

The ESSENCE of Disease Surveillance

- **Nathaniel Tabernero**
- Software Engineer

The Johns Hopkins University Applied Physics Laboratory http://www.jhuapl.edu/

TS-5564

Lessons learned from developing a disease surveillance system

2006 JavaOnesM Conference | Session TS-5564 | 2 java.sun.com/javaone/sf

Agenda

Background Challenges/Solutions

- Data Ingestion
- Detection Algorithms
- User Interface

Technologies Summary

لان Java

Agenda

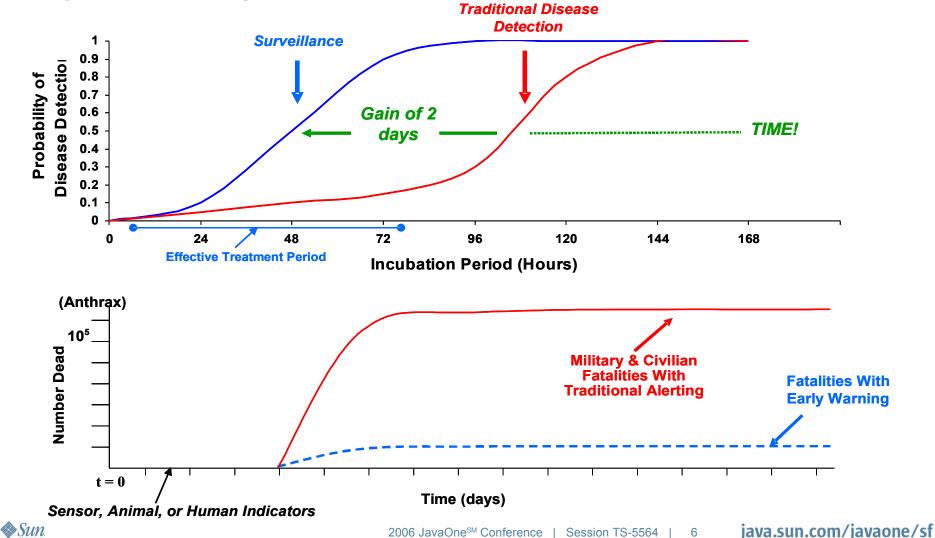
Background

Challenges/Solutions

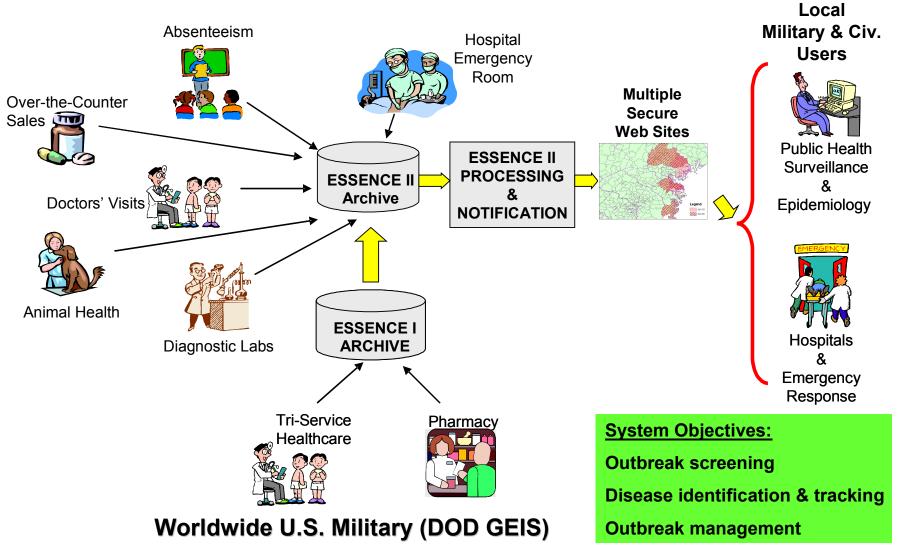
- Data Ingestion
- Detection Algorithms
- User Interface

Technologies Summary

ESSENCE


Mission Statement

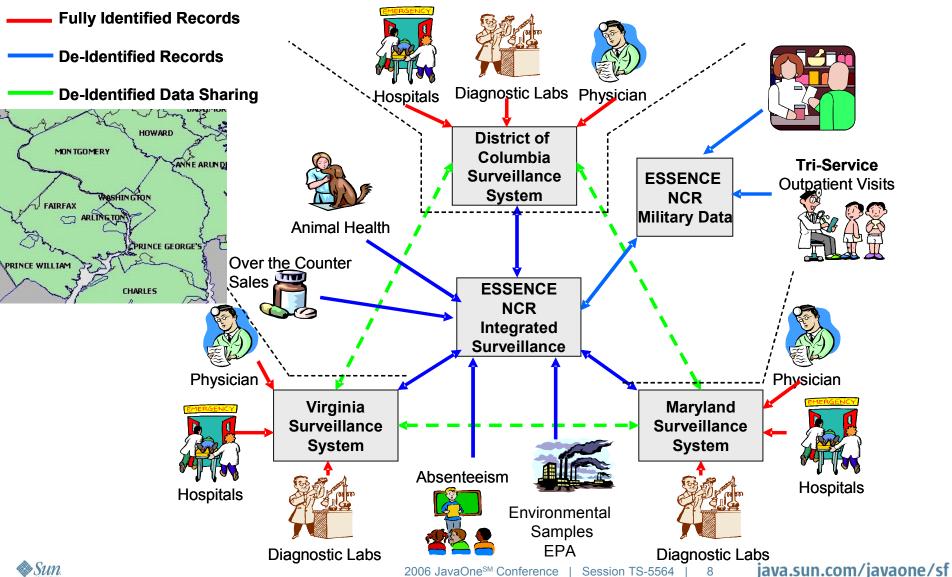
- Electronic Surveillance System for the Early Notification of Community-based Epidemics
 - Provide early warning of abnormal health conditions which may be the result of a Bio-Terrorism or an emerging infectious disease
 - Provide daily medical situational awareness to epidemiologists and health officials



