority
• A long-lived solution

• Data needs to last as long as the patients

2006 JavaOneSM Conference | Session TS-3625 | 8

Building an 80 Year System

• Every part of the system will be replaced
• Often more than once

• Services will evolve
• Information will change
• Services will move

• To balance load
• As machines are replaced

2006 JavaOneSM Conference | Session TS-3625 | 9

Agenda

Setting the Stage
Current Remote References
Sketch of the Solution
Extensible Pure Names
A UuidDirectory
Refreshable References
In Conclusion

2006 JavaOneSM Conference | Session TS-3625 | 10

A Remote Reference

• Supports a service interface
• Contains location information

• The machine where the server is
• The port where the server is listening
• The machine and port that knows where the server is

• This is true of
• Java Remote Method Invocation (RMI)
• CORBA
• Jini™ Extensible Remote Invocation

2006 JavaOneSM Conference | Session TS-3625 | 11

The Big Picture

Client ServiceProxy

2006 JavaOneSM Conference | Session TS-3625 | 12

Somewhat More Detail

Client

Se
rv

ic
e

In
te

rf
ac

e

Service
Machine
And Port

Service
Marshalling
and Network
Interface

2006 JavaOneSM Conference | Session TS-3625 | 13

When a Service Moves

• The reference points to the wrong machine
• We could leave a tombstone

• Tombstones forward from old location to new
• But what if the machine is gone?

• We could require all references to be replaced
• Inefficient
• How do we insure we get the same service?

2006 JavaOneSM Conference | Session TS-3625 | 14

All problems can be solved with an extra indirection
What About Using Names?

• Identify a service by a name
• Provide a naming service
• When a service moves, get a new proxy by name

• Usual names are hierarchical
• Local scope allows guaranteed uniqueness
• Hierarchy enables scale

• But hierarchies introduce location
• Movement assumes no location

2006 JavaOneSM Conference | Session TS-3625 | 15

Agenda

Setting the Stage
Current Remote References
Sketch of the Solution
Extensible Pure Names
A UuidDirectory
Refreshable References
In Conclusion

2006 JavaOneSM Conference | Session TS-3625 | 16

Pure names
A Different Kind of Naming

• A pure name can only be used
• To compare for equality
• To identify an object

• Also known as Universally Unique Identifiers
• There are multiple instantiations

• java.util.UUID
• IETF draft
• Home-grown (patient identifiers)

• How to federate?

2006 JavaOneSM Conference | Session TS-3625 | 17

How can we scale a flat namespace?
A Different Kind of Naming Service

• Usually name services scale with
• Local name service
• Hierarchy based on name
• Traverse lookup hierarchy from name hierarchy

• Pure names have no hierarchy
• Use distributed hash tables

• Partition name space arbitrarily
• Connect naming services

2006 JavaOneSM Conference | Session TS-3625 | 18

Agenda

Setting the Stage
Current Remote References
Sketch of the Solution
Extensible Pure Names
A UuidDirectory
Refreshable References
In Conclusion

2006 JavaOneSM Conference | Session TS-3625 | 19

One approach does not fit all
Pure Name Requirements

• Identifiers must be
• Unique (to what level of confidence?)
• Comparable
• Allow mapping to existing identifiers

• The base intuition
• Make part of the identifier how it was generated
• Allow (but not require) global disambiguation

2006 JavaOneSM Conference | Session TS-3625 | 20

Xuid Interface
Interface Xuid {

public long getGeneratorId();
public byte[] getId();

}
// any class implementing this will need to implement
// equals() and hashcode() so that
// a.equals(b) iff a and b have the same GeneratorId and
// the byte array of the rest of the Xuid is byte-for-byte
// the same

2006 JavaOneSM Conference | Session TS-3625 | 21

A two-part universally unique identifier, first part
Xuid Layout

• The GeneratorId
• If registered with a global authority

● First two bits are 0
● Next 62 bits are guaranteed unique by the authority

• Otherwise
● First 64 bits are a secure hash of the generation code

• There may not be a central authority
• Two unregistered generators will be equal

• Only if the generation code is identical
• Which is what we want

2006 JavaOneSM Conference | Session TS-3625 | 22

A two-part universally unique identifier, second part
Xuid Layout

• The Id
• A byte array

● Different generators may produce different sizes
● Generators are responsible for uniqueness

