@ Sun

Scaling Up a Real
Application on Azul

Dr. CIliff Click

Distinguished Engineer

Azul Systems
www.azulsystems.com

TS-5354

2006 JavaOne®M Conference | Session TS-5354 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

>,

Scaling Up a Real Application

Basic steps to using more cores

Benchmark (time, measure)
Analyze (discover bottlenecks)
Tune (remove bottlenecks)

[Lather, rinse, repeat ...]

2006 JavaOne® Conference | Session TS-5354 | 2 Iava.sun.com/iavaone/sf

45x Speedup: The Journey

Benchmarking

Easy Stuff (Thread Pools and Heap Size)
Cracking Hot Lock #1—Atomic

Cracking Hot Lock #2—Striping

Turn Down Logging

Using java.util.concurrency

Cracking Hot Lock #3—Chunking
Wrap-up

Benchmarking
What are we trying to speed up?

* App is the model checker TLA/TLC*

= Trying to prove correctness of device drivers
* Fine grained tasks

* Fine sharing of data structures
- Large shared hash table: 10 million to 100 million entries
- Large shared work queue

* Thread pools built-in

- Task explodes exponentially in size
» “Big” job >> 1 week on fast P4

» “Should be” ideal for large SMP or multi-core

* Source: TLC was jointly developed by Leslie Lamport and Yuan Yu

@i%aSun 2006 JavaOnes" Conference | Session TS-5354 | 4 java .sun.com/javaone/sf

Benchmarking
Where are we starting from?

* First up we need:
- Repeatable self-checking setup

* Measurable results: modify app to display performance
» Current best performance

 Machines:

* Native: Dual 3.2Ghz HT P4, 4Gig
* Azul: 384-way, 128Gig
* HotSpot 5.0 Java™ VM

* Measure starting point (often forgotten!!!)
* Native: 14000 ops/sec
* Azul: 2200 ops/sec

2006 JavaOnes" Conference | Session TS-5354 | 5 java .sun.com/javaone/sf

45x Speedup: The Journey

Benchmarking 14000 ops/sec
Easy Stuff (Thread Pools and Heap Size)
Cracking Hot Lock #1—Atomic

Cracking Hot Lock #2—Striping

Turn Down Logging

Using java.util.concurrency

Cracking Hot Lock #3—Chunking

Wrap-up

Easy Stuff: Thread Pools

Crank up the configuration
- Many multi-threaded apps contain thread pools

Defaults are often too low for Azul

- Try adding “-workers 4~
* Dual-HT P4 acts like 4-cpu multi-core

Actually:

try a range!

70000

60000 -

50000
40000
30000
20000
10000

0

Performance vs Threads

E Native -

m Azul /_, T~
7_@,&7@
/ /

\ \ \ \ \ \ \ \ \ \
1 2 3 4 5 10 15 20 25 30 35 40 45 50

2006 JavaOnes" Conference | Session TS-5354 | 7 java .sun.com/javaone/sf

>,

Easy Stuff: Bigger Heap

Always suspect GC on bigger programs
GC is easy to test. -verbose:gc

See lots of GC cycles in output
(but not much time spent in GC)

Crank native to 2G limit

Crank Azul further: 8Gig heap

Still see full GC cycles—but heap is not full!

Must be explicit System.gc()
Turn it off: -XX:+DisableExplicitGC

Result: no improvement :-(

2006 JavaOnes" Conference | Session TS-5354 | 8 java .sun.com/javaone/sf

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1—Atomic
Cracking Hot Lock #2—Striping

Turn Down Logging

Using java.util.concurrency

Cracking Hot Lock #3—Chunking
Wrap-up

javaone/sf

Next Steps
Cracking Hot Lock #1

* Look at 'top'—many CPUs idle—why?
» Look at 'perfbar'—see sawtooth pattern:

« Characteristic of a hot lock
+ Short hold time, many threads

* So run again w/HTTP port opened into the JVM
- Attach with the REALTime Perf Monitor, and
» Check out “Hot Locks” list...