Java

Motivation for Disease Surveillance (Anthrax)

ESSENCE Architecture



چ Java

National Capital Region Disease Surveillance Network

چ ا Java

Agenda

Background

Challenges/Solutions

- Ingestion—ER Chief Complaint Parser
- Detection Algorithms
- User Interface

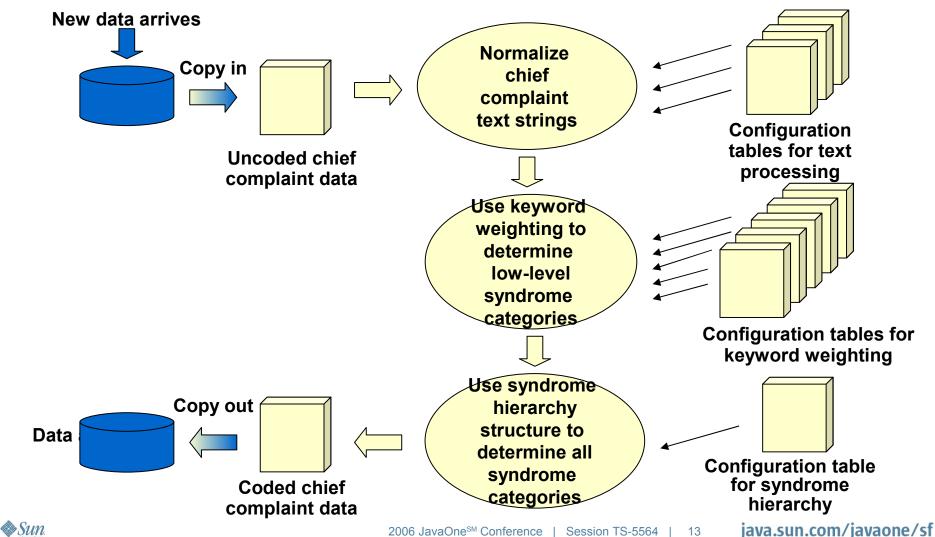
Technologies Summary

Emergency Room Chief Complaint Challenges and solutions

- Textual description of the patient's reason for visiting the ER (Emergency Room)
- Recorded as part of standard hospital procedure
- Timely—recorded by the triage nurse upon the patient's arrival
- Obtainable in electronic form

Chief Complaint Textual Artifacts

- Abbreviations
- Acronyms
- Misspellings
- Negative Context


Chief Complaint Parser's Goal Challenges and solutions

- Categorize each CC (Chief Complaint) into syndrome groups for analysis purposes
 - One CC may fall into more than one group

Syndrome	Example Chief Complaints				
Gastrointestinal	Coughing/vomiting				
	Ab pain				
Rash	Spots/welts all over body				
Respiratory	Coughing/vomiting				
	PNEUMONIA				

Chief Complaint Text Parsing Process

Weighted Keyword Matching Challenges and solutions

- Keywords are weighted in association with lower level syndrome groups
 - Keywords have both positive and negative weights
 - If a Negative Term such as "NO" or "NOT" precedes than a positive weight is considered negative
 - If the weights' sum is greater than a configured threshold the CC is associated with the syndrome group

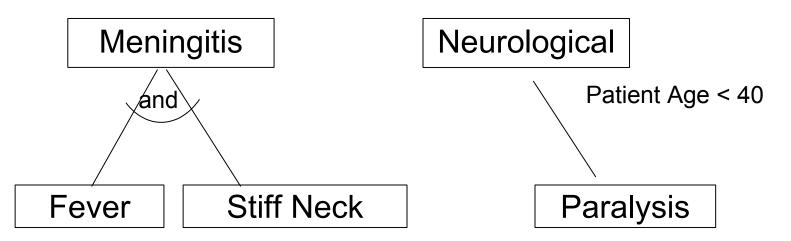
Group	Keyword	Weight		
Headache	HEADACHE	10		
Headache	HEAD LICE	-4		

Weighted Keyword Matching

- Fuzzy Matching and Pattern Matching
 - Keywords are fuzzy matched to Chief Complaints to one character differences: insertion, deletions, substitutions, and inversions
 - Patterns may be specified for commonly hard-tospell words

