
2006 JavaOneSM Conference | Session TS-4219 |

Extending the Java™ Runtime
Plug-in Capacity and Availability
for Java Technology
Ari Zilka

Terracotta, Inc.

TS-4219

2006 JavaOneSM Conference | Session TS-4219 | 2

Goal of This Session

• Learn how transparent clustering works
at a high level

• Learn how clustering at runtime provides
a simpler environment for development
without hindering scale-out

2006 JavaOneSM Conference | Session TS-4219 | 3

LET’S START
WITH A DEMO
Since a picture says more than a
thousand words

Shared Figure Editor

2006 JavaOneSM Conference | Session TS-4219 | 4

Agenda

• Evolution of the Managed Runtime
• Why do this at runtime
• Why not at dev time
• Real-world Implementation: Terracotta

Architecture
• Simple, scalable, and fault tolerant
• Use Case: Inventory Application

2006 JavaOneSM Conference | Session TS-4219 | 5

Java™ Specification Is Good
• Java language has a very strict and valuable set

of semantics and rules that developers trust
• Object Identity and Pass-by-reference:

• map.put(“ID”, obj1);
• Object obj2 = map.get(“ID”);
• (obj1 == obj2)⇒true

• Coordination between threads:
• synchronized(..)
• wait() notify()
• (data integrity, race conditions, etc.)

• These natural rules of Java technology should
not be broken
• Breaking these rules open up many problems

2006 JavaOneSM Conference | Session TS-4219 | 6

But Java Technology Under a
Load-Balancer Is Bad
• Replication infrastructure is not up to the task

• The database is a single point of failure (SPoF)
• Message queuing or JGroups bottlenecks on the network
• Buddy systems cannot react to cascading failure

• Serializing objects is not fun
• Breaks your object graph and domain model
• Leads to coarse-grained replication regardless of delta

• Tuning is never-ending
• What is needed is a JRE service that handles these

issues transparently… at runtime

2006 JavaOneSM Conference | Session TS-4219 | 7

Cluster at Runtime…
It Is Not Unprecedented
• Oracle RAC

• Vendor knows best
• High performance
• Easy upgrade path from small to medium to large deployments

• Cisco IOS
• Immediate failover
• Easier than BGP, routing table maintenance

• In all cases, it is black boxed
• I don’t use it till I need it
• I don’t write a different app in its presence

• Load balancing is good; load balancing with
application-level consistency is best

2006 JavaOneSM Conference | Session TS-4219 | 8

And, Managed Runtimes
Relieve Developers
• Example: Memory Management

• Remember malloc() and free(), heap vs. stack
• The JVM™ software introduced most developers to garbage

collection, but compile-time used to win
• Today, the JVM software is faster; it decides what do do at

runtime instead of at compile time
• More information available at runtime
• “…only 12 times faster than C means you haven’t started

optimizing” —Doug Lea

• Other Java technology features that make Developers’
lives easier:
• Platform-independent thread coordination/locking
• Fat/thin locks in Jrockit decided at runtime
• Platform-specific optimizations

2006 JavaOneSM Conference | Session TS-4219 | 9

Impact of Development-Time Solutions

• Most existing caching/clustering solutions are
API based

• Roughly cache.get() and cache.put()
• This is a simplified view, of course, transactions,

replication schemes, fault tolerance, etc. are
also included

• These APIs affect simplicity
• These APIs affect scalability

2006 JavaOneSM Conference | Session TS-4219 | 10

Scale-Out or Simple:
APIs Are Not Simple
• Scale-out solutions rely on Java language serialization
• This breaks object identity

