
2006 JavaOneSM Conference | Session TS-5354 |

TS-5354

Scaling Up a Real
Application on Azul
Dr. Cliff Click
Distinguished Engineer
Azul Systems
www.azulsystems.com

2006 JavaOneSM Conference | Session TS-5354 | 2

Scaling Up a Real Application

Benchmark (time, measure)
Analyze (discover bottlenecks)
Tune (remove bottlenecks)
[Lather, rinse, repeat ...]

Basic steps to using more cores

2006 JavaOneSM Conference | Session TS-5354 | 3

45x Speedup: The Journey

Benchmarking
Easy Stuff (Thread Pools and Heap Size)
Cracking Hot Lock #1—Atomic
Cracking Hot Lock #2—Striping
Turn Down Logging
Using java.util.concurrency
Cracking Hot Lock #3—Chunking
Wrap-up

2006 JavaOneSM Conference | Session TS-5354 | 4

What are we trying to speed up?
Benchmarking

● App is the model checker TLA/TLC*
● Trying to prove correctness of device drivers
● Fine grained tasks
● Fine sharing of data structures

● Large shared hash table: 10 million to 100 million entries
● Large shared work queue

● Thread pools built-in
● Task explodes exponentially in size

● “Big” job >> 1 week on fast P4
● “Should be” ideal for large SMP or multi-core

* Source: TLC was jointly developed by Leslie Lamport and Yuan Yu

2006 JavaOneSM Conference | Session TS-5354 | 5

Where are we starting from?
Benchmarking

● First up we need:
● Repeatable self-checking setup
● Measurable results: modify app to display performance
● Current best performance

● Machines:
● Native: Dual 3.2Ghz HT P4, 4Gig
● Azul: 384-way, 128Gig
● HotSpot 5.0 Java™ VM

● Measure starting point (often forgotten!!!)
● Native: 14000 ops/sec
● Azul: 2200 ops/sec

2006 JavaOneSM Conference | Session TS-5354 | 6

45x Speedup: The Journey

Benchmarking 14000 ops/sec
Easy Stuff (Thread Pools and Heap Size)
Cracking Hot Lock #1—Atomic
Cracking Hot Lock #2—Striping
Turn Down Logging
Using java.util.concurrency
Cracking Hot Lock #3—Chunking
Wrap-up

2006 JavaOneSM Conference | Session TS-5354 | 7

Crank up the configuration
Easy Stuff: Thread Pools

● Many multi-threaded apps contain thread pools
● Defaults are often too low for Azul
● Try adding “-workers 4”

● Dual-HT P4 acts like 4-cpu multi-core
● Actually:

try a range!

1 2 3 4 5 10 15 20 25 30 35 40 45 50
0

10000

20000

30000

40000

50000

60000

70000
Performance vs Threads

Native
Azul

2006 JavaOneSM Conference | Session TS-5354 | 8

Always suspect GC on bigger programs
Easy Stuff: Bigger Heap

● GC is easy to test: -verbose:gc
● See lots of GC cycles in output

● (but not much time spent in GC)
● Crank native to 2G limit
● Crank Azul further: 8Gig heap
● Still see full GC cycles—but heap is not full!

● Must be explicit System.gc()
● Turn it off: -XX:+DisableExplicitGC

● Result: no improvement :-(

2006 JavaOneSM Conference | Session TS-5354 | 9

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1—Atomic
Cracking Hot Lock #2—Striping
Turn Down Logging
Using java.util.concurrency
Cracking Hot Lock #3—Chunking
Wrap-up

2006 JavaOneSM Conference | Session TS-5354 | 10

Cracking Hot Lock #1
Next Steps

● Look at 'top'—many CPUs idle—why?
● Look at 'perfbar'—see sawtooth pattern:

● Characteristic of a hot lock
● Short hold time, many threads

● So run again w/HTTP port opened into the JVM
● Attach with the REALTime Perf Monitor, and
● Check out “Hot Locks” list…

2006 JavaOneSM Conference | Session TS-5354 | 11

Exploring internal Java VM state
REALTime Performance Monitor

● The Azul RTPM can explore VM innards
● (Yes, there is security on who can see what)

● Can see many interesting things
● We focus on contended locks:

● Locks where the OS is sleeping/waking threads

2006 JavaOneSM Conference | Session TS-5354 | 12

Cracking Hot Lock #1
tlc.tool.ModelChecker

● Search App source for ModelChecker
● Find ModelChecker.java

● Grep for synchronization keywords
● Find several, mostly around error conditions
● Find this:

● Common case of a synchronized counter!

synchronized void incGenStates(int n) {
 this.numOfGenStates += n;
}

2006 JavaOneSM Conference | Session TS-5354 | 13

Cracking Hot Lock #1
Synchronized Counters

● Common cause of not scaling
● Sometimes no need to lock

● e.g., Lossy performance counters
● But here, locking needed for correctness
● Use AtomicLong instead
● Implements non-blocking counter

● Uses hardware compare-and-swap instruction
● No locks!

