
2006 JavaOneSM Conference | Session TS-3792 |

“Bare Metal”—Speeding Up
Java™ Technology in a
Virtualized Environment
Joakim Dahlstedt
CTO, Java Runtime Products Group
BEA Systems
http://www.bea.com

TS-3792

2006 JavaOneSM Conference | Session TS-3792 | 2

Learn about a technology that virtualizes
your Java technology-based application
transparently without losing
performance.

Server virtualization and Java™ technology
Project Bare Metal

2006 JavaOneSM Conference | Session TS-3792 | 3

Agenda

Project Bare Metal Overview
Looking Under the Hood
Performance Analysis
Virtualization Layers and Isolation
Going Forward
Summary

Hypervisor optimized server Java technology

2006 JavaOneSM Conference | Session TS-3792 | 4

“Strange are the ways of men,
And strange the ways of God!
We tread the mazy paths
That all our fathers trod.”

Robert Louis Stevenson

No, this is old technology applied in a new environment
Weird Magic?

2006 JavaOneSM Conference | Session TS-3792 | 5

Agenda

Project Bare Metal Overview
Looking Under the Hood
Performance Analysis
Virtualization Layers and Isolation
Going Forward
Summary

Hypervisor optimized server Java technology

2006 JavaOneSM Conference | Session TS-3792 | 6

Overview—Bare Metal Architecture

• Start from normal OS
• Run Java code on separate

virtual machine
• No OS in the way for the

Java VM
• High performance
• Good resource control
• Efficient virtual device drivers
• OS file-system through agent
• 3rd party JNI using agent

Hypervisor

JRockit

Bare Metal

OS
agent

OS
agent

Server Machine

os

JRockit

Bare Metal

2006 JavaOneSM Conference | Session TS-3792 | 7

OS OS OS OS

Hypervisors Server Virtualization

• Software partitioning
• Divide a machine into multiple virtual machines
• One server becomes many

• Like an OS micro-kernel—very few functions
• Resource isolation/partitioning
• Scheduling of virtual machines

Server

OS
Hypervisor

2006 JavaOneSM Conference | Session TS-3792 | 8

Server Virtualization: Cost Reductions

• Server Consolidation
• Put multiple operating systems on the same server
• Put multiple isolated applications on the same server

• Simplified IT Management
• Add new virtual servers without waiting for new

hardware
• Save snapshots of running applications on file
• Move running applications off servers

Higher utilization and easier management!

2006 JavaOneSM Conference | Session TS-3792 | 9

Server Virtualization: New Functions
• Resource control and isolation

• Guarantee a minimum amount of a hardware resource
(CPU, memory, networking) an application gets

• Suspend/resume
• Temporarily freeze an application and then thaw it

as if nothing happened; like suspend resume on a laptop

• Store to image/restore from image
• Store a running application to disc; later restart from that image

as if nothing happened like laptop hibernate

• Live migration
• Move a running image from one box to another with minimal

(sub-second) downtime

2006 JavaOneSM Conference | Session TS-3792 | 10

Server Virtualization:
Room for Performance Improvements

• Triple virtualization
• Triple virtualization by hypervisor, OS, and Java VM
• Virtualization layers uncoordinated: GC, swapping,

thread scheduling, etc
• Redundant activites in each layer

• Large and slow general purpose OS
• Increases footprint
• Increases maintenance
• Decreases performance

OS

Hypervisor

Virtual Server

Application Server

Java VM

Triple Virtualization General Purpose OS

2006 JavaOneSM Conference | Session TS-3792 | 11

Java Platform
Optimized for a Hypervisor

• An idea
• Remove the OS
• Make hypervisor and Java VM aware of each other

• Teamwork (Java technology and hypervisor)
to optimize:
• Raw speed/pausetimes
• High-availability functionality

(suspend/resume/migrate)
• Reduced memory footprint

Removing the OS-Java VM conflicts

2006 JavaOneSM Conference | Session TS-3792 | 12

Agenda

Project Bare Metal Overview
Looking Under the Hood
Performance Analysis
Virtualization Layers and Isolation
Going Forward
Summary

Hypervisor optimized server Java technology

2006 JavaOneSM Conference | Session TS-3792 | 13

Overview—Bare Metal Architecture
• Start from normal OS
• Java based operations and

native operations on separate
machines

• No OS in the way for the
Java VM

• High performance
• Good resource control
• Efficient virtual device drivers
• OS file-system through agent
• 3rd party Java native interface

using agent

Hypervisor

JRockit

Bare Metal

OS
agent

OS
agent

Server Machine

os

JRockit

Bare Metal

2006 JavaOneSM Conference | Session TS-3792 | 14

How You Can Use It

• Very much like normal Java code

• A new ”OS” instead of a new process is started
• Normal top/Task Manager will only show CPU

utilization of agent

> java_vmware HelloWorld
> java_xen HelloWorld
or
> java_vmware –i 192.168.0.100 HelloWorld

