

Sun

Using Java[™] Technology-Based Neural Networks to Predict Trauma Mortality

Brian Briggman System Architect Software Consultants Inc. **Robert Gatliff M.D.** Surgical Resident Memorial Health

TS-8360

java.sun.com/javaone/sf

Goal of This Presentation What you can expect to gain

Learn how a real world problem was tackled using Java technology-based neural networks, harnessing the power of distributed processing using Java technology

لان Java

Agenda

Research Overview Overview of the NTDB NTDB Coverage Overview of Neural Networks Justification for a Java Technology-Based

Neural Network

Survey of Java Technology-Based Neural Network Implementations

Criteria for Selection of the Neural Network

Agenda

Overview of the JOONE Framework

Neural Network Using JOONE

- Topology of the Distributed Computing Environment
- Lessons Learned During Development and Implementation

Future Research Directions

Summary

Q&A

رپ آ Java

Research Overview

- Prediction of mortality in trauma cases is usually based on the experience of an individual physician
- It is impossible for any single physician to review every actual trauma case and find/conceptualize patterns within the data
- The idea of our research is to apply the power of a distributed neural network to analyze all available trauma data
- Our end goal is to create a tool that can assist physicians with making better decisions

کی) Java

Overview of the NTDB

- The National Trauma Data Bank (NTDB)
 - Established by the American College of Surgeons
 - NTDB Contents:
 - Over over 1.5 million trauma records
 - Collected from over 400 trauma centers
 - Data includes trauma scores, vital statistics, specific injuries
 - Purpose is threefold:
 - Quality assurance
 - Research
 - Public policy
 - The NTDB maintains full patient and physician confidentiality

http://www.facs.org/trauma/ntdbwhatis.html

NTDB Coverage

http://www.facs.org/trauma/ntdbwhatis.html

Patient Demographics

(Java)

2006 JavaOnesm Conference | Session TS-8360 | 8 java.sun.com/javaone/sf

Trauma Demographics

Overview of Neural Networks Neural Network Basics

- Definition: a computer system that loosely attempts to approximate the operation of the brain
- A neural network is modeled as layers of neurons connected via synapses as simple processing elements based on statistical functions
- A neural network must go through a training period before if can be effectively used
- Neural network architectures
 - Single layer networks
 - Adaline, Perceptron or Backpropagation
 - Multi-layer networks
 - Multi-layer Perceptron, feed forward back propagation, hopfield networks, Kohonen Self Organizing Maps (SOM)

2006 JavaOne^{s™} Conference | Session TS-8360 | 10

java.sun.com/javaone/sf

Justification for a Java Technology-Based Neural Network (Other than just because it's Java technology!)

- Need to leverage the power of distributed computing to compute the neural network output and find the optimal network for a given problem
- Java technology is "write once, run anywhere[™]"
 - The same neural network will be able to run on basically any hardware
- Java technology has a wide variety of built-in Networking capabilities
 - RMI, Java RMP, NIO
 - Jini[™] and JavaSpaces [™] technologies

Survey of Java Technology-Based Neural Networks

JOONE

- http://www.jooneworld.com
- http://www-ra.informatik.unituebingen.de/software/JavaNNS/welcome_e.html
- OpenAl
 - http://openai.sourceforge.net/
- JMSL Numerical Library for Java Technology-Based Applications
 - http://www.vni.com/products/imsl/jmsl/jmsl.html

() Java

Criteria for Selection of the Neural Network

- Open source
 - Ability to review the source code
 - Ability to extend the base implementation as necessary
- Widely used
 - Potentially better quality software
 - Groups to talk with and troubleshoot problems with
- Well documented
 - Easier to get started using the software
 - Shows maturity of the software
- Distributed networking capabilities
 - Ideally have the ability to train many networks in parallel

Overview of the JOONE Framework

- JOONE is a free neural network framework
- Available at: http://www.jooneworld.com
- JOONE consists of:
 - API to the core engine
 - GUI editor
 - Distributed Training Environment
- JOONE is open source
- JOONE is widely used
- JOONE is well documented
- JOONE includes a Distributed Training Environment which leverages the Jini technology framework

DEMO

Neural Network Using JOONE

2006 JavaOne[™] Conference | Session TS-8360 | 15 **java.sun.com/javaone/sf**

Topology of the Distributed Computing Environment

- Data access
 - Problem: The amount of time it takes to access data can be significant with a large sample size
 - Solution: Don't try to load all of the data at once, and use memory mapped data when performance is absolutely critical

- Inability of the neural network to justify its predictions
 - Problem: The trained network can be used to make a prediction of the mortality of a case, but due to the nature of the neural network, it cannot justify how it comes to that particular decision
 - Solution: Other forms of neural networks are better able to "explain" their reasoning, so we need to investigate other neural network forms

- Missing data
 - Problem: In our data set, it is fairly common to have incomplete data regarding a trauma case
 - Solution: Use the expertise of a statistician to impute values

as necessary, but in a manner that doesn't statistically alter the results

- Duplicate data
 - Problem: In our data set, it is possible for two patients to have the exact same vital statistics and injuries, but ultimately have different outcomes
 - Solution: Use the expertise of a statistician to determine what records should be used and which may be omitted without statistically altering the results

JavaOne

Java

Future Research Directions

- Investigate alternate neural network architectures
 - Bayesian Networks
- Apply our knowledge to other data sources
 - Hospital-specific databases
 - Specialized databases
 - Other forms of medical data where the quantity of data available overwhelms the ability of a human to analyze it

رچ Java

Summary

- Research and NTDB overview
- Neural networks in Java technology
- The JOONE framework
- Distributed computing using Jini technology
- Lessons and future research directions

For More Information

- The National Trauma Data Bank (NTDB), http://www.facs.org/trauma/ntdb.html
- The JOONE Framework, http://joone.sourceforge.com
- Jini Community^s Website, http://www.jini.org
- Fundamentals of Neural Networks, Laurene Fausett, Prentice-Hall, Inc. 1994
- Neural Smithing, Russell Reed and Robert Marks II, MIT Press, 1999

Brian Briggman Robert Gatliff M.D.

2006 JavaOnesm Conference | Session TS-8360 24 java.sun.com/javaone/sf

Sun

Using Java[™] Technology-Based Neural Networks to Predict Trauma Mortality

Brian Briggman System Architect Software Consultants Inc. **Robert Gatliff M.D.** Surgical Resident Memorial Health

TS-8360

java.sun.com/javaone/sf