2006 JavaOneSM Conference | Session TS-5354 | 14

Hot Lock #1 Cracked!

● New performance curve as I add threads:

● Peak is higher and with more threads
● Still see sawtooth pattern

● At least one more hot lock out there...

5 10 15 20 25 30 35 40 45 50 55 60
0

20000

40000

60000

80000

100000
Performance vs Threads

old
+Striping

5 10 15 20 25 30 35 40 45 50 55 60
0

20000

40000

60000

80000

100000
Performance vs Threads

8Gig
8Gig+Atomic

2006 JavaOneSM Conference | Session TS-5354 | 15

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1 94,000 ops/sec
Cracking Hot Lock #2—Striping
Turn down Logging
Using java.util.concurrency
Cracking Hot Lock #3—Chunking
Wrap-up

2006 JavaOneSM Conference | Session TS-5354 | 16

Hot Lock #2

● Back to the Contended Locks list…

● Now it’s tlc.tool.MemFPSet
● (notice tlc.tool.ModelChecker has disappeared)

2006 JavaOneSM Conference | Session TS-5354 | 17

Cracking Hot Lock #2
tlc.tool.MemFPSet

● As before, find MemFPSet source code
● Find loads of synchronization keywords
● It’s some sort of sync’d home grown hashtable
● Hey! There’s a MultiFPSet file...

● And it’s a striped wrapper around MemFPSet

 this.theStateQueue = new DiskStateQueue(this.metadir);
 // this.theStateQueue = new MemStateQueue(this.metadir);
 this.theFPSet = new MultiFPSet(1);
 // this.theFPSet = new DiskFPSet(-1);
 // this.theFPSet = new MemFPSet();

2006 JavaOneSM Conference | Session TS-5354 | 18

Cracking Hot Lock #2
Striping a Hot Lock

● Striping a lock: make many copies of the lock
● Threads pick one based on psuedo-random fcn

● In this case, hash from the hashtable
● With enough locks, collisions are rare

● So no contention
● Locks still required in case of collision

● Hack striping to allow 1024 locks (Up from 1!)
● Why so many? Hope to get 350+ cpus busy

2006 JavaOneSM Conference | Session TS-5354 | 19

Hot Lock #2 Cracked!

● New performance curve as I add threads:

● Peak is still higher and with more threads
● (But now needs more heap also)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

20000

40000

60000

80000

100000

120000
Performance vs Threads

8Gig
8Gig+Atomic
16G+A+Striping

2006 JavaOneSM Conference | Session TS-5354 | 20

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1 94,000 ops/sec
Cracking Hot Lock #2 115,000 ops/sec
Turn Down Logging
Using java.util.concurrency
Cracking Hot Lock #3—Chunking
Wrap-up

2006 JavaOneSM Conference | Session TS-5354 | 21

Back to benchmark and analyze
Next Steps

● General rule:

 Recheck threads and heap after cracking a lock

● Back to 'perfbar'
● No more sawtooth
● But all threads idle/busy in a cycle
● 'top' shows some I/O Activity

● Oh looky—1 Gig of log file output
● Checkpointing makes sense for a week-long job

2006 JavaOneSM Conference | Session TS-5354 | 22

Too much junk I/O!
Turning Down Logging

● Some logging is clearly useful
● But maybe not 1Gig!

● Looking back—
● I saw tlc.tool.DiskStateQueue in the HotLocks list
● I saw this code:

 this.theStateQueue = new DiskStateQueue(this.metadir);
 // this.theStateQueue = new MemStateQueue(this.metadir);
 this.theFPSet = new MultiFPSet(1);
 // this.theFPSet = new DiskFPSet(-1);
 // this.theFPSet = new MemFPSet();

Just edit and recompile…

2006 JavaOneSM Conference | Session TS-5354 | 23

Logging Off

● New performance curve:

● Peak is still higher
● And needs yet more threads and heap

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
0

50000

100000

150000

200000

250000

300000

350000

400000
Performance vs Threads

8Gig
8Gig+Atomic
16G+A+Striping
32G+A+S+Log

2006 JavaOneSM Conference | Session TS-5354 | 24

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1 94,000 ops/sec
Cracking Hot Lock #2 115,000 ops/sec
Turn Down Logging 350,000 ops/sec
Using java.util.concurrency
Cracking Hot Lock #3—Chunking
Wrap-up

