
2006 JavaOneSM Conference | Session TS-1402 |

Distributed Caching:
Essential Lessons
Cameron Purdy
President Tangosol

www.tangosol.com

TS-1402

2006 JavaOneSM Conference | Session TS-1402 | 2

Overall Presentation Goal

Learn all about distributed caching,
different ways to organize data in distributed
environments, and some good rules of thumb

2006 JavaOneSM Conference | Session TS-1402 | 3

Speaker’s Qualifications

• Cameron Purdy is President of Tangosol,
and is a contributor to Java™ technology and XML
specifications

• Tangosol is the Java Temporary Caching API (JSR 107)
specification lead and a member of the Work Manager
for Application Servers (JSR 237) expert group

• Tangosol Coherence is the leading clustered caching
and data grid product for Java and J2EE™ programming
environments

• Coherence enables highly scalable in-memory data
management and caching for clustered Java based
applications

2006 JavaOneSM Conference | Session TS-1402 | 4

Why Cache?

There is no better way to increase the
scalable performance of applications
than to use caching to unload deeper tiers!

2006 JavaOneSM Conference | Session TS-1402 |

Caching Topologies

2006 JavaOneSM Conference | Session TS-1402 | 6

Replicated Topology
• Goal: Extreme Performance
• Solution: Cache Data is Replicated

to all members of the cluster
• Zero Latency Access: Since the data

is replicated to each cluster member,
it is available for use without any
waiting; this provides the highest
possible speed for data access;
each member accesses the data
from its own memory

• Limitations
• Cost Per Update: Updating a replicated

cache requires pushing the new version
of the data to all other cluster members,
which will limit scalability if there are a high
frequency of updates per member

• Cost Per Entry: The data is replicated to
every cluster member, so Java heap space
is used on each member, which will impact
performance for large caches

Writes

Reads

2006 JavaOneSM Conference | Session TS-1402 | 7

Replicated Topology: Summary

• Performance: Very good read performance
• Scalability: The scalability of replication

is inversely proportional to the number
of members, the frequency of updates
per member, and the size of the updates

• Uses: Small read-intensive caches
that benefit from a data “push” model

2006 JavaOneSM Conference | Session TS-1402 | 8

Partitioned Topology

Writes

Reads

• Goal: Extreme Scalability
• Solution: Transparently partition the

Cache Data to distribute the load
across all cluster members

• Linear Scalability: By partitioning
the data evenly, the per-port throughput
(the amount of work being performed by
each server) remains constant

• Benefits
• Partitioned: The size of the cache and the

processing power available grow linearly
with the size of the cluster

• Load-Balanced: The responsibility
for managing the data is automatically
load-balanced across the cluster

• Ownership: Exactly one node in the cluster is
responsible for each piece of data in the cache

• Point-To-Point: The communication for the
distributed cache is all point-to-point, enabling
linear scalability

2006 JavaOneSM Conference | Session TS-1402 | 9

Partitioned Topology: Failover

• Failover: All cache services
must provide lossless
failover and failback
• Configurable level

of redundancy
• Data is explicitly backed

up on different physical
servers (mesh architecture)

• There is never a moment
when the cluster is not ready
for any server to die; no data
vulnerabilities, no SPOFs

2006 JavaOneSM Conference | Session TS-1402 | 10

Partitioned Cache Servers

• Location Transparency:
The Java Temporary
Caching API and its
behavior are the same
with a local, replicated
or partitioned cache

• Local Storage Enabled:
Cluster nodes with local
storage enabled will provide
the cache and backup
storage for the partitioned
cache; all cluster nodes will have the same
exact view of the data, because of Location
Transparency

2006 JavaOneSM Conference | Session TS-1402 | 11

Partitioned Topology: Summary

• Performance: Fixed cost
• Scalability: Linear scalability of both cache

capacity and throughput as the number
of members increases; designed for scaling
on modern switched networks

• Uses: Any size caches, scaling with the size
of the cluster or data grid; both read- and
write- intensive use cases; ability to offload heap
usage to other Java VMs; load-balancing;
resilient to server failure

