@ Sun

Writing Performant EJB ™ Beans
in the Java " Platform, EE 5
(EJB " 3.0) Using Annotations

Scott Oaks, Sr. Staff Engineer
Eileen Loh, Staff Engineer
Rahul Biswas, MTS

Sun Microsystems

1S-1624

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.
2006 JavaOne®M Conference | Session TS-1624 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

¢ JavaOne

2006 JavaOnes™ Conference | Session TS-1624 | 2 iava.sun.com/javaone/sf

Agenda

Performance Impact of Deployment
Performance Feature of Session Beans
Performance Features of Persistent Entities
Comparative Performance Data

Conclusion

2006 JavaOnes Conference | Session TS-1624 | 3 java.sun.com/javaone/sf

Agenda

Performance Impact of Deployment
* Developer Performance Effects

Performance Features of Session Beans
Performance Features of Persistent Entities
Comparative Performance Data

Q&A

2006 JavaOne®M Conference | Session TS-1624 | 4 iava .sun.com/iavaone/sf

>,

EJB 3.0 Specification

New modes of Session and MDB beans
Java Persistence API replaces Entity Beans

Lots of good sessions on how to program
EJB 3.0 objects

How EJB 3.0 specification features affect
developer performance

Deployment annotations

Runtime annotations

2006 JavaOnes Conference | SessionTS-1624 | 5 java.sun.com/javaone/sf

Java

EJB 3.0 Specification
Deployment Annotations

Deployment annotations
@Stateless, @Entity, @TransactionSupport...
Entity mappings
Can be overridden with deployment descriptors
No noticeable performance impact (YMMV)

Deployment is faster because
Less XML parsing

Deployment is slower because
Annotation processing, whether or not they are present

@Sun 2006 JavaOnes" Conference | Session TS-1624 | 6 java.sun.com/javaone/sf

EJB 3.0 Specification
Runtime Annotations

* Runtime annotations
* @EJB, @PersistenceContext, @Resource,...

» Performance considerations
* Lookup code
+ Stateless session usage

2006 JavaOne®M Conference | Session TS-1624 | 7 iava .sun.com/javaone/sf

EJB 3.0 Specification Annotations:
Lookup Code

@EJB MySession ses;

// Logically equivalent to:

public MySession() {
MySession x = (MySession)

new
InitialContext () .lookup (“java:comp/env/foo”) ;

Field £ = MySession.class.getDeclaredField(“ses”) ;

f.set (x);

Reflection adds some overhead
(usually only once)

”%:”fSuf’l 2006 JavaOne®™ Conference | Session TS-1624 | 8 java .sun.com/javaone/sf

EJB 3.0 Specification Annotations:
Session Usage

// EJB 2.1 pattern

public void doServletOperation(...) {
MyStatelessSession ses = sesHome.create() ;
ses.doOperation() ;

ses.remove () ;

}
// EJB 3.0 pattern (also valid for 2.1)

@EJB MyStatelessSession ses;
public void doServletOperation(...) {

ses.doOperation() ;

We’'ll explore this pattern in a few examples

2006 JavaOnes" Conference | Session TS-1624 | 9 java.sun.com/javaone/sf

>,
@Sun

EJB 3.0 Specification Configuration

- Developer performance on the machine
is little affected

» Think of other performance factors
* Developer productivity
- Data center maintenance

* How you program the beans is the key

2006 JavaOnes" Conference | Session TS-1624 | 10 java.sun.com/javaone/sf

Agenda

Performance Impact of Deployment

Performance Features of Session and MDBs
* Local vs. Remote Interfaces
* One Time Operations
* |Interceptor Methods
* Transaction Management
* Transaction Attributes

Performance Features of Persistent Entities
Comparative Performance Data
Conclusion

2006 JavaOne®M Conference | Session TS-1624 | 11 iava .sun.com/javaone/sf

Session Beans
Local vs. Remote Interfaces

» Calls to remote interfaces can be expensive
- Parameter copy
+ Serialization
* Network latency
 Client/server stack overhead

- Use coarse grained methods for remote
iInterfaces

» Use local interfaces for better performance

é’f@SMﬂ 2006 JavaOne®™ Conference | Session TS-1624 | 12 java .sun.com/javaone/sf

