
2006 JavaOneSM Conference | TS-1161 |

TS-1161

Evolving JavaServer™
Faces Technology:
AJAX Done Right
Edward Burns, Sun Microsystems, Inc.
Jacob Hookom, McKesson Medical-Surgical
Adam Winer, Oracle

2006 JavaOneSM Conference | TS-1161 | 2

The architecture of the JavaServer Faces
platform is perfect for the next era of
Web applications. JavaServer Faces
technology is evolving to better address
the details.

JavaServer™ Faces Technology Is
Great for AJAX, Here’s Why

2006 JavaOneSM Conference | TS-1161 | 3

What You Will Learn in This Session

Scalability of Application Requirements
How JavaServer Faces helps Manage
Complexity
JavaServer Faces and AJAX:
Perfect Together
The Many Faces of Scalability
Leading by Example

2006 JavaOneSM Conference | TS-1161 | 4

The Complexity of Expectations

Scalability of Application
Requirements

● People expect more from your web applications
and development today

● Are you going to be able to quickly adapt and
scale to application requirements?

● We chose OO to manage application complexity,
why throw it away for a procedural UI?

● Simply choosing AJAX is not going to make
things any easier for managing complexity

2006 JavaOneSM Conference | TS-1161 | 5

How “Everyone” Does AJAX

• Essentially breaking up the
page into separate ‘parts’

• No ability to collaborate
(swim lanes)

• Logic on the server unable
to affect other ‘parts’

• UI coordination requires
replicated logic in the
presentation

• Updating multiple widgets
often in separate requests

Splitting Up the Presentation
Logic

Action

Widget

Presentation Tier

Logic

Action

Widget

Logic

Action

Widget

Logic

Action

Widget

2006 JavaOneSM Conference | Session TS-1161 | 6

DEMO
Common Approaches to AJAX

2006 JavaOneSM Conference | TS-1161 | 7

So What’s Wrong With This Picture?
● Frameworks still unable to coordinate UI for the

developer
● Business logic leaks into the presentation tier
● Introduces even more specialization between

actions/view—for each procedure/context
● JavaScript Remoting/RPC can be a security risk
● Can we learn anything from five years of SOA?

Adding Rhinestone-Covered Hurdles to Your Project

2006 JavaOneSM Conference | TS-1161 | 8

A Lesson From SOA
● XML/etc is horrible at transporting Object graphs

● Relational data vs. business behavior
● Automating Object marshalling over AJAX

is often wasteful
● Where and what to send in the response?

● Breaks encapsulation
● Forces knowledge of APIs and models into things

like JavaScript technology over RPC
● Still have to update the UI
● Same issues as with coordinating in Model 2 MVC

A Public Service Announcement

2006 JavaOneSM Conference | TS-1161 | 9

Components Over the Web?

Managing Application Complexity with
JavaServer Faces-Based Components
● Participant in the full MVC

lifecycle
● Vertical, self-sustaining

participant
● Encapsulates programmer

concerns
● Easily reusable
● Stateful when necessary,

stateless when not
● Accommodating ‘me too’

features

State
(Model)

Behavior
(Controller)

Presentation
(View)

JSF
Component

2006 JavaOneSM Conference | TS-1161 | 10

JavaServer Faces and AJAX:
Natural Evolution

● JavaServer Faces technology was already able to
handle interaction with multiple concerns/actions
before AJAX*

● Components encapsulate both the client and
server aspects of rich features

● Can render any part of a view—no intermediary
logic on your part

● Iterative scope handling with proper context
● Mediates both Client and Java invocation

Looking at the Big Picture of UI Development

2006 JavaOneSM Conference | TS-1161 | 11

A Mediated Approach With
JavaServer Faces

• A single widget can
affect multiple parts
at once

• Business logic can
update multiple parts
at once

• Logic can stay in Java
• A single AJAX request

over the network can
produce multiple
updates

Actual Collaboration Over AJAX

Widget

Presentation Tier

Widget Widget Widget

Cohesive Logic

JSF Mediator Layer

2006 JavaOneSM Conference | TS-1161 | 12

Components as Mediators
<x:suggest value=“#{foo.bar}” from=“#{util.suggest}”/>

Server
Component

Rendered
Client

HTML/JS
Target Bean

Invoke

Invoke

setValue()