2006 JavaOnesM Conference | Session TS-5354 | 10 java .sun.com/javaone/sf

REALTime Performance Monitor
Exploring internal Java VM state

The Azul RTPM can explore VM innards

(Yes, there is security on who can see what)
Can see many interesting things

We focus on contended locks:
Locks where the OS is sleeping/waking threads

Contended L.ocks List

Lock Name Total acquire times (ms)

Max acquire times (ms)

acquires that blocked

waits

tlc.tool IModelChecker 575401

&

6107863

7660368

CompiledlC_locks 13262

23

1161

tle tool MemFPSet 110134

3343651

CodeCache_lock 7003

769

éSystemDictiona:y_lock 3588

119

11456

tle tool DiskStateQuene 1074

824263

”%:”fSZﬂ’l 2006 JavaOnesM Conference | Session TS-5354 | 11

java.sun.com/javaone/sf

>,
@Sun

tic.tool.ModelChecker
Cracking Hot Lock #1

» Search App source for ModelChecker
* Find ModelChecker.java

Grep for synchronization keywords

* Find several, mostly around error conditions
* Find this:

synchronized void incGenStates (int n) ({
this.numOfGenStates += n;

}
- Common case of a synchronized counter!

2006 JavaOnes™ Conference | Session TS-5354 | 12 java .sun.com/javaone/sf

>,

Synchronized Counters

Cracking Hot Lock #1

- Common cause of not scaling

Sometimes no need to lock
* e.g., Lossy performance counters

But here, locking needed for correctness
Use AtomicLong instead

Implements non-blocking counter
« Uses hardware compare-and-swap instruction

* No locks!

2006 JavaOnes™ Conference | Session TS-5354 | 13

java.sun.com/javaone/sf

Hot Lock #1 Cracked!

* New performance curve as | add threads:

Performance vs Threads

80000 m 8Gig+Atomic / ~
60000

20000 /7 —

0 \ \ \ \ \ \ \ \ \ \ \
5 10 15 20 25 30 35 40 45 50 55 60

- Peak is higher and with more threads

- Still see sawtooth pattern
» At least one more hot lock out there...

100000

é’f@SMﬂ 2006 JavaOnesM Conference | Session TS-5354 | 14 java .sun.com/javaone/sf

>,

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1 94,000 ops/sec
Cracking Hot Lock #2—Striping

Turn down Logging

Using java.util.concurrency

Cracking Hot Lock #3—Chunking
Wrap-up

2006 JavaOnesM Conference | Session TS-5354 | 15 java .sun.com/javaone/sf

Hot Lock #2

- Back to the Contended Locks list...
Contended Locks List

1 Lock Name Total acquire times (ms) I'vfIﬂxl ;acquire times (ms):# acquires that blocked: # waits !
tle. tool llemFP Set £53352 7 17351156 0
CompledlC_locks 30973 33 1566 0

['Heap_m.:k 6990 362 342 0]
tln:.tcml.Disdl‘%SbtateQueue H621 1 3619011]

%ﬂc.tool.'II,CTrace 3281 3 _ 1964120 25022912J

* Now it's tlc.tool.MemFPSet
 (notice tlc.tool.ModelChecker has disappeared)

@f@Sun 2006 JavaOneSM Conference | Session TS-5354 | 16 java .sun.com/javaone/sf

tic.tool.MemFPSet
Cracking Hot Lock #2

As before, find MemFPSet source code
Find loads of synchronization keywords
It's some sort of sync’'d home grown hashtable

Hey! There’s a MultiFPSet file...
And it's a striped wrapper around MemFPSet

this.theStateQueue = new DiskStateQueue (this.metadir) ;
// this.theStateQueue = new MemStateQueue (this.metadir);
this.theFPSet = new MultiFPSet (1) ;
// this.theFPSet = new DiskFPSet(-1);
// this.theFPSet new MemFPSet () ;

2006 JavaOnes™ Conference | Session TS-5354 | 17 iava.sun.com/iavaone/sf

Striping a Hot Lock
Cracking Hot Lock #2

Striping a lock: make many copies of the lock

Threads pick one based on psuedo-random fcn
In this case, hash from the hashtable

With enough locks, collisions are rare
So no contention
Locks still required in case of collision

Hack striping to allow 1024 locks (Up from 1!)
Why so many? Hope to get 350+ cpus busy

”%:%S’Mﬂ 2006 JavaOnes™ Conference | Session TS-5354 | 18 iava.sun.com/iavaone/sf

Hot Lock #2 Cracked!