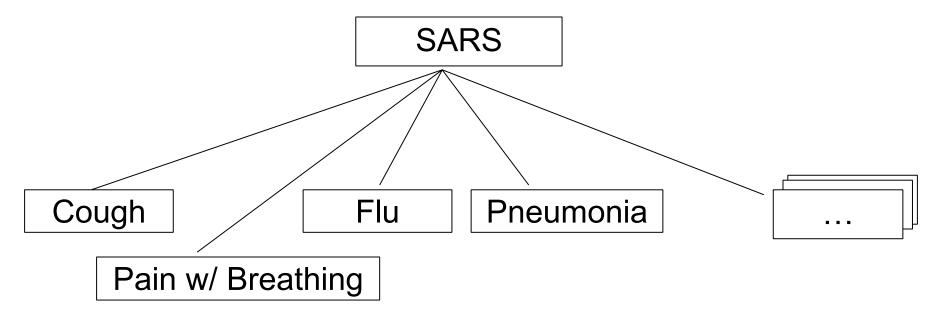
CC Text	Keyword	Matches?
Headeche	HEADACHE	Yes
Haedeche	HEADACHE	Yes
Diarrhea	DIA*A	Yes
DIAHRREHA	DIA*A	Yes

Fuzzy Matching and Pattern Matching Challenges and solutions


- Leverage Java[™] technology's support of Regular Expressions
- Fuzzy Matching as Regular Expressions
 - Insertion
 - chest = .chest | c.hest | ch.est | che.st | ches.t | chest.
 - Substitution
 - chest = .hest | c.est | ch.st | che.t | ches.
 - Deletion
 - chest = hest | cest | chst | chet | ches
 - Inversion
 - chest = hcest | cehst | chset | chets

Syndrome Categories

- Top level syndrome categories are defined in terms of lower level groups
 - Defined as logical rules
 - And, Or, Exclusion, Not
 - Simple constraints against Chief Complaint attributes



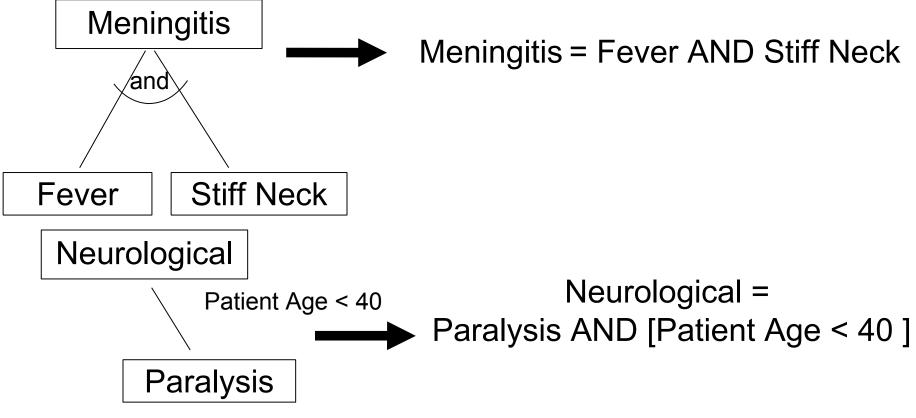
Custom Syndrome Categories

Challenges and solutions

 Users may quickly define custom categories to accommodate surveillance needs

Query ER Data by Sub Syndrome

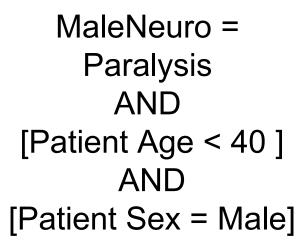
	Current Data Query Selections									
	Data Source	ER by Pati	ent Geography System		Region					
	Region	A11	Medical Grouping S	ystem	ChiefComplaintSubSyr	ndromes				
Next Selections:										
Select ChiefComplaintSubSyndromes:			All ChiefComplaintSubSyndro AbdominalCramps AbdominalPain	Select Detector:	Regressior	I/EWMA				
Select Age Group:			All Age Groups 🔨 Jnknown)-4		Select Sex:	All Sexs Unknown Male				
Select Start Date:)2 💙 Feb 👻 05 👻	Select End Date:	03 🔽 May	/ 🖌 05 🛉				
			Submit							


Ę

Syndrome Category Rules

Challenges and solutions

Represent rules as logical expressions

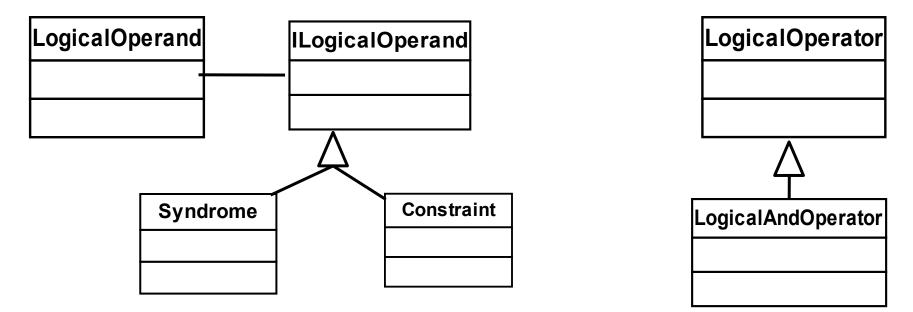


Syndrome Category Rules

Challenges and solutions

- Use Postfix Notation for evaluation
 - Constraints are treated as operands

MaleNeuro = Paralysis [Patient Age < 40] [Patient Sex = Male] AND AND



Syndrome Category Rules

Challenges and solutions

Design Classes to represent and evaluate rules

Neurological = Paralysis AND [Patient Age < 40]