Session Beans
Local vs. Remote Interface

100% ——
0%
80%
0%
60% ——
50% +——
40%
30%
20%
10% +—

0% —

Source: Internal benchmarks

B Local
B Remote

2006 JavaOne®M Conference | Session TS-1624 | iava .sun.com/iavaone/sf

Session and MDBs
One Time Operations

Resource lookups can incur high overhead

Cache resources to improve performance
EJB object references
JDBC™ connections
Message/topic queue connections

Dependency injections make one-time
lookups easy

Occur after bean is created, but
Occur before invocation of business methods

”%:”fSZﬂ’l 2006 JavaOnes™ Conference | Session TS-1624 | 14 java .sun.com/javaone/sf

Session and MDBs
One Time Operations

100% —
0% —
80%
0%+
60%
50% ——
40% —
30%
20%
10%

0% —

Source: Internal benchmarks

B Dependency Injection
Il Dynamic lookup

2006 JavaOne®M Conference | Session TS-1624 | iava .sun.com/iavaone/sf

Session and MDBs
Interceptors

* Interceptor overhead
* Deploy time cost
* Runtime cost

 Interceptor classes
» Creation and management overhead
- Passivation overhead

- Be careful with multiple interceptors

@@Sun 2006 JavaOneSM Conference | Session TS-1624 | 16 java .sun.com/iavaone/sf

Session and MDBs
Interceptors

100%
90% —
80% —
0%
60%
50% —
40% +—
30%
20%+——
10%

0% +——

B No inceptor methods
Single interceptor
B Multiple interceptors

tx/sec

Source: Internal benchmarks

@Sun 2006 JavaOne® Conference | Session TS-1624 | 17 iava .sun.com/iavaone/sf

sssssssssssss

Session and MDBs
Transaction Management Type

» Container managed (default)
- Developer sets transaction attribute
» Container sets transaction context

- Bean managed
* Developer sets transaction begin and end

- Stateful session beans—transaction context
may span multiple business methods

@f@SMﬂ 2006 JavaOnes™ Conference | Session TS-1624 | 18 java .sun.com/javaone/sf

Session and MDBs
Bean Transaction Management

» Helps performance

* When methods include expensive operations
that don’t need to be included in a transaction

* When used to minimize number of transactions
on low contention resources

* Hurts performance

* When long transaction context includes highly
contended resources

@%Sun 2006 JavaOnes™ Conference | Session TS-1624 | 19 java .sun.com/javaone/sf

Bean Managed Example

@Stateful

@TransactionManagement (BEAN)

public CartSession {
@PersistenceContext EntityManager em;
CartEnt cart;
@Resource UserTransaction ut;

@PostConstruct public startCart() {
ut.begin() ;
cart = new CartEnt();

}

public addItem (String itemid, int qgqty) {
em.persist (new CartItem(itemid, gty, cart.getId()):;
cart.setItemQuantity (cart.getItemQuantity () + gty)
em.merge (cart) ;

}

public checkOut () {
ut.commit () ;
}

@@Sun 2006 JavaOne®" Conference | Session TS-1624 | 20

java.sun.com/javaone/sf

Session and MDBs
Transaction Management Type

100% ——
0%
80%
0%
60% ——
50% +——
40%
30%
20%
10% +—

0% —

B Bean
B Container

tx/sec

Source: Internal benchmarks

@Sun 2006 JavaOne® Conference | Session TS-1624 | 21 iava .sun.com/iavaone/sf

sssssssssssss

Session and MDBs
Transaction Attributes

REQUIRED Attribute (default)

Business method is run in a valid transaction context
Container commits transaction at end of method
Overkill for browsing situations

Use least restrictive level of transaction attribute
per method to achieve data correctness

SUPPORTS
NOT_SUPPORTED
NEVER

@Sun 2006 JavaOnes" Conference | Session TS-1624 | 22 java.sun.com/javaone/sf

Session and MDBs
Transaction Management Attribute

100% ——
0%
80%
0%
60% ——
50% +——
40%
30% ——
20%
10% +—

0% —

Source: Internal benchmarks

B Never
B Required

2006 JavaOne®M Conference | Session TS-1624 | 23 iava .sun.com/iavaone/sf

>,

Session and MD Bean Performance

Use remote interfaces only for coarse
grained access

Cache resources to avoid overhead of
multiple lookups

Consider the overhead of multiple interceptors
and interceptor classes

Use bean managed transactions for special cases
to improve performance

Use container managed transactions for ease of
programming, but use least restrictive transaction
attribute for data correctness