2006 JavaOneSM Conference | Session TS-1402 | 12

Near Cache Topology

• Goal: Extreme Performance,
Extreme Scalability

• Solution: Local “L1”
In-Memory cache in front
of a Clustered “L2”
Partitioned Cache

• Result: Zero Latency
Access to recently-used
and frequently-used data;
scalable cache capacity
and cache throughput,
with a fixed cost for worst-case

Reads

2006 JavaOneSM Conference | Session TS-1402 | 13

Near Topology: Coherency

• Read-Only/Read-Mostly:
Expiry-based Near Caching
allows the data to be read
until its configured expiry

• Event-Based Seppuku:
Eviction by event; the Near
Cache can automatically
listen to all cache events,
or only those cache events
that apply to the data it has
cached locally

Writes

2006 JavaOneSM Conference | Session TS-1402 | 14

Near Topology: Cache Servers
• Potent Combination: Combining the benefits

of Near Caching with the
dedicated Cache Servers can
provide “the best of both worlds”
for many common use cases

• Bulging At The Heap:
This topology is very popular
for application server
environments that want to cache
very large data sets, but do not
want to use the application server
heap to do so

• Balanced: The application server will use
a tunable amount of memory to cache recently-
and frequently-used objects in a local cache

• Classic space/time trade-off

2006 JavaOneSM Conference | Session TS-1402 | 15

Near Topology: Summary

• Performance: Zero-latency for common data;
fixed cost for the remainder of the data

• Scalability: Linear scalability of both cache
capacity and throughput as the number of
members increases; slightly less with Seppuku

• Uses: Any size caches; great for read-intensive
caches with tight data access patterns; killer
“Cache Server” configuration

2006 JavaOneSM Conference | Session TS-1402 | 16

Cache-Aside Architecture

• Cache-Aside refers to an architecture in which
the application developer manages the caching
of data from a data source

• Adding cache-aside to an existing application
• Check the cache before reading from the

data source
• Put data into the cache after reading from the

data source
• Evict or update the cache when updating the

data source

2006 JavaOneSM Conference | Session TS-1402 | 17

Cache-Through: Architecture

• Cache-Through places the cache between the client
of the data source and the data source itself,
requiring access to the data source to go through
the cache

• A Cache Loader represents access to a data
source; when a cache is asked for data,
if it is a cache miss, then any data that it cannot
provide it will attempt to load by delegating to the
Cache Loader

• A Cache Store is an extension to Cache Loader
that adds the set of operations generally referred
to as Create, Read, Update and Delete (CRUD)

2006 JavaOneSM Conference | Session TS-1402 | 18

Cache-Through: Partitioning

• Cache-Through operations are always
managed by the owner of the data within
the cluster

• Concurrent access operations are combined
by the owner, greatly reducing database load

• Since the cache is aware of updates,
Write-Through keeps the cache and db in sync

2006 JavaOneSM Conference | Session TS-1402 | 19

Read- and Write-Through

2006 JavaOneSM Conference | Session TS-1402 | 20

Cache-Through: Summary

• Performance: Reduces latency for database
access by interposing a cache between the
application and the data; database modifications
additionally involve a cache update

• Scalability: Channels and combines data
accesses; may significantly reduce database load

• Uses: Any time a cache needs to transparently
load data from a database

2006 JavaOneSM Conference | Session TS-1402 | 21

Write-Behind: Description

• Write-Behind accepts
cache modifications
directly into the cache

• The modifications are
then asynchronously
written through the
Cache Store, optionally
after a specified delay

• The write-behind data
is clustered, making
it resilient to server failure

2006 JavaOneSM Conference | Session TS-1402 | 22

Write-Behind: Conclusions

• Performance: Low-latency for cached reads and writes
• Scalability: The same extreme read/write scalability

of the cache, and significantly reduced load on the db
• Coalesced write-through of multiple modifications to an object
• Batched write-through of modifications to multiple objects

• Uses: When write performance is important, data source
load is high, and/or when an application
has to be able to continue when the data source is down
• Only use when all writes to the data source come through the

cache, and db-level auditing is not required

2006 JavaOneSM Conference | Session TS-1402 | 23

Topology Quiz

What cache topology would
be optimal for this application?