2006 JavaOneSM Conference | Session TS-3792 | 15

Threads and Context Switching

• Very light-weight threads
• Context-switching about as expensive

as a method call
• Thread-contention—directed yields and

smart spinning to avoid unnecessary
waste of CPU cycles

• Initial implementation—no SMP

2006 JavaOneSM Conference | Session TS-3792 | 16

TCP/IP Implementation

• TCP/IP stack inside the Bare Metal container
• Optimized for Java technology
• Focus on the Java based protocols

(TCP/UDP/...)
• Network data is not passed through to the agent
• Network data sent directly from Java platform

through the hypervisor out on the network

2006 JavaOneSM Conference | Session TS-3792 | 17

Local and Remote File System

• Posix file system
• Mounting a virtual file system

• Some directories go to Java VM-local disk
• Other directories go to agent and end up

on the normal OS
• Allows fast access to Java VM-local disk
• Allows backup tools etc to work as normally

on the operating system
• Initial implementation—slow

2006 JavaOneSM Conference | Session TS-3792 | 18

Posix-like
Environment for the Java VM

• Core libc functionality implemented
• Malloc, free, str*, printf, open, close etc.

• Pthread implementation
• Version 1.0 of Bare Metal ran an unmodified

version of JRockit for Linux
• Coming versions optimized for Bare Metal

2006 JavaOneSM Conference | Session TS-3792 | 19

Execution of Java
Native Interface Code

• The Java native code is executed within the
Bare Metal container

• 3rd party Java native interface code
• Calls are detected
• Sent as a request to the OS-process
• The OS-process unmarshals and executes

2006 JavaOneSM Conference | Session TS-3792 | 20

Hypervisors Made Bare Metal Feasible

• The barrier to entry for a new OS was too high
• Bare Metal can coexist with the OS
• OS filesystems, scripts and backups continue to work
• Bare Metal launched as a normal process

• Supporting various device drivers was too
expensive
• On a hypervisor there is only one device of each kind

• Hypervisors change the rules of the game
• Bare Metal gives JVM™ software need a mechanism

to adapt

2006 JavaOneSM Conference | Session TS-3792 | 21

Bare Metal Is Not a Good Fit When
• The application uses 3rd party native code

excessively
• It will always be slow for BM
• The 3rd party native code is compiled for a specific

OS—Not Bare Metal
• The application uses the OS filesystem excessively

• Sending file operation request through to the agent
results in increased overhead

• Future versions of Bare Metal will target this
• The application needs a graphical display

• Bare Metal is a server environment: no screen,
no GUI, no sound

2006 JavaOneSM Conference | Session TS-3792 | 22

Agenda

Project Bare Metal Overview
Looking Under the Hood
Performance Analysis
Virtualization Layers and Isolation
Going Forward
Summary

Hypervisor optimized server Java technology

2006 JavaOneSM Conference | Session TS-3792 | 23

SPECjbb2005

0%

20%

40%

60%

80%

100%

120%

Unoptimized Opt Agressive

Linux
Vlinux
BM

2006 JavaOneSM Conference | Session TS-3792 | 24

Thread Performance

0%

50%

100%

150%

200%

250%

300%

Context-switch Start-thread Suspend

Linux
Vlinux
BM

2006 JavaOneSM Conference | Session TS-3792 | 25

Networking Performance

0%

20%

40%

60%

80%

100%

120%

140%

Ping SmallRecv SmallSend

Linux
Vlinux
BM

2006 JavaOneSM Conference | Session TS-3792 | 26

File Performance

0%

20%

40%

60%

80%

100%

120%

140%

Local Read Remote Read Remote Write

Linux
Vlinux
BM

2006 JavaOneSM Conference | Session TS-3792 | 27

Agenda

Project Bare Metal Overview
Looking Under the Hood
Performance Analysis
Virtualization Layers and Isolation
Going Forward
Summary

Hypervisor optimized server Java technology

2006 JavaOneSM Conference | Session TS-3792 | 28

JSR 121 Application
Isolation API Specification

• Problem: how to enable efficient execution
of multiple Java VMs on the same box
• Resource requirements—memory footprint
• Efficiency—startup time and execution

• Multi-tasking VM (MVM)
• Reference implementation for JSR 121
• Developed by SunLabs—modifications to HotSpot
• Java VM-level virtualization