2006 JavaOnes" Conference | Session TS-1624 | 24 java.sun.com/javaone/sf

Agenda

Performance Impact of Deployment
Performance Feature of Session Beans

Performance Features of Persistent Entities
* Fetch Type
- Cascade
 Inheritance, Inheritance Strategy
* Flush Mode
» Optimistic Locking, Isolation Levels
» Persistence Context (Transaction vs. Extended)
* Secondary Tables

Comparative Performance Data
Conclusion

2006 JavaOne®M Conference | Session TS-1624 | 25 iava .sun.com/javaone/sf

Entity Beans
FetchType

Data fetching strategy
Hint when FetchType is LAZY
EAGER required if accessing properties outside a txn

Used for BasicType, large objects, relationships
Default is EAGER except for 1:M and M:N relationships

FetchType LAZY benefits large objects and
relationships with deep hierarchies

If property not accessed immediately

@%’SM?’I 2006 JavaOnes™ Conference | Session TS-1624 | 26 iava.sun.com/iavaone/sf

Entities—Benchmark

@Entity ()
public class Order {

@OneToMany
public Collection<OrderLineItem> getLineItems () {

return lineltems;

@Entity
public class OrderLineItem ({

@OneToMany
public Collection<OrderLineItem> getLineItems () {

return linelItems;

2006 JavaOne®M Conference | Session TS-1624 | 27 iava .sun.com/iavaone/sf

Entities
FetchType—Relationship

100% —
0%
80%
0%
60% ——
50% +—
40% +—
30% +—
20%
0%+

0%+

M LAZY
B EAGER

tx/sec

Source: Internal benchmarks

@Sun 2006 JavaOne® Conference | Session TS-1624 | 28 iava .sun.com/iavaone/sf

sssssssssssss

Entities
CascadeType

» Specifies operations cascaded to associated
entities

» Used for relationships

- ALL, PERSIST, MERGE, REMOVE, REFRESH
« Default is none

* If possible avoid MERGE in relationships
with deep hierarchy

2006 JavaOne®M Conference | Session TS-1624 | 29 java .sun.com/javaone/sf

@ Sun

Entities—Don’t

@Entity
public class Order ({
@OneToMany (cascade=CascadeType.ALL, ...)

public Collection<OrderLineItem> getLineItems () {
return lineltems;

}
@Stateless

public class OrderSessionStateless {
@PersistenceContext private EntityManager em;

public void applyDiscount (

Collection<OrderLinelItem> lis, Order order) {
applyDiscount (lis) ;
em.merge (order) ;

}

2006 JavaOne®M Conference | Session TS-1624 | 30 iava .sun.com/iavaone/sf

Entities—Do

@Entity
public class Order ({
@OneToMany (cascade=CascadeType.ALL, ...)

public Collection<OrderLineItem> getLineItems () {
return lineltems;

}
@Stateless

public class OrderSessionStateless {

@PersistenceContext private EntityManager em;
public void applyDiscount (

Collection<OrderLineItem> 1lis) {
for (OrderlLinelItem 1li : lis) {

applyDiscount(li) ; em.merge (1li) ;

2006 JavaOne®M Conference | Session TS-1624 | 31 iava .sun.com/iavaone/sf

Entities
CascadeType

100% ——
0%
80% +——
0% —
60% +——
50%
40% +—
30%
20%
10% +—

0%

B MERGE (Order)
B MERGE (Item)

tx/sec

Source: Internal benchmarks

@Sun 2006 JavaOne® Conference | Session TS-1624 | 32 iava .sun.com/iavaone/sf

sssssssssssss

Entities
Inheritance

 Inheritance is possible for entities!
* Inherit from other entities
* Inherit from non-entities

* For behavior
* For mapping attributes

- All Java Persistence query language queries
are polymorphic

Me; Please add the source of your data here 2006 JavaOne®M Conference | Session TS-1624 | 33 iava .sun.com/iavaone/sf

Entities
Inheritance Strategy

» Single table per class hierarchy
* Provides good support for polymorphic queries