• Data put into the cache and then read back will fail:
• (obj == obj) ⇒ false

• Perturbs the Domain Model
• Management of object references using primary keys

• Adds new coding rules
• Need to put() changes back—easy to forget
• Can’t trust callers outside the caching class to put a top-level

object back in the cache if they edited it

• This is not as simple as the Java language can be

2006 JavaOneSM Conference | Session TS-4219 | 11

Impact of Java Language Serialization
 // let’s create one father and two sons
 Person adam = new Person(“Adam”, null);
 Person cain = new Person(“Cain”, adam);
 Person abel = new Person(“Abel”, adam);

cain abel

adam

Object Identity Is preserved

2006 JavaOneSM Conference | Session TS-4219 | 12

API-based Clustering Is
No Longer Simple

 // create Cain and put him in the distributed map
 Person cain1 = new Person(“Cain”, adam);
 distMap.put(“Cain”, cain1);

 ...
 // later in time we want to modify Cain
 // so we have to get Cain out of the map
 Person cain2 = (Person)distMap.get(“Cain”);
 cain2.addBrother(abel);
 // then we need to put him back into the map
 distMap.put(“Cain”, cain2);

2006 JavaOneSM Conference | Session TS-4219 | 13

Traditional Clustering (Cont.)
• Why is it needed to get the object out of the map?

• Don’t we already have a reference to it?

• Why is it needed to put the object back into the map?
• Is it not there already, under the correct key?

cain1 cain2

adam adam
Object Identity
Is NOT preserved

You end up with
two distinct
object graphs

2006 JavaOneSM Conference | Session TS-4219 | 14

Scale-Out or Simple:
APIs Are Not Scalable

• Java language serialization is not scalable
• There is a high cost to serialization

• field updates⇒push object graph⇒too much data
• Coarse-grained locks⇒locking a top-level object in

cache, regardless of scope of change⇒premature
lock contention

• There is a high cost to scale-out
• DB sees too many clients
• Clustering takes immeasurable JVM software

resources (not “too much” just “not factored”)

2006 JavaOneSM Conference | Session TS-4219 | 15

Clustering at Runtime…
• TC let’s you cluster Java technology in a natural fashion

• No API
• Zero code

• How is that possible?
• Terracotta is Instrumenting the appropriate level

• Heap-level memory read/write operations
• JDBC™ API Driver-level embedded caching

• Network-based clustering with consistency
• Transparent to the business logic (think: VMWare for the

Java platform turned on its head)

2006 JavaOneSM Conference | Session TS-4219 | 16

Take Your Applications From This…

Business
Logic

Frameworks

JVM

App Server

Frameworks

Business
Logic

Frameworks

JVM

App Server

Frameworks

Clustered
App Servers

Are Expensive

2006 JavaOneSM Conference | Session TS-4219 | 17

…To This

Business
Logic

JVM

Frameworks

Frameworks

App Server

Business
Logic

JVM

Frameworks

Frameworks

App Server

Terracotta DSO

Terracotta Server

Management
Console

2006 JavaOneSM Conference | Session TS-4219 | 18

Terracotta Architecture

2006 JavaOneSM Conference | Session TS-4219 | 19

Distributed Shared Objects

2006 JavaOneSM Conference | Session TS-4219 | 20

Terracotta’s Implementation
of the JDBC API

2006 JavaOneSM Conference | Session TS-4219 | 21

DEMO 2
Shared JTable (Spreadsheet)

2006 JavaOneSM Conference | Session TS-4219 | 22

Entire Application
package demo.jtable;
import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;
import javax.swing.table.DefaultTableModel;
class TableDemo extends JFrame {
 // Shared object
 private DefaultTableModel model;
 private static Object[][] tableData = {
 { " 9:00", "", "", ""}, { "10:00", "", "", ""}, { "11:00", "", "", ""},
 { "12:00", "", "", ""}, { " 1:00", "", "", ""}, { " 2:00", "", "", ""},
 { " 3:00", "", "", ""}, { " 4:00", "", "", ""}, { " 5:00", "", "", ""}
 };
 TableDemo() {
 super("Table Demo");
 setSize(350, 220);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Object[] header = {"Time", "Room A", "Room B", "Room C"};
 model = new DefaultTableModel(tableData, header);
 JTable schedule = new JTable(model);
 getContentPane().add(new JScrollPane(schedule), java.awt.BorderLayout.CENTER);
 }
 public static void main(String[] args) {
 new TableDemo().setVisible(true);
 }
}