AJAX

AJAX

Postback

Initial Render getValue()

2006 JavaOneSM Conference | TS-1161 | 13

Who Should Be Responsible?
Mediating Client and Server Communications

Lack of ‘automatic’ context
with the client UI

Burden of shipping/
restoring client state

Invoking methods on Java
Objects from client

Secure, Java model never
directly available to the client

Repetition of business
logic in JavaScript

Keeps Java and domain logic
in one spot

JS-DOM manipulation
is awkward

Ability to do server-side
templating of HTML

Pushes object data to the
client via XML or JSON

Knows/prunes data it needs for the
client representation

Client-Side RemotingServer-Side Components

2006 JavaOneSM Conference | Session TS-1161 | 14

DEMO
What We’re Shooting For

2006 JavaOneSM Conference | TS-1161 | 15

Example A: Separate Servlet/Service

● Deployment issues
● Zero collaboration between components
● Additional development as with Model 2
● Forces knowledge of transport details

<h:dataTable id=“tbl” value=“#{products}” var=“prd”>
 <bp:ajax value=“#{form.prop}” service=“foo.jsp”/>
</h:dataTable>

Jumping Out of the Framework

2006 JavaOneSM Conference | TS-1161 | 16

Example B: RPC With
JavaServer Faces

● Inability to collaborate at the component level
● Only works with global variables
● Mass confusion with developers

<h:dataTable id=“tbl” value=“#{products}” var=“prd”>
 <bp:ajax value=“#{form.prop}” rpc=“#{prd.method}”/>
</h:dataTable>

http://localhost/faces/remote/prd/method.faces

15 Yard Penalty for Illegal Use of EL

2006 JavaOneSM Conference | TS-1161 | 17

Example C: findComponent(…)

<h:dataTable id=“tbl” value=“#{products}” var=“prd”>
 <bp:ajax value=“#{form.prop}” method=“#{prd.method}”/>
</h:dataTable>

UIAjax c = viewRoot.findComponent(“tbl:8:ajax”);

What’s a Client Identifier?

● Used with PhaseListeners
● Can collaborate within the component model
● Encapsulates transport details
● An instance for what iteration?

2006 JavaOneSM Conference | TS-1161 | 18

JavaServer Faces 1.2 and
invokeOnComponent(…)

ContextCallback cc = new ContextCallback() {
 public void invoke(FacesContext f, UIComponent c) {
 ((UIAjax) c).doMethod(f);
 }
};
view.invokeOnComponent(facesContext, “tbl:8:ajax”, cc);

The Sixth Dimension of JSF's Lifecycle

● Any time we deal with collections of data
● Correcting contextual and collaborative issues

across the board
● Extending the concept of a URI

2006 JavaOneSM Conference | Session TS-1161 | 19

DEMO
Contextual AJAX

2006 JavaOneSM Conference | TS-1161 | 20

The Many Faces of Scalability

● Usually associated with
scalability of hardware

● But at what cost: usually
increased development
and maintenance time

● Most solvable in the
UI Tier

● What did you choose
for persistence on your
last project?

All Things to All People?

Presentation
Tier

Business
Tier

Data/Resource
Tier

Sc
al

ab
ili

ty

2006 JavaOneSM Conference | TS-1161 | 21

What’s the Cost?
● The cost of JavaServer Faces technology’s

brand of abstraction: state management
● JavaServer Faces technology performance

and AJAX
● Component frameworks make fine-grained

processing easier
● But it has to be fast and scalable
● ...and we all know that action frameworks are faster

and more scalable, right?
● Not necessarily, let’s see how

The Complexity Has to Live Somewhere

2006 JavaOneSM Conference | TS-1161 | 22

Breaking Down a JavaServer Faces
Platform Request

● Do “stuff” is
very fast

● Rendering is
improved

● State Saving is
problematic

Where Does the Time Go?

Restore
State
49%

Do
Stuff
7%

Render
With Save
State 44%

2006 JavaOneSM Conference | TS-1161 | 23

Types of State Saving in JavaServer
Faces Platform
Where Does the Time Go?