» Single table

* Not required to be supported
* Need SQL unions

» Joined subclass
* Need SQL unions

2006 JavaOne®M Conference | Session TS-1624 | 34 iava .sun.com/javaone/sf

@ Sun

Entities
Inheritance Strategy

@Entity ()
@Table (name="J10rder")
@Inheritance (strategy=InheritanceType.SINGLE TABLE)

public class Order { }

@Entity ()

public class SmallOrder extends Order({ }
@Entity ()

public class MediumOrder extends SmallOrder({ }
GEntity ()

public class LargeOrder extends MediumOrder { }

2006 JavaOne®M Conference | Session TS-1624 | 35 java .sun.com/javaone/sf

Entities
Inheritance Strategy

@Stateless
public class OrderSessionStateless {

@PersistenceContext private EntityManager em;
public void queryOrder (String orderID) {

Order order = em.find (Order.class, orderID);

‘%%SM?} 2006 JavaOnes™ Conference | Session TS-1624 | 36 java.sun.com/javaone/sf

Entities
Inheritance Strategy

100% -
0% —
80%
0%
60%
50% -
40% -
30%
20%+——
10% -

0% +—

B Table/Hierarchy
B Joined Subclass

tx/sec

Source: Internal benchmarks

@Sun 2006 JavaOne® Conference | Session TS-1624 | 37 iava .sun.com/iavaone/sf

sssssssssssss

Entities
FlushMode

Control whether state of managed entities
IS synchronized to the database before a query
IS executed

Set on the PersistenceContext level
or at a Query level

Applicable only if transaction is active

Possible values are AUTO, COMMIT, and
NEVER

» Defaultis AUTO

@Yuice: Please add the source of your data here 2006 JavaOne®" Conference | Session TS-1624 | 38 java.sun.com/javaone/sf

Entities
FlushMode—Auto

@NamedQuery (name="findLineItemsByOrderID”,
query="SELECT OBJECT (1li) from OrderLineItem 1li where
li.order.id=:id"”)

@Entity public class OrderLineItem{ }

@Stateless
public int addLineItem(String orderID,
OrderLineItem 1i) {

Order order = em.find(Order.class, orderlID);
addLineltem(order, 1li);

Query q =
em.createNamedQuery ("findLineItemsByOrderID") ;

gq.setFlushMode (FlushModeType .AUTO) ;

qg.setParameter ("Id", orderID);
List list = qg.getResultList();

return list.size();

2006 JavaOne®M Conference | Session TS-1624 | 39

java.sun.com/javaone/sf

Entities
FlushMode—Commit

@Stateless
public void assignCustomerAndCarrier (String customerID,
String orderID, String carrierID) {

Order order = em.find(Order.class, orderID);
Customer customer = em.find(Customer.class,customerID);

order.setCustomer (customer) ;
customer.addOrder (order) ;

Query q = em.createNamedQuery ("findCarrier")
q.setFlushMode (FlushModeType . COMMIT) ;
qg.setParameter ("Id", carrierID)

Carrier carrier = (Carrier)qg.getSingleResult()

order.setCarrier (carrier) ;

2006 JavaOne®M Conference | Session TS-1624 | 40 java .sun.com/javaone/sf

Entities
FlushMode

100%

B AUTO
B COMMIT

90% +—
80%
0%
60%
50% +——
40% —
30%
20%
0%+

0% +——

Source: Internal benchmarks

2006 JavaOne®M Conference | Session TS-1624 | 41 iava .sun.com/iavaone/sf

Entities
Optimistic Locking, Isolation Level

Specification assumes

» Optimistic locking based on version consistency
- DB access at read-committed isolation level

Vendor specific support for pessimistic locking
All relationships with @Version included in check
At high concurrency, pessimistic locking may be

a better option

2006 JavaOneS™ Conference | Session TS-1624 | 42

java.sun.com/javaone/sf

Entities
Persistence Context—Transactional vs. Extended

» Persistence Context: set of managed
persistent entities

» Transactional
» Entities detached at end of transaction
- Stateless Session Bean

- Extended
- Entities stay managed beyond transaction
+ Stateful Session Bean

» Does it affect performance?

2006 JavaOnes" Conference | Session TS-1624 | 43 java.sun.com/javaone/sf

Entities
Persistence Context

100% —
0%
80%
0%
60% —
50% —
40% —
30% —
20%
10%

0%+

B Extended
B Transactional

tx/sec

Source: Internal benchmarks

@Sun 2006 JavaOne® Conference | Session TS-1624 | 44 iava .sun.com/iavaone/sf

sssssssssss

Entities
Secondary Tables

- Entity data is stored across multiple tables
» Result of extensive normalization

* Need SQL unions to retrieve data

* S0 avoid secondary tables?