• Caching 10GB of financial
portfolio data

• Read-heavy, updated nightly
• Several hundred users
• Several thousand requests

per minute

What cache topology would be
optimal for this application?

• Logging user interactions
to a database for internal
auditing purposes

• 1000 updates per minute

What cache topology would
be optimal for this application?

• Caching user preferences
for an in-house application

• Several hundred
concurrent users

• Preferences updated a few
times per day

2006 JavaOneSM Conference | Session TS-1402 | 24

Lesson 1: Use an MVC Architecture

• Model/View/Controller (MVC, a.k.a. Model2)
• Model: Domain-specific representation of the

information the application displays and on which
it operates

• View: Renders the model into a form suitable
for interaction, typically a user interface element
or document

• Controller: Responds to events—typically are user
actions or service requests—and invokes changes
on the model

2006 JavaOneSM Conference | Session TS-1402 | 25

Lesson 1: Use an MVC Architecture (Cont.)

• Clear delineation of responsibility; for example
• Cache is used in the Model

• Cache Loader/Store is the DAO
• Cache contains the application’s POJOs/Value Objects

• View pulls data from the Model
• Goal is to ensure that all accesses are served from cache

• Controller affects the Model
• Modifications via Write-Through or Write-Behind

2006 JavaOneSM Conference | Session TS-1402 | 26

Lesson 2: Specify the Data Access

• There are multiple ways to access data
• ORM (JDO, EJB3, Hibernate, etc.)
• Cache API (i.e., transparently via a Cache Loader)
• JDBC (or other direct integration API)

• Most applications have a “best way”
• Large-scale set oriented access usually indicates JDBC
• Mix of set- and identity-oriented access indicates ORM
• Identity-oriented access may indicate Cache API

2006 JavaOneSM Conference | Session TS-1402 | 27

Lesson 2: Specify the Data Access (Cont.)

• Picking the wrong approach is disastrous
• RDBMS (JDBC) optimized for set-based queries

and operations, including joins and aggregates,
but crumbles with heavy row-level access
(1+N access pattern, etc.)

• ORMs can bog down badly on large
set-based access

• JCache API is built around identity-based access,
not set-based access

2006 JavaOneSM Conference | Session TS-1402 | 28

Lesson 2: Specify the Data Access (Cont.)

• Not always an obvious “best choice”
• Some applications have a mix of intensive row-level

and large set-level operations, which lend themselves
poorly to any single approach

• Even a well-architected and carefully-designed
application will often have a few “exceptions to the
rule” that require the specified approach to Data
Access to be circumvented

• It is sometimes necessary to use different
approaches for different classes of data within the
same application

2006 JavaOneSM Conference | Session TS-1402 | 29

Lesson 2: Specify the Data Access (Cont.)

• Optimizations may be available for each
• It is often possible to cache JDBC™ software result sets
• Most ORMs have effective support for pluggable

caches, such as Hibernate’s “L2” cache support
• Some ORMs, such as KODO Java Data Objects (JDO)

API, have optimizations for set-based operations
that can translate some operations directly into
optimized SQL that performs the entire operation
within the RDBMS

• Caches may provide extensive query support;
for example, Coherence includes parallel query
with indexes and cost-based optimizations

2006 JavaOneSM Conference | Session TS-1402 | 30

Lesson 3: Design a Domain Model

• Domain Model includes two aspects
of application modeling
• Data Model: Describes the state that the application

maintains, both in terms of persistent data
(e.g., the “system of record”) and runtime data
(sessions, queued events, requests, responses, etc.)

• Behavioral Model: Describes the various actions that
can affect the state of the application; very similar to
the concepts behind SOA, but at a much lower level

2006 JavaOneSM Conference | Session TS-1402 | 31

Lesson 3: Design a Domain Model (Cont.)

• Domain Model is not dissimilar from SOA
• Data Model: Analogous to the information

encapsulated and managed behind a set of services
• Behavioral Model: Analogous to the set of services

exposed by a broker

• The concept of a Domain Model is technology-
neutral; it can even exist only in the abstract
• Modeling is a tool, not a religion

2006 JavaOneSM Conference | Session TS-1402 | 32

Lesson 3: Design a Domain Model (Cont.)