* New performance curve as | add threads:

120000

Performance vs Threads

100000

80000 -

® 8Gig /-/_\

60000

m 8Gig+Atomic N
B 16G+A+Striping ———

40000

20000

0+

//'\

5

» Peak is still higher and with more threads

* (But

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

now needs more heap also)

2006 JavaOne®sM™ Conference | Session TS-5354 | 19

java.sun.com/javaone/sf

>,

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1 94,000 ops/sec
Cracking Hot Lock #2 115,000 ops/sec
Turn Down Logging

Using java.util.concurrency

Cracking Hot Lock #3—Chunking
Wrap-up

2006 JavaOnesM Conference | Session TS-5354 | 20 java .sun.com/javaone/sf

Next Steps

Back to benchmark and analyze
» General rule:

Recheck threads and heap after cracking a lock

» Back to 'perfbar’
* No more sawtooth
- But all threads idle/busy in a cycle
+ 'top' shows some |/O Activity

* Oh looky—1 Gig of log file output

» Checkpointing makes sense for a week-long job

2006 JavaOnes™ Conference | Session TS-5354 | 21 java .sun.com/iavaone/sf

Turning Down Logging
Too much junk I/O!

- Some logging is clearly useful
* But maybe not 1Gig!

» Looking back—

» | saw tlc.tool.DiskStateQueue in the HotLocks list
» | saw this code:

this.theStateQueue = new DiskStateQueue (this.metadir) ;
// this.theStateQueue = new MemStateQueue (this.metadir) ;
this.theFPSet = new MultiFPSet (1) ;

// this.theFPSet = new DiskFPSet(-1) ;

// this.theFPSet = new MemFPSet () ;

Just edit and recompile...

2006 JavaOnes™ Conference | Session TS-5354 | 22 java .sun.com/javaone/sf

Logging Off

* New performance curve:

400000

Performance vs Threads

m 8Gig

m 8Gig+Atomic

B 16G+A+Striping
m 32G+A+S+Log

350000
300000 -
250000
200000 -

/

e

150000
100000
50000 - —
0

10 20 30 40

* And needs yet more threads and heap

50

60

I
90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

- Peak is still higher

2006 JavaOnesM Conference | Session TS-5354 |

23

java.sun.com/javaone/sf

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1 94,000 ops/sec
Cracking Hot Lock #2 115,000 ops/sec
Turn Down Logging 350,000 ops/sec
Using java.util.concurrency

Cracking Hot Lock #3—Chunking
Wrap-up

2006 JavaOnesM Conference | Session TS-5354 | 24 java.sun.com/iavaone/sf

Next Bottleneck

New single-threaded work phase

- Been doing “short runs”
 So | don’'t have to wait a week to check results

- Hit a new end-game phase

- After a few minutes,
goes single-threaded

 Back to RTPM

» Check thread stack of
the one busy thread

Y g

Thread: main
Stack dump

+ tlc.tool.MemFRPSet. checkFPs(ID @ MemFFPSet. jav
+ tlc. tool.MultiFFSet. checkFPs(ID @ MUItiFFSet. jav
+ tctool.ModelChecker. reportSuccess W @ Mode
¢ tlc. tool.ModelChecker. modelCheck{ W @ ModelCh
+ tlc. TLC.main([Lijavaflang/String; W @ TLC. java: 3

Thu Mar 09 20:19:37 Z006

aSun 2006 JavaOne®" Conference | Session TS-5354 | 25 java .sun.com/javaone/sf

java.util.concurrent
Making it parallel!

Thread is in MemFPSet.checkFPs
Called from MultiFPSet

But MemFPSet is now striped!
“Should be” trivial to parallelize w/j.u.concurrent

Compile w/ javac 5.0
err...fix uses of new enum keyword

Slap down some boilerplate parallel iteration®
And voilal—instant parallel end-phase

*Goetz: Java Concurrency in Practice

”%:”fSZﬂ’l 2006 JavaOnesM Conference | Session TS-5354 | 26 java .sun.com/javaone/sf

Making an Iterator Parallel

o Old for (int i = 0; i < sets.length; i++)
res = Math.max(res, sets[i].checkFPs());

*l
* New™:
Executor exec = Executors.newFixedThreadPool (numThreads) ;
CompletionService<Double> cs = new ...<Double>(exec)

// Submit the jobs in parallel
for (int i = 0; i < sets.length; i++) {
cs.submit (new Callable<Double> () {
public Double call () throws IOException ({
return(sets[i] .checkFPs () ;)