• Identity comparisons
• Should check generator Id first
• If those are the same, byte length should

be the same
• Hashing

• Combine generator and bytes

2006 JavaOneSM Conference | Session TS-3625 | 23

Agenda

Setting the Stage
Current Remote References
Sketch of the Solution
Extensible Pure Names
A XuidDirectory
Refreshable References
In Conclusion

2006 JavaOneSM Conference | Session TS-3625 | 24

XuidDirectory Interface
Interface UuidDirectory
{

Lease register(Xuid id, Object o, long leaselen)
throws UnknownXuidException,

RemoteException;
Lease[] register (Xuid[] ids, Object[] o,

 long[] leaseLens)
throws UnknownXuidException,

RemoteException;
Object lookup(Xuid id, XuidDirectory[] visited)

throws UnknownXuidException,
RemoteException;

}

2006 JavaOneSM Conference | Session TS-3625 | 25

Xuid Directories

• Registration
• Of single objects
• Of groups of objects
• Objects responsible for their own registration

• All registrations are leased
• Bounded time failure determination

• XuidDirectory objects can
• Consult other directories
• Split and join
• Lookup needs to know where it has been

2006 JavaOneSM Conference | Session TS-3625 | 26

Xuid Directories as DHTs

• Distributed Hash Tables
• Partition the space of a hash
• Dynamically split and join
• Have failure recovery mechanisms

• A good fit for Xuid Directories
• Flat namespace
• Excellent scaling properties

• Peer-to-peer properties
• Allow merging disjoint directories on discovery
• A first step at federation

2006 JavaOneSM Conference | Session TS-3625 | 27

Agenda

Setting the Stage
Current Remote References
Sketch of the Solution
Extensible Pure Names
A XuidDirectory
Refreshable References
In Conclusion

2006 JavaOneSM Conference | Session TS-3625 | 28

Refreshable References
Interface BasicRef
{

Xuid getXuid();
Object refreshProxy(XuidDirectory[] hints)

throws UnknownXuidException,
RemoteException;

}

2006 JavaOneSM Conference | Session TS-3625 | 29

References to Moveable Objects

• Implement BasicRef
• Need an Xuid
• Implement a refresh method

• On receiving an exception, the client
• Calls refresh()
• Can supply local directories
• Casts the result to the right type
• Discards the old reference
• Can continue

2006 JavaOneSM Conference | Session TS-3625 | 30

Somewhat More Detail (Revisited)

Client

Se
rv

ic
e

In
te

rf
ac

e Service
Machine
and Port Service

Marshalling
and Network
Interfacerefresh ()

Xuid

2006 JavaOneSM Conference | Session TS-3625 | 31

Client

Se
rv

ic
e

In
te

rf
ac

e Service
Machine
and Port

Marshalling
and Network
Interfacerefresh ()

Xuid

When the Service Moves

?

2006 JavaOneSM Conference | Session TS-3625 | 32

Use the Xuid Directory

Client

Se
rv

ic
e

In
te

rf
ac

e Service
Machine
and Port Xuid Directory

Marshalling
and Network
Interfacerefresh ()

Xuid

2006 JavaOneSM Conference | Session TS-3625 | 33

Use the New Reference

Client

Se
rv

ic
e

In
te

rf
ac

e Service
Machine
and Port Service

Marshalling
and Network
Interfacerefresh ()

Xuid

2006 JavaOneSM Conference | Session TS-3625 | 34

Agenda

Setting the Stage
Current Remote References
Sketch of the Solution
Extensible Pure Names
A UuidDirectory
Refreshable References
In Conclusion

2006 JavaOneSM Conference | Session TS-3625 | 35

But still might get lost
Services Can Move

• Xuids give
• Pure names with no presumed location
• Uniqueness tied to the way they are generated

• Xuid directories allow
• Moved objects to re-register
• Refreshable proxies to find the new location

• But things can still fail
• Service might just be gone
• May have moved to an inaccessible Xuid Directory

2006 JavaOneSM Conference | Session TS-3625 | 36

There is lots more to do
Just a First Step

• Security model
• Need to insure security and privacy
• But medicine has a different model

• More than location will change
• There will be new sensor/data types
• There will be new languages
• There will be new things that we can’t conceive

• But this is research
• Which entails that we don’t know what we are doing

2006 JavaOneSM Conference | Session TS-3625 | 37

Q&A
Jim Waldo

2006 JavaOneSM Conference | Session TS-3625 |

Scaling the Java™
Technology Environment
in Four Dimensions
Jim Waldo
Distinguished Engineer
Sun Microsystems Laboratories
http://research.sun.com

Session TS-3625