2006 JavaOneSM Conference | Session TS-5354 | 25

New single-threaded work phase
Next Bottleneck

● Been doing “short runs”
● So I don’t have to wait a week to check results

● Hit a new end-game phase
● After a few minutes,

goes single-threaded
● Back to RTPM

● Check thread stack of
the one busy thread

2006 JavaOneSM Conference | Session TS-5354 | 26

Making it parallel!
java.util.concurrent

● Thread is in MemFPSet.checkFPs
● Called from MultiFPSet

● But MemFPSet is now striped!
● “Should be” trivial to parallelize w/j.u.concurrent
● Compile w/ javac 5.0

● err…fix uses of new enum keyword
● Slap down some boilerplate parallel iteration*
● And voilà!—instant parallel end-phase

*Goetz: Java Concurrency in Practice

2006 JavaOneSM Conference | Session TS-5354 | 27

Making an Iterator Parallel
● Old:

● New*:

 for (int i = 0; i < sets.length; i++)
 res = Math.max(res, sets[i].checkFPs());

*Goetz: Java Concurrency in Practice

Executor exec = Executors.newFixedThreadPool(numThreads);
CompletionService<Double> cs = new ...<Double>(exec);
// Submit the jobs in parallel
for (int i = 0; i < sets.length; i++) {
 cs.submit(new Callable<Double>() {
 public Double call() throws IOException {
 return sets[i].checkFPs();
 }
 });
}
for (int i = 0; i < this.sets.length; i++)
 res = Math.max(res, cs.take().get());

2006 JavaOneSM Conference | Session TS-5354 | 28

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1 94,000 ops/sec
Cracking Hot Lock #2 115,000 ops/sec
Turn Down Logging 350,000 ops/sec
Using java.util.concurrency
Cracking Hot Lock #3—Chunking
Wrapup

2006 JavaOneSM Conference | Session TS-5354 | 29

Cracking Hot Lock #3

● Revert back to full size problem
● Short problem now much too short to benchmark
● End phase is perfectly parallelizable (and short)

● Main phase still does not scale past 200 cores
● 'perfbar' shows sawtooth pattern again

● Back to the “Hot Locks” list

2006 JavaOneSM Conference | Session TS-5354 | 30

Cracking Hot Lock #3
tlc.tool.MemStateQueue

● It’s a worklist, a double-ended ring buffer
● Contention when 200+ threads try to access
● Worklist lock is hot

● So take it less often!
● Idea: grab more than 1 piece of work at a time
● Take (or put) 32 units of work

● Or just take 1 (or put all) if worklist is low on work
● Includes small thread-local worklist

2006 JavaOneSM Conference | Session TS-5354 | 31

Chunked Worklist

● New performance curve:

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
0

100000

200000

300000

400000

500000

600000

700000
Performance vs Threads

8Gig
8Gig+Atomic
16G+A+Striping
32G+A+S+Log
64G+A+S+L+Chunk

2006 JavaOneSM Conference | Session TS-5354 | 32

45x Speedup: The Journey

Benchmarking 14,000 ops/sec
Easy Stuff 60,000 ops/sec
Cracking Hot Lock #1 94,000 ops/sec
Cracking Hot Lock #2 115,000 ops/sec
Turn Down Logging 350,000 ops/sec
Using java.util.concurrency
Cracking Hot Lock #3 630,000 ops/sec
Wrapup

2006 JavaOneSM Conference | Session TS-5354 | 33

Summary

● Get a stable setup
● Need repeatable results!
● Need decent self-checking

● Get an initial value
● So you can tell progress!

● Try the easy stuff: thread pools and heap size
● Locks:

● Cracking them makes the code complex, subtle
● Crack only what you need, clearly, carefully
● Leave the rest alone

2006 JavaOneSM Conference | Session TS-5354 | 34

Summary

● After cracking a lock:
● Recheck thread-pools and heap sizes
● Oh yeah, check correctness (race conditions)

● Some techniques for cracking locks:
● Use AtomicLong instead of synchronized counters
● Using java.util.concurrent
● Striping locks
● Chunking work

● Might need to crack several locks to see any gain
● The last bottleneck isn’t gone until CPUs are busy ;-)

2006 JavaOneSM Conference | Session TS-5354 | 35

Postlude: 54x Speedup

● Peak now: 790,000 ops/sec
● Found an instance of non-chunked worklist

● New task was being directly inserted into global list
● Using the chunked interface gives better locality

● Bumped hashtable striping to 4096
● Parallelized I/O better
● More GC tuning: app uses 60Gig in 10 sec

● GC still 20–30% of runtime
● Further improvements possible

2006 JavaOneSM Conference | Session TS-5354 | 36

For More Information

● www.azulsystems.com
● See the webinar at our website

● See our booth # 622
● Also BOF-0377—Confessions of a JVM Writer

2006 JavaOneSM Conference | Session TS-5354 | 37

Q&A

2006 JavaOneSM Conference | Session TS-5354 |

TS-5354

Scaling Up a Real
Application on Azul
Dr. Cliff Click
Distinguished Engineer
Azul Systems
www.azulsystems.com