2006 JavaOneSM Conference | Session TS-4219 | 23

Magic Is in Config File

<terracotta-config>
 <dso>
 <server-host>localhost</server-host>
 <server-port>9510</server-port>
 <dso-client>
 <roots>
 <root>
 <field-name>demo.jtable.TableDemo.model</field-name>
 </root>
 </roots>
 <included-classes>
 <include><class-expression>demo..*</class-expression></include>
 </included-classes>
 </dso-client>
 </dso>
</terracotta-config>

2006 JavaOneSM Conference | Session TS-4219 | 24

Zero Impact and Still Scalable?

• Hub and Spoke as a SPOF?
• Field-level changes too chatty?
• Networking overhead to clustering?

2006 JavaOneSM Conference | Session TS-4219 | 25

Zero Impact With Scale:
Having Your Cake…

• Hub and Spoke ⇒ scale the hub
• Field-level changes ⇒ batched
• Network overhead ⇒ runtime optimized

• So, we can have our cake and eat it too.
Let’s now look at natural Java technology
that clusters at runtime.

2006 JavaOneSM Conference | Session TS-4219 | 26

Use Case: Inventory Demo

• Simple domain model
• Add nodes at runtime to scale-out
• Restart without losing state
• Runtime console provides visibility

• NOTE: There is a JDBC technology version of
this demo as well that assumes a DB exists but
will run w/o one for a time

2006 JavaOneSM Conference | Session TS-4219 | 27

Learn More…

http://www.terracottatech.com/

http://blog.terracottatech.com/

2006 JavaOneSM Conference | Session TS-4219 | 28

Summary

• Infrastructure services are the responsibility
of the Runtime, not the developer

• New APIs are not the answer

• Technology exists to cluster and cache
transparently today

• The value is in getting scale-out with simplicity

2006 JavaOneSM Conference | Session TS-4219 | 29

Appendix

2006 JavaOneSM Conference | Session TS-4219 | 30

AOP-Style Techniques
Make It Possible

• Aspect-Oriented Programming is all about
Separation of Concerns
• Cross-cutting concerns: Issues in an application

that cut across an application
• Some AOP frameworks allow transparent

injection of these concerns at runtime and/or
load time
• AspectWerkz, AspectJ 5, Spring AOP

• Enterprise scalability (e.g., clustering, caching)
services are ideal use cases for using AOP to
inject transparently at runtime

2006 JavaOneSM Conference | Session TS-4219 | 31

AOP Adds a New Dimension
(Orientation)

Object
decomposition

is two-dimensional

Aspect

Aspects are
orthogonal to the

primary decompositionconcerns

A cross-cutting concern
is scattered because

it is realized in
the wrong dimension

2006 JavaOneSM Conference | Session TS-4219 | 32

We Inject Quality of Services
Transparently at Runtime

MonitoringMessagingClustering TVS injects pre packaged
QoS into the application

Terracotta Virtualization
Server

Developer focuses
solely on the

business logic,
using

POJOs,
Spring Beans,

EJB™ beans, etc.

2006 JavaOneSM Conference | Session TS-4219 | 33

New APIs, Not the Answer

• Plenty of Java technology APIs exist for
distributed computing
• RMI, Java Message Service (JMS), JCache

maps, etc.
• We can extend the semantics of plain Java

language:
• APIs: synchronized, Thread, wait(), notify(),

Java collection classes etc.
• Bytecode Instructions: INVOKEXXX,

MONITOR_ENTRY, MONITOR_EXIT,
PUTFIELD etc.

• More detail later…

2006 JavaOneSM Conference | Session TS-4219 | 34

Q&A

2006 JavaOneSM Conference | Session TS-4219 |

Extending the Java™ Runtime
Plug-in Capacity and Availability
for Java Technology
Ari Zilka

Terracotta, Inc.

TS-4219