Legacy Chief Complaint Parser

- Challenges and solutions
- Restrictions and limitations
 - Implemented in Microsoft Access
 - Required Windows and Office
 - Cumbersome data input and output
 - Required reading/writing Chief Complaints into tables
 - Forced batch processing
 - Memory constraints and performance make the processing of large data sets difficult
 - 2GB .mdb file limit = ~5000 complaints limit

Chief Complaint Parser Redesign

- Redesign goals
 - Abstract data input and output of both reference/ configuration information and Chief Complaints
 - Allow use of arbitrary storage—database tables, CSV, XML
 - Stream processing of Chief Complaints
 - Light-weight process flow
 - Dynamic invocation of processing steps
 - Allow flexibility to add new steps and control order

Dynamic Setup of Text Normalization

Text Normalizer Classes specifies the ordered list of classes that each # perform a step within the overall text normalization process. # # Each normalization class must implement the ITextNormalizer interface. The # order that the classes are listed here will define the order of execution.

TN-1 = edu.jhuapl.bsp.ccp.TextNormalization.UpperCaseNormalizer TN-2 = edu.jhuapl.bsp.ccp.TextNormalization.PunctuationNormalizer TN-3 = edu.jhuapl.bsp.ccp.TextNormalization.AbbreviationNormalizer TN-4 = edu.jhuapl.bsp.ccp.TextNormalization.StopWordNormalizer TextNormalizerClasses = TN-1,TN-2,TN-3,TN-4

رپ ا Java

TextNormalizer

```
public class TextNormalizer {
    private ArrayList steps;
    public TextNormalizer(...) {
        steps = new ArrayList();
        Iterator it = configuration.getTextNormalizerClasses().iterator();
        while (it.hasNext()) {
            String className = (String)it.next();
            // find class and create instance
            Class c = Class.forName(className);
            Object o = c.newInstance();
            //cast and initialize
            ITextNormalizer tn = (ITextNormalizer)o;
            ...
            steps.add(tn);
        }
    }
}
```

چ ا Java

Agenda

Background

Challenges/Solutions

- Data Ingestion
- Detection Algorithms
- User Interface

Technologies Summary

Finding an Anomaly

- Detectors use statistical algorithms to find anomalous events in the health data
- To understand what is anomalous behavior we must understand normal behavior

Finding an Anomaly

- Temporal detectors model expected counts based on past data and modelling; they quantify the degree of anomaly as a detection level (p-values for a common scale)
- If the detection level meets certain thresholds, it is flagged either a red or yellow alert
- Alerts are displayed to the user and are indicators which may prompt further investigation

Temporal Alerting Algorithm

- Multiple algorithm approach
- Adaptive modelling and process control
 - Regression model
 - Controls for weekly, seasonal, and holiday effects
 - Exponential weighting moving average/ Shewhart chart
 - Effective for data or residuals without systematic trends or cycles

Temporal Alert List

Simulated Data

Region/Syndrome Based Temporal Alerts													
Links	<u>Date</u>	Data Source	Region	Age Group	<u>Sex</u>	<u>Syndrome</u>	Detector	Level	Count	Expected	RareColor	<u>RareLevel</u>	<u>NonZero</u>
<u>Time Series</u>	30Apr05	ER by Patient	ALEXANDRIA	18-44	A11	Respiratory	Regression/EWMA	0.006	15	7.5	33	7	100
<u>Time Series</u>	30Apr05	ER by Patient	ALEXANDRIA	45-64	A11	Respiratory	Regression/EWMA	0.044	4	2.821	26	25	94.521
<u>Time Series</u>	30Apr05	ER by Patient	ALEXANDRIA	A11	A11	Respiratory	Regression/EWMA	0.003	27	18.214	41	6	100
<u>Time Series</u>	30Apr05	ER by Patient	ARLINGTON	A11	A11	Respiratory	Regression/EWMA	0.001	51	24.321	38	4	100
<u>Time Series</u>	30Apr05	ER by Patient	ARLINGTON	18-44	A11	Respiratory	Regression/EWMA	0.001	27	10.964	32	2	100
<u>Time Series</u>	30Apr05	ER by Patient	ARLINGTON	45-64	A11	Respiratory	Regression/EWMA	0.031	7	4.179	28	20	98.082
<u>Time Series</u>	30Apr05	ER by Patient	ARLINGTON	65+	A11	Respiratory	Regression/EWMA	0.027	7	3.179	28	18	94.521
Time Series	30Apr05	ER by Patient	FAIRFAX	A11	A11	Respiratory	Regression/EWMA	0.001	265	124.786	52	11	100
Time Series	30Apr05	ER by Patient	FAIRFAX	18-44	A11	Respiratory	Regression/EWMA	0.001	113	46.607	42	9	100
Time Series	30Apr05	ER by Patient	FAIRFAX	45-64	A11	Respiratory	Regression/EWMA	0.001	78	20.679	36	3	100
Time Series	30Apr05	ER by Patient	FAIRFAX	65+	A11	Respiratory	Regression/EWMA	0.001	41	12.286	37	3	100
Time Series	30Apr05	ER by Patient	LOUDOUN	A11	A11	Respiratory	Regression/EWMA	0.001	41	17	43	4	100
Time Series	30Apr05	ER by Patient	LOUDOUN	18-44	A11	Respiratory	Regression/EWMA	0.001	17	5.929	27	3	100
Time Series	30Apr05	ER by Patient	LOUDOUN	45-64	A11	Respiratory	Regression/EWMA	0.012	6	2.214	20	11	87.671
<u>Time Series</u>	30Apr05	ER by Patient	LOUDOUN	65+	A11	Respiratory	Regression/EWMA	0.001	7	1.286	26	3	68.219
Time Series	30Apr05	ER by Patient	PRINCE WILLIAM	A11	A11	Respiratory	Regression/EWMA	0.001	79	45.214	56	5	100
Time Series	30Apr05	ER by Patient	PRINCE WILLIAM	18-44	A11	Respiratory	Regression/EWMA	0.001	33	17.179	37	4	100
Time Series	30Apr05	ER by Patient	PRINCE WILLIAM	45-64	A11	Respiratory	Regression/EWMA	0.008	13	6.357	27	5	99.726
Time Series	30Apr05	ER by Patient	PRINCE WILLIAM	65+	A11	Respiratory	Regression/EWMA	0.001	15	3.536	30	1	96.164