%‘“@Sun 2006 JavaOne®" Conference | Session TS-1624 | 45 java.sun.com/javaone/sf

Entities
Secondary Table

100% —
0%
80%
0%
60% —
50% ——
40% —
30%
20%
10%

0%+

B Single table
B Secondary

tx/sec

Source: Internal benchmarks

@Sun 2006 JavaOne® Conference | Session TS-1624 | 46 iava .sun.com/iavaone/sf

sssssssssssss

Entities
Other Performance Effects

= Caching
- 3.0 Entities are usually cached
« Cache size is usually limited

» Relationship join

* Not all vendors fetch relationships in a single
SQL statement

- If a JOIN is absolutely required, use a Query

of’f@SZﬂ’l 2006 JavaOneSM Conference | Session TS-1624 | 47 iava .sun.com/iavaone/sf

Y g

Entities: Join vs. Find
Other Performance Effects

//Owner and Pet have a 1-1 relationship
Owner o = em.find (Owner.class, “me”);
// Two SQL statments: select * from owner

// and select * from pets

@NamedQuery (query="SELECT Owner (o) from OWNER o LEFT JOIN
FETCH o.pet WHERE o0.id = :id”, name="findOwner”)

Query q = em.createNamedQuery (“findOwner”) ;
query.setParameter (“id”, “me”);

Owner o = query.getSingleResult();

// 1 SQL statement

2006 JavaOnes" Conference | Session TS-1624 | 48 java.sun.com/javaone/sf

Entities
Summary

» Understand your data model
» Use appropriate lazy/eager loading
* Understand how properties accessed
* Understand how best to join tables
+ Single query for eager fetch?

- Minimize database access
- Use cache appropriately
+ Use flush mode appropriately

* Prepare for optimistic locking effects

@f@SZﬂ’l 2006 JavaOnes™ Conference | Session TS-1624 | 49

java.sun.com/javaone/sf

Agenda

Performance Impact of Deployment
Performance Features of Session Beans
Performance Features of Persistent Entities
Comparative Performance Data

Q&A

2006 JavaOne®M Conference | Session TS-1624 | 50 java .sun.com/iavaone/sf

EJB 2.1 Specification vs. EJB 3.0
Specification Performance Data

* Internal microbenchmarks
* Throughput of N users (~ 10 per CPU)
* No business logic
* No think time

@Sun 2006 JavaOnes" Conference | Session TS-1624 | 51 java.sun.com/javaone/sf

Session Bean Microbenchmark

public class MyServlet extends HttpServlet {

private MySession sess; //2.1
private MySessionHome sessHome;
@EJB MySession sess30; //3.0

public void doGet(...) {
if (2.1)
if (reuseSession)
S = sess;
else s = sessHome.create() ;
else s = sess30;
s .doOperation() ;
if ('reuseSession)
s.remove () :

@f@Sun 2006 JavaOne®M Conference | Session TS-1624 | 52 java .sun.com/javaone/sf

EJB 2.1 Specification vs. EJB 3.0 Specification
Performance Data Session Beans

110% B EJB 2.1 Create
100% - EJB 2.1 Reuse
90% - M EJB30
80% -
70% -
60% -
50% -
40%
30% -
20% -
10% -
0% -

Appserver A Appserver B

Source: Internal benchmarks

%*%Sun 2006 JavaOnes™ Conference | Session TS-1624 | 53 java.sun.com/javaone/sf

Y g

Entity Bean Microbenchmark

» Lookup
obj = em.find (MyBean.class, id); // 3.0
obj
Update

obj.setField(obj.getField() + 1); // both

Traverse
Collection ¢ = obj.getRelatedField(); // both

* Query
Query q = em.findNamedQuery() ;

List = g.getResultSet() ; // 3.0
List = home.findByQuery(...); // 2.1

myHome . findByPrimaryKey (id) ; // 2.1

2006 JavaOnes" Conference | Session TS-1624 | 54 java.sun.com/javaone/sf

EJB 2.1 Specification vs EJB 3.0
Specification Performance: Entities

150%

140%
130%

120%

110%
100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
0% -

Lookup

Source: Internal benchmarks

@ Sun

Lookup
CMR

—_1

Update Traverse Query

B AppA 2.1
B AppA 3.0
M AppB 2.1

AppB 3.0

2006 JavaOne®M Conference | Session TS-1624 | 55