• Domain Model has value
• Allows the Data Model to exist independently of the

behavioral model, supporting the separation of a
controller from the model in an MVC architecture

• The behavioral model is the basis for the events that
a controller is required to support

• With an abstract data model that reflects application
concerns instead technology concerns, it is much
more likely that the resulting data model
implementation will be more easily used by the view
and the controller

2006 JavaOneSM Conference | Session TS-1402 | 33

Lesson 3: Design a Domain Model (Cont.)

• Domain Model is not new
• OO developers have been using Domain Modeling

for years
• Application Developers that double as DBAs have

used modeling to “get their ideas down” into a design
that could provide both optimal application
implementation and optimal database organization

• SOA is the publishing of a behavior model that is
intended to be publicly-accessible, with data models
often directly reflected in the service request and
response data

2006 JavaOneSM Conference | Session TS-1402 | 34

Lesson 4: Find the Natural Granularity

• Every application has a natural granularity
for its data
• Relational data models have a normalized

granularity from which tables naturally emerge
• Optimized JDBC software-based applications have

a statement execution granularity and a Result Set
granularity

• ORM-based applications and cache-intensive
applications often have an OO granularity that
mirrors the data model

• Caches have an identity granularity of access

2006 JavaOneSM Conference | Session TS-1402 | 35

Lesson 4: Find the Natural Granularity
(Cont.)

• Caches will typically exist for each major class
of application object
• e.g., accounts, symbols, positions, orders,

executions, etc.
• Each cache will tend to have a natural key

• e.g., account id, symbol, account id + symbol,
order id, etc.

• Application objects tend to be complex
• Contain “owned” objects, e.g., purchase order

contains lines

2006 JavaOneSM Conference | Session TS-1402 | 36

Lesson 5: Decouple Using Identity

• Store, Load, Provide and Manage the Identity
of related model objects

• Provide accessors for related model objects by
using Identity de-reference (i.e., cache access)

• Read-only models tend to have more lee-way
• Soft references
• Transient reference fields

2006 JavaOneSM Conference | Session TS-1402 | 37

Lesson 5: Decouple Using Identity (Cont.)

• Simplifies management of large object graphs
• Enables efficient lazy loading of object graphs
• Works well with…

2006 JavaOneSM Conference | Session TS-1402 | 38

Lesson 6: Use an Immutable Model

• From the View, the Model should treated as if it
is read-only

• From the point of view of the Controller, the
model that is shared across threads should be
treated as immutable, for example just in case
the View is using it on a different thread

2006 JavaOneSM Conference | Session TS-1402 | 39

Lesson 6: Use an Immutable Model (Cont.)

• Since most applications are not read-only,
the Controller does have to modify the data
represented by the Model

• When the Controller needs to modify the Model,
it can obtain mutable clones of the shared
model, and manage them…

2006 JavaOneSM Conference | Session TS-1402 | 40

Lesson 7: Use Cache Transactions

• …transactionally
• When the Controller obtains cached values

within a transaction, the values are actually
clones of the “master” cached values

• The Controller makes its modifications to the
Model in a transactionally isolated and
consistent manner

2006 JavaOneSM Conference | Session TS-1402 | 41

Lesson 7: Use Cache Transactions (Cont.)

• For maximum scalability, most transactions
should be optimistic; just as with any optimistic
transaction approach, this implies that the
application must handle and/or retry
transactions whose optimistic checks fail

• Cache Transactions can integrate with the
container’s Transaction Manager via the Java
EE Connector Architecture

2006 JavaOneSM Conference | Session TS-1402 | 42

Lesson 8: Use Queries Wisely

• Cache Queries may be optimized, and they may
even be run in parallel across a cluster, but they
are probably at least an order of magnitude
more expensive than identity-based operations

• If you use queries, make sure to use indexes;
for example, the Coherence query optimizer
uses multiple indexes on a single query,
even if they don’t perfectly “cover” the query

2006 JavaOneSM Conference | Session TS-1402 | 43

Lesson 9: Optimize Serialization

• Objects that are stored in a cache may need
to be serialized, and Java technology’s default
object serialization is relatively inefficient

• Implementing the Externalizable interface may
help slightly

• Serialization using data streams instead of
object streams can make a phenomenal impact
• ExternalizableLite interface

• Serialization performance improvements are up
to an order of magnitude, and the reduction in
size can be up to 80%

2006 JavaOneSM Conference | Session TS-1402 | 44

Lesson 9: Optimize Serialization (Cont.)