ر اava

2006 JavaOne^{s™} Conference | Session TS-5564 |

java.sun.com/javaone/sf

31

Fusion Alerting Algorithm

- Fusion capability for separate data sources, regions
 - Statically fuses multiple detection levels to discover new alerts
 - Based on output from the Temporal Alerting Algorithm

Fusion Alert List

Simulated Data

	Region/Syndrome Based Temporal Fusion Alerts									
			-		_					
	<u>Date</u>	Data Source	Region	Age	<u>Sex</u>	Syndrome	1 Level	Links		
\Box	26Apr05	Fusion	WASHINGTON	A11	A11	Respiratory	0.001			
	26Apr05	Emergency Room Data by Patient Location	WASHINGTON	A11	A11	Respiratory	0.076	<u>Time Series</u>		
	26Apr05	Military Outpatient Visits	WASHINGTON	A11	A11	Respiratory	0.035	<u>Time Series</u>		
	26Apr05	Over-the-Counter Chain 3	WASHINGTON	A11	A11	Respiratory	0.039	<u>Time Series</u>		
+	20Apr05	Fusion	PRINCE WILLIAM	65+	A11	Respiratory	0.008			
+	19Apr05	Fusion	WASHINGTON	18-44	A11	Respiratory	0.01			
Ξ	26Apr05	Fusion	PRINCE WILLIAM	18-44	A11	Respiratory	0.025			
	26Apr05	Emergency Room Data by Patient Location	PRINCE WILLIAM	18-44	A11	Respiratory	0.101	<u>Time Series</u>		
	26Apr05	Military Outpatient Visits	PRINCE WILLIAM	18-44	A11	Respiratory	0.123	Time Series		
+	18Apr05	Fusion	WASHINGTON	18-44	A11	Respiratory	0.026			
+	21Apr05	Fusion	PRINCE WILLIAM	45-64	A11	Respiratory	0.035			
+	26Apr05	Fusion	PRINCE WILLIAM	A11	A11	Respiratory	0.039			
+	26Apr05	Fusion	WASHINGTON	18-44	A11	Respiratory	0.044			
+	20Apr05	Fusion	WASHINGTON	18-44	A11	Respiratory	0.045			
+	21Apr05	Fusion	PRINCE WILLIAM	65+	A11	Respiratory	0.05			

رنگ ava

Spatiotemporal Alerting Algorithms Challenges and solutions

- Searches for clusters of cases that are spatially significant relative to expected spatial distribution
- Uses spatiotemporal scan statistics, based on Kulldorff's SaTScan methodology, applied to health surveillance for the National Cancer Institute since 1980s

Simulated Data

Spatial Alerts

ESSENCE - May 4, 2005 SimANCR - Microsoft Internet Explorer ID . O X ESSENCE - May 4, 2005 SimANCR : Spatial and Temporal Detection Map Taggles: 🖺 Narigadion 🕘 Q. Q. Q. Q. 🖉 Date Ranger 🛃 🔤 🖉 Other: 🛛 🖓 🗛 🗁 🗮 🖓 🎗 // 🗃 // Help: 🛄 🖓 Current Teel: Zoon In LAYERS ALLayor Bare Layers Spatial Detection. [Vicikie]]-doi[]Active[Hens] DE D'* th Temporal Detection [VisibleL-del]Aday(Hupe] Line or o at Other Refresh Map P Auto Bafreak Reset Map Exit Map Help: A classed group, click to spen. An open group, child to class. Ampleye. D'Although the love The Label is Senated "An Ahidden group Anyer, click to make with he. K Aviable group layer, click to kide . Aviable layer, bet not at this coule. Aperticity within group, did to make within An inactive layer, child to make active . · Do will here. Legard Counties du No.inorally Ministers lawore High America 20,94 Ass-created with ArcHAS - Copyright (C) 1985-2005-ESRI States du Data Column Name CLU_UNSPEC Data Source Cluster Detection Geography System Region Medical Grouping System Syndrome Syndrome Unspecified Infection Medical Subgrouping AU Age Group AD

Regression/EWMA

Detector

٨

Sex

Layer Name

All

Mapi -76.81, 38.9 - Invage: 886, 387 - ScaleFactor: 0.0014409412386806942.