• Disadvantages
• Hard to control native code
• Requires changes to the Java VM

2006 JavaOneSM Conference | Session TS-3792 | 29

Hardware

Different Layers of Virtualization

• Hardware-level
• Hypervisor-level
• OS-level
• Java VM-level

• LPAR, nPar
• Xen, VMware, vPar, ...
• Solaris, Virtuozzo
• MVM

Hypervisor
Hardware Partition 1 Hwp2

VM2Virtual Machine 1
OS

OS Container 1 Z2
JVM

Isolate 1 I2

Hwp3

2006 JavaOneSM Conference | Session TS-3792 | 30

OS Level vs. Hypervisors

• Solaris containers
• Creation of virtual

servers
• Resource isolation
• Resource metering
• Resource control

• VMware
• Creation of virtual

servers
• Resource isolation
• Resource metering
• Resource control
• Suspend/resume
• Live migration

2006 JavaOneSM Conference | Session TS-3792 | 31

Can Project Bare Metal Help?

• Yes, we think so
• Resource control—already built-in
• Can be modified to control native code safely
• No additional changes to the Java VM necesary
• Reduced memory footprint
• Startup-time reductions?

2006 JavaOneSM Conference | Session TS-3792 | 32

Future: Shared Memory Java VMs
• Reduce memory footprint

• Use hypervisor page-sharing functionality
• Even ”read-mostly” memory can be shared

• Share identical memory between Java VMs
• Java VMs cooperate and reorder memory

to be merged
• Even share identical but different Java objects

Java App 1 Java App 2

Shared

Java App 1 Java App 2

Memory

Identical

2006 JavaOneSM Conference | Session TS-3792 | 33

JVM-Level vs. Cooperative Hypervisor

• MVM
• Efficient isolation for

multiple Java VMs
• Resource metering
• Resource control

• Faster startup time?
• Has smaller footprint?

• Bare Metal Approach
• Efficient isolation for

multiple Java VMs
• Resource metering
• Resource control

• Thaw from frozen state
• Migrates live instances
• Isolates native code

2006 JavaOneSM Conference | Session TS-3792 | 34

Agenda

Project Bare Metal Overview
Looking Under the Hood
Performance Analysis
Virtualization Layers and Isolation
Going Forward
Summary

Hypervisor optimized server Java technology

2006 JavaOneSM Conference | Session TS-3792 | 35

Maturing the Bare Metal Technology

• Getting JRockit certified on Bare Metal
• Multiprocessor support
• Improved filesystem support
• Driving out bugs and bottlenecks
• JRockit takes advantage of Bare Metal
• Hypervisor extensions for Java technology
• Implement JSR-121

2006 JavaOneSM Conference | Session TS-3792 | 36

Resource Management and Java VMs

• Resource Management has been poor
• Ability to measure how much resources the

Java VM is using was introduced in Java 5
• JRockit is extending Resource Management

• To control how much resources that are used
• To measure resources usage at the thread-level

• JSR 284 will standardize Resource
Management functionality

2006 JavaOneSM Conference | Session TS-3792 | 37

Agenda

Project Bare Metal Overview
Looking Under the Hood
Performance Analysis
Virtualization Layers and Isolation
Going Forward
Summary

Hypervisor optimized server Java technology

2006 JavaOneSM Conference | Session TS-3792 | 38

Summary

• Project Bare Metal optimizes Java code
execution on a hypervisor

• Hypervisors can divide a physical machine into
multiple virtual machines

• Bare Metal can be an alternative to MVM on the
server-side to let many Java VMs run efficiently
on the same box

• Initial performance of Java technology on
Bare Metal is promising but many
optimizations remain

2006 JavaOneSM Conference | Session TS-3792 | 39

For More Information

• Bare Metal
• BEA dev2dev—http://dev2dev.bea.com

• Virtualization software
• VMware—http://www.vmware.com
• Xen—http://www.xensource.com

• Similar or related products and projects
• Squawk—http://research.sun.com/projects/squawk/
• JNode—http://www.jnode.org
• Sanos—http://www.jbox.dk/sanos
• Azul Systems—http://www.azulsystems.com

2006 JavaOneSM Conference | Session TS-3792 | 40

Call To Action

• Are you interested in evaluating Bare Metal?
• Are you running VMware ESX Server/Xen?
• Java EE 5?
• No native code?
• Not heavily dependent on file system performance?

• Contact us!
• joakim.dahlstedt@bea.com

2006 JavaOneSM Conference | Session TS-3792 | 41

Q&A

2006 JavaOneSM Conference | Session TS-3792 | 42

DEMO
Project Bare Metal Live

2006 JavaOneSM Conference | Session TS-3792 |

“Bare Metal”—Speeding Up
Java™ Technology in a
Virtualized Environment
Joakim Dahlstedt
CTO, Java Runtime Products Group
BEA Systems
http://www.bea.com

TS-3792