15 Components (Struts) 150 Components (Swing)

Ti
m

e
M

s

JSP
Client

Facelets
Client

JSP
Server

Facelets
Server

JSP
Client

Facelets
Client

JSP
Server

Facelets
Server

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5
Write State
Everything Else

2006 JavaOneSM Conference | TS-1161 | 24

State Saving and AJAX

● Going declarative
● Managing shared/transient parts of the view
● Learning from ORM Frameworks

Let’s Make Some ‘Changes’

2006 JavaOneSM Conference | TS-1161 | 25

Using State Deltas

● Using declarative markup
(Facelets)

● 10% of the size of state
required

● Works with both client
and server state saving
algorithms

Impressive Results With ADF, Facelets, and
JavaServer Faces 1.2

10%

90%

2006 JavaOneSM Conference | TS-1161 | 26

Speeding Up View Restoration

● Just keep reference to
the last view requested
and its captured state

● Restore View becomes
nearly free

● Covers 99.3%
of practical AJAX
use cases

Keeping the Channels Open

Comp.

Comp.

Comp.

Comp.

Comp.

Comp.

Development A

Client

2006 JavaOneSM Conference | TS-1161 | 27

JSP
Client

Facelets
Client

Facelets
Client
(New)

JSP
Server

Facelets
Server

Facelets
Server
(New)

0

10

20

30

40

50

60

70

80

90

100 Render
Save View
Do Stuff
Restore View

Timings for a 150 Component Page
AJAX With New State Saving

Ti
m

e
M

s

2006 JavaOneSM Conference | TS-1161 | 28

Tips for Performance With AJAX
● JavaServer Pages™ technology and Facelets already

optimized for handling pure HTML content
● Avoid JavaServer Pages Standard Tag Library (JSTL)

and opt for ‘rendered’ to hide and show components
● h:dataTable, af:iterator, and ui:repeat components are

much faster with JavaServer Faces technology
● Don’t be afraid to mark components ‘transient’ to prevent

them from being stored

Things You Can Do Now

2006 JavaOneSM Conference | TS-1161 | 29

Reducing the Complexities of AJAX
● Many flavors of AJAX, even within JavaServer Faces

technology
● Different types of widgets that need to work together

in the UI, not separately
● Desire to make partial processing as natural as

possible
● Prevent the need to specifically write your application

for different AJAX libraries
● Natural Method Invocation

● Enable easily upgrading to AJAX when the need
arises with existing development completed

Enabling AJAX in New Ways

2006 JavaOneSM Conference | TS-1161 | 30

Example Implementation

● A simple JSF wrapper
for the AJAX
transaction on
the client

● A mediator for lifecycle
processing on the
server

● A simple contract
between the client
and server

The Ingredients of a Full-Blown AJAX Solution for JSF

2006 JavaOneSM Conference | TS-1161 | 31

DEMO
Example Implementation

2006 JavaOneSM Conference | TS-1161 | 32

Long Term Prevalence of
JavaServer Faces

● Components will always exist within architectures
● Encapsulation can handle the details of

AJAX, etc.
● Renderer/markup/deployment agnostic
● Foundation for contextual communication,

extending the concept of a remote URI
● Applicable within RPC/SOA for disconnected

architectures such as thin client deployments
● AJAX was only one way that JavaServer Faces

design can be utilized

How Applicable Is the Technology Three Years From Now?

2006 JavaOneSM Conference | TS-1161 | 33

For More Information

● http://javaserverfaces.dev.java.net/
● http://jsf-extensions.dev.java.net/
● http://facelets.dev.java.net/
● http://myfaces.apache.org/
● http://java.sun.com/javaee/

http://myfaces.apache.org/

2006 JavaOneSM Conference | TS-1161 | 34

Q&A

2006 JavaOneSM Conference | TS-1161 |

TS-1161

Evolving JavaServer™
Faces Technology:
AJAX Done Right
Edward Burns, Sun Microsystems, Inc.
Jacob Hookom, McKesson Medical-Surgical
Adam Winer, Oracle