Ś lava

*

🗂 🐲 Internet

Detector Development

- Statisticians are the algorithm developers and experts
 - Detection algorithms are prototyped in environments such as MATLAB or other statistical software packages such as SAS, S+...
 - The detector implementation must not depend on those environments

- Choices for MATLAB to Java Technology Development
 - Use MATLAB Java technology-based API
 - Only allows executing Java technology from within MATLAB; the reverse is unsupported; also requires MATLAB to be running
 - Compile MATLAB code to C++ and use Java Native Interface (JNI) or command line calls
 - Requires MATLAB binaries
 - Use a Client Server Model
 - Requires a server which would ultimately use one of the above options
 - Re-implement entirely in Java programming language

- We chose to re-implement entirely in Java programming language
- JMatLab Java Library
 - MATLAB-like methods
 - Utility methods for manipulating arrays or lists of numbers

```
/**
 * Simulates MATLAB std function. Calculate the standard
 * deviation of the array.
 */
 public static double std (double[] array) {
 ...
```


- Handling precision
 - MATLAB may produce numbers with very large precision that are not representable as a primitive Java technology double
 - BigInteger and BigDecimal Classes can represent very large numbers or numbers with very large precision

- Handling precision
 - Is the extra precision needed? No, the differences were very small
 - However, for testing, having exact matching output ensures correctness
 - Using BigDecimal made the detector run slower; it is used in testing only

- Temporal detector is required to run in two modes
- Stand alone scheduled execution
 - Iterates over every combination of—data sources, regions, age groups, syndromes, …
 - Queries data based on the above strata and runs detection; any alerts found are written to the database
- On demand via ESSENCE User Interface
 - A user has queried a specific set of data and requests detection to be run

TemporalDetectorInterface Challenges and solutions

public interface TemporalDetectorInterface {

public void runDetector(TemporalDetectorDataInterface tddi);

```
public String getID();
public String getName();
```

```
public double getRedLevel();
public void setRedLevel(double _redLevel);
```

```
public double getYellowLevel();
public void setYellowLevel(double _yellowLevel);
```


TemporalDetectorDataInterface Challenges and solutions

public interface TemporalDetectorDataInterface {

```
public void setCounts(double[] _counts);
public void setStartDate(java.util.Date _startDate);
public void setRegressor(String regressorID, double[] regressor);
```

```
public String[] getAltTexts();
public double[] getLevels();
public double[] getExpecteds();
public double[] getColors();
```


Detector Controllers

- Defer higher level knowledge and management to detector controller
 - Queries each required dataset based on strata
 - Setup each detector run
 - Optimize overall performance through threading, batching, and caching data

Detector Testing

- Establish a common testing framework
 - Make use of both test cases created from MATLAB and Java technology development
 - Java language Detectors are tested against MATLAB test cases via MATLAB Java technology-based API
 - Statisticians can independently run tests cases
 - When possible, leverage operational ESSENCE systems and use real data

Detector Enhancements

- Improvements originated from software testing and practical application
- Data Dropouts
 - Data providers may miss sending data; that data may be unrecoverable
- Initial Startup
 - New installations may have no historical data

چ ا Java

Agenda

Background

Challenges/Solutions

- Data Ingestion
- Detection Algorithms
- User Interface

Technologies Summary

User Interface Development

- Multiple data sources
 - ESSENCE handles various data sources
 - ER Chief Complaints
 - Over-the-Counter Drug Sales
 - School Absenteeism
 - Etc.
 - The UI must support each data source consistently

User Interface Development

- DataSource Interface
 - UI is generated based on DataSource objects
- DataSource Objects are responsible
 - Querying and retrieving their data
 - Describing their applicable querying parameters
 - zip code, hospital name, OTC store name …
 - Maintaining state of the query parameters

User Interface Design

- Designing the UI
 - User working groups
 - User surveys
 - User training and exercises
 - Observe and record any problems the user experiences
 - Prototype UI and present to users

User Interface Design

- Key user interface areas
 - Detector alert displays
 - Data querying and detailed display
 - Map displays

User Interface Development

- User feedback indicated the need for an easier way to visualize alerts
- Users may have many alerts to investigate due to:
 - Multiple data sources
 - Combinations of alerting strata
 - Age group, gender, region