}
}) g
}
for (int i = 0; 1 < this.sets.length; i++)
E res = Math.max(res,[cs.take().get(D); }

*Goetz: Java Concurrency in Practice

@f@SMﬂ 2006 JavaOnes™ Conference | Session TS-5354 | 27 java .sun.com/javaone/sf

>,

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1 94,000 ops/sec
Cracking Hot Lock #2 115,000 ops/sec
Turn Down Logging 350,000 ops/sec
Using java.util.concurrency

Cracking Hot Lock #3—Chunking
Wrapup

2006 JavaOnesM Conference | Session TS-5354 | 28 java .sun.com/javaone/sf

Cracking Hot Lock #3

- Revert back to full size problem
« Short problem now much too short to benchmark
+ End phase is perfectly parallelizable (and short)

» Main phase still does not scale past 200 cores

'perfbar’ shows sawtooth pattern again
- Back to the “Hot Locks” list

ﬁ

@Sun 2006 JavaOnes™ Confer Session TS-5354 | 29 java.sun.com/javaone/sf

Java

>,

tic.tool.MemStateQueue
Cracking Hot Lock #3

It's a worklist, a double-ended ring buffer
Contention when 200+ threads try to access
Worklist lock is hot

So take it less often!
ldea: grab more than 1 piece of work at a time

Take (or put) 32 units of work
Or just take 1 (or put all) if worklist is low on work

Includes small thread-local worklist

2006 JavaOnesM Conference | Session TS-5354 | 30 iava.sun.com/iavaone/sf

Chunked Worklist

* New performance curve:

Performance vs Threads

700000

600000 — —

m 8Gig+Atomic —
200000 g 165G +A+Striping /

400000 1@ 32G+A+S+Log

300000 |\ m 64G+A+S+L+Chunk
200000

0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

B L TP . a2

@Sun 2006 JavaOne®" Conference | Session TS-5354 | 31 iava .sun.com/iavaone/sf

ssssssssssss

>,

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1 94,000 ops/sec
Cracking Hot Lock #2 115,000 ops/sec
Turn Down Logging 350,000 ops/sec
Using java.util.concurrency

Cracking Hot Lock #3 630,000 ops/sec
Wrapup

2006 JavaOnes™ Conference | Session TS-5354 | 32 iava.sun.com/iavaone/sf

Summary

» Get a stable setup
* Need repeatable results!
* Need decent self-checking

» Get an initial value
* S0 you can tell progress!

» Try the easy stuff: thread pools and heap size

* Locks:
+ Cracking them makes the code complex, subtle
» Crack only what you need, clearly, carefully
- Leave the rest alone

@f@SMﬂ 2006 JavaOnesM Conference | Session TS-5354 | 33 java .sun.com/javaone/sf

Summary

After cracking a lock:
Recheck thread-pools and heap sizes
Oh yeah, check correctness (race conditions)

Some techniques for cracking locks:
Use AtomicLong instead of synchronized counters
Using java.util.concurrent
Striping locks
Chunking work

Might need to crack several locks to see any gain
The last bottleneck isn’t gone until CPUs are busy ;-)

”%:”fSZﬂ’l 2006 JavaOneSM Conference | Session TS-5354 | 34 java .sun.com/javaone/sf

Java

Postlude: 54x Speedup

Peak now: 790,000 ops/sec

Found an instance of non-chunked worklist
New task was being directly inserted into global list
Using the chunked interface gives better locality

Bumped hashtable striping to 4096
Parallelized /O better

More GC tuning: app uses 60Gig in 10 sec
GC still 20—30% of runtime

Further improvements possible

@%’SM?’I 2006 JavaOnesM Conference | Session TS-5354 | 35 iava.sun.com/iavaone/sf

For More Information

* www.azulsystems.com
- See the webinar at our website

+ See our booth # 622
* Also BOF-0377—Confessions of a JVM Writer

@SM?} 2006 JavaOne®™ Conference | Session TS-5354 | 36 java.sun.com/javaone/sf

2006 JavaOne®™ Conference | Session TS-5354 | 37 jaua.sun.comfjauaone{sf

@ Sun

Scaling Up a Real
Application on Azul

Dr. CIliff Click

Distinguished Engineer

Azul Systems
www.azulsystems.com

TS-5354

2006 JavaOne®M Conference | Session TS-5354 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