• Since Java technology does not have an object-
cloning interface, classes that do not have a
public clone() method may require serialization
and deserialization in order to be cloned

• Since Cache Transactions may need to clone
an object to create a copy within a local
transaction, optimized serialization can even
improve the performance of transactions

2006 JavaOneSM Conference | Session TS-1402 | 45

Lesson 10: Use Good Identities

• An Identity implementation must provide correct
hashCode() and equals() implementations, and cache
the hash-code!

• A good toString() implementation helps with debugging
(and not just for Identities!)

• If feasible, make your Identity classes immutable
• An Identity must be Serializable, and its serialized form

should be stable; two instances should serialize to the
same binary value if and only if equals() returns true

• Java programming language’s String, Integer, Long, etc.
are perfect

2006 JavaOneSM Conference | Session TS-1402 | 46

Lesson 11: Cache in the Right Scope

• HTTP Session objects can be used for caching
user- or session-specific information; don’t use
them as a cache for global information

• Conversely, don’t use a global cache for user-
specific caching when the HTTP Session would
do just fine

2006 JavaOneSM Conference | Session TS-1402 | 47

Lesson 12: Never Assume

• Always verify that it works as expected
• We have seen caches in production that literally were

not even getting used, and we have seen caches that
had not even been configured—or were badly
mis-configured

• Load test and use Java™ Management Extensions
(JMX™) to monitor what caches exist, how big they
are, what their hit rates are, and if the stats
are as expected

2006 JavaOneSM Conference | Session TS-1402 |

Q&A
Cameron Purdy

2006 JavaOneSM Conference | Session TS-1402 |

Distributed Caching:
Essential Lessons
Cameron Purdy
President Tangosol
www.tangosol.com

TS-1402

	Distributed Caching:Essential Lessons
	Overall Presentation Goal
	Speaker’s Qualifications
	Why Cache?
	Caching Topologies
	Replicated Topology
	Replicated Topology: Summary
	Partitioned Topology
	Partitioned Topology: Failover
	Partitioned Cache Servers
	Partitioned Topology: Summary
	Near Cache Topology
	Near Topology: Coherency
	Near Topology: Cache Servers
	Near Topology: Summary
	Cache-Aside Architecture
	Cache-Through: Architecture
	Cache-Through: Partitioning
	Read- and Write-Through
	Cache-Through: Summary
	Write-Behind: Description
	Write-Behind: Conclusions
	Topology Quiz
	Lesson 1: Use an MVC Architecture
	Lesson 1: Use an MVC Architecture (Cont.)
	Lesson 2: Specify the Data Access
	Lesson 2: Specify the Data Access (Cont.)
	Lesson 2: Specify the Data Access (Cont.)
	Lesson 2: Specify the Data Access (Cont.)
	Lesson 3: Design a Domain Model
	Lesson 3: Design a Domain Model (Cont.)
	Lesson 3: Design a Domain Model (Cont.)
	Lesson 3: Design a Domain Model (Cont.)
	Lesson 4: Find the Natural Granularity
	Lesson 4: Find the Natural Granularity (Cont.)
	Lesson 5: Decouple Using Identity
	Lesson 5: Decouple Using Identity (Cont.)
	Lesson 6: Use an Immutable Model
	Lesson 6: Use an Immutable Model (Cont.)
	Lesson 7: Use Cache Transactions
	Lesson 7: Use Cache Transactions (Cont.)
	Lesson 8: Use Queries Wisely
	Lesson 9: Optimize Serialization
	Lesson 9: Optimize Serialization (Cont.)
	Lesson 10: Use Good Identities
	Lesson 11: Cache in the Right Scope
	Lesson 12: Never Assume
	Q&A
	Distributed Caching:Essential Lessons