Temporal Alert List

Simulated Data

Region/Syndrome Based Temporal Alerts													
Links	Date	Data Source	Region	Age Group	<u>Sex</u>	Syndrome	Detector	Level	Count	Expected	RareColor	RareLevel	NonZero
<u>Time</u> Series	30Apr05	ER by Patient	ALEXANDRIA	18-44	A11	Respiratory	Regression/EWMA	0.006	15	7.5	33	7	100
Time Series	30Apr05	ER by Patient	ALEXANDRIA	45-64	A11	Respiratory	Regression/EWMA	0.044	4	2.821	26	25	94.521
<u>Time Series</u>	30Apr05	ER by Patient	ALEXANDRIA	A11	A11	Respiratory	Regression/EWMA	0.003	27	18.214	41	6	100
<u>Time Series</u>	30Apr05	ER by Patient	ARLINGTON	All	A11	Respiratory	Regression/EWMA	0.001	51	24.321	38	4	100
<u>Time Series</u>	30Apr05	ER by Patient	ARLINGTON	18-44	A11	Respiratory	Regression/EWMA	0.001	27	10.964	32	2	100
<u>Time Series</u>	30Apr05	ER by Patient	ARLINGTON	45-64	A11	Respiratory	Regression/EWMA	0.031	7	4.179	28	20	98.082
<u>Time Series</u>	30Apr05	ER by Patient	ARLINGTON	65+	A11	Respiratory	Regression/EWMA	0.027	7	3.179	28	18	94.521
<u>Time Series</u>	30Apr05	ER by Patient	FAIRFAX	A11	A11	Respiratory	Regression/EWMA	0.001	265	124.786	52	11	100
<u>Time Series</u>	30Apr05	ER by Patient	FAIRFAX	18-44	A11	Respiratory	Regression/EWMA	0.001	113	46.607	42	9	100
<u>Time Series</u>	30Apr05	ER by Patient	FAIRFAX	45-64	A11	Respiratory	Regression/EWMA	0.001	78	20.679	36	3	100
<u>Time Series</u>	30Apr05	ER by Patient	FAIRFAX	65+	A11	Respiratory	Regression/EWMA	0.001	41	12.286	37	3	100
<u>Time Series</u>	30Apr05	ER by Patient	LOUDOUN	A11	A11	Respiratory	Regression/EWMA	0.001	41	17	43	4	100
<u>Time Series</u>	30Apr05	ER by Patient	LOUDOUN	18-44	A11	Respiratory	Regression/EWMA	0.001	17	5.929	27	3	100
<u>Time Series</u>	30Apr05	ER by Patient	LOUDOUN	45-64	A11	Respiratory	Regression/EWMA	0.012	6	2.214	20	11	87.671
<u>Time Series</u>	30Apr05	ER by Patient	LOUDOUN	65+	A11	Respiratory	Regression/EWMA	0.001	7	1.286	26	3	68.219
Time Series	30Apr05	ER by Patient	PRINCE WILLIAM	A11	A11	Respiratory	Regression/EWMA	0.001	79	45.214	56	5	100
Time Series	30Apr05	ER by Patient	PRINCE WILLIAM	18-44	A11	Respiratory	Regression/EWMA	0.001	33	17.179	37	4	100
Time Series	30Apr05	ER by Patient	PRINCE WILLIAM	45-64	A11	Respiratory	Regression/EWMA	800.0	13	6.357	27	5	99.726
Time Series	30Apr05	ER by Patient	PRINCE WILLIAM	65+	A11	Respiratory	Regression/EWMA	0.001	15	3.536	30	1	96.164

User Interface Development

- Summary alert list
 - Concise view of all alerts
 - Provides overall alert status
 - Directed the development of a Summary Detector
 - Allows recognition of patterns

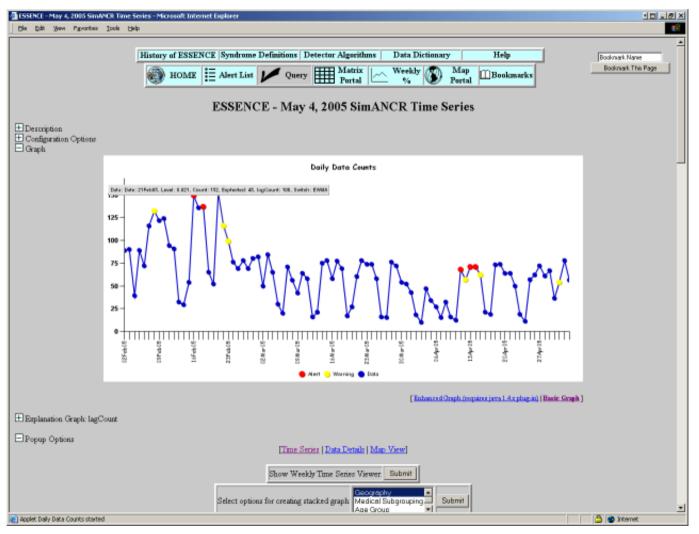
Summary Alert List

Simulated Data

			J	ER						
Region Group	Death	Death GastroIntestinal		Rash	Respiratory	Sepsis	UnspecifiedInfection			
NCR	********	***	*****	******	*******	*****	****			
DC	*******	******	*****	******	*****	******	****			
MD	****	****	*****	*****	**** *** *	******	****			
VA	****	***	*****	****	****	*****	****			
OV 30Apr05										
Region Group	Death	GastroIntestinal	Neurological	Rash	Respiratory	Sepsis	UnspecifiedInfection			
NCR	******	****	****	*******	****	*******	****			
DC	******	****	******	******	******	******	*******			
MD	*****	*****	****	*** * ****	******	******	*****			
VA	*****	******	******	******	****	******	****			
			0	TC						
Region Group	Death	GastroIntestinal	Neurological	Rash	Respiratory	Sepsis	UnspecifiedInfection			
NCR	*****	******	******	******	*****	******	***			
DC	*****	*******	*****	******	******	******	***			
MD	*****	*******	*****	*****	****	******	***			
VA	*******	*******	*******	*******	****	******	***			

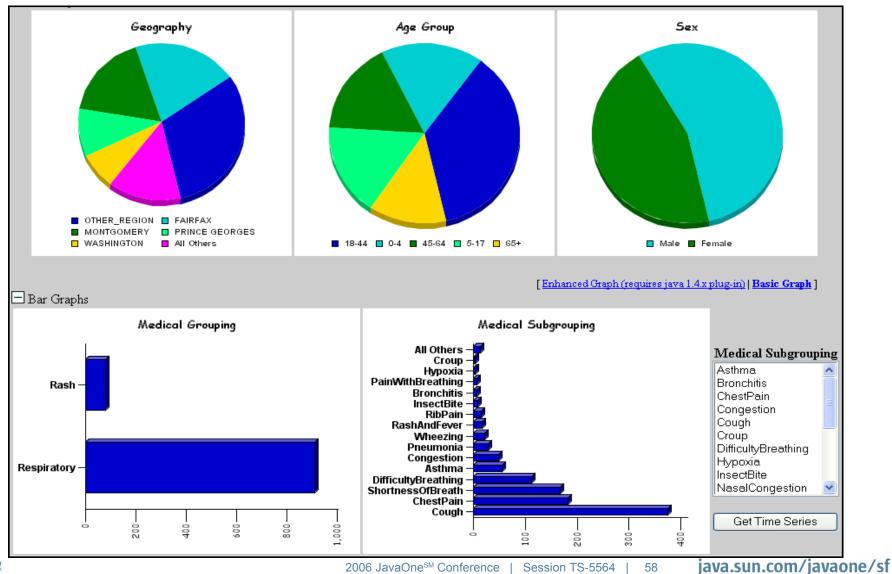
Summary Alert List

Simulated Data


			I	ER							
Region Group	Death	GastroIntestinal	Neurological	Rash	Respiratory	Sepsis	UnstecifiedIn Section				
NCR	******	*******	*****	*******	* ******	**. ******	******				
DC	*******	********	*****	********	*****	****	*******				
MD	****	*****	******	******	*******	**** <mark></mark> ****	*******				
VA	*****	******	*****	*******	*******	***** <mark>*</mark> ***	****				
	5										
Region Group	Death	GastroIntestinal	Neurological	Rash	Respiratory	Sepsis	UnspecifiedInfection				
NCR	******	****	****	*******	****	*******	****				
DC	******	****	******	******	******	*******	*******				
MD	******	*******	****	*** * ****	******	*******	******				
VA	******	********	*******	*******	****	*******	****				
	OTC										
Region Group	Death	GastroIntestinal	Neurological	Rash	R_spiratory	Sepsis	UnspecifiedInfection				
NCR	*******	********	*******	*******	******	****	<u>********</u>				
DC	******	********	*******	*******	*******	*****	********				
MD	******	********	******	********	****	****	******				
VA	*******	******	*******	*******	* *** *****	****	*******				

java.sun.com/javaone/sf

Time Series


Simulated Data

Data Details

Simulated Data

58

🏶 Sun

() E lava

چ الله Java

Agenda

Background Challenges/Solutions

- Data Ingestion
- Detection Algorithms
- User Interface

Technologies

Summary

Technologies

Technology summary

- Freely available technologies
 - Java
 - Ant
 - Apache Web Server
 - Apache Tomcat
 - Apache Jakarta Commons
 - Apache Jakarta POI
 - Apache Axis
 - Eclipse
 - GeoTools

Technologies

Technology summary

- Commercial technologies
 - ArcIMS
 - Microsoft SQL Server
 - NetCharts

Agenda

Background Challenges/Solutions

- Data Ingestion
- Detection Algorithms
- User Interface

Technologies Summary

Summary

ESSENCE

- Provide early warning of abnormal health conditions which may be the result of a Bio-Terrorism or an emerging infectious disease
- Provide daily medical situational awareness to epidemiologists and health officials

Summary

- Weighted keyword matching works well for categorizing short phrases/sentences
- Multiple development environments require a common testing framework
- Leverage user feedback to aid in UI design

Java

ESSENCE Team

- Special thanks to the ESSENCE team
 - Joe Lombardo
 - Sheri Lewis
 - Marty Sikes
 - Raj Ashar
 - Logan Hauenstein
 - Wayne Loschen
 - Carol Sniegoski
 - Nathaniel Tabernero
 - Rich Wojcik

- Jackie Coberly
- Brian Feighner
- Rekha Holtry
- Steve Babin
- Howard Burkom
- Michael Thompson

Java

Profile of the Applied Physics Laboratory

- Not-for-profit university research and development laboratory
- Division of The Johns Hopkins University founded in 1942
- On-site graduate engineering program in 8 degree fields
- Staffing: 3,600 employees (66% scientists and engineers)
- Annual revenue ~ \$680M

2006 JavaOne[™] Conference | Session TS-5564 | 67 java.sun.com/javaone/sf

The ESSENCE of Disease Surveillance

- **Nathaniel Tabernero**
- Software Engineer

The Johns Hopkins University Applied Physics Laboratory http://www.jhuapl.edu/

TS-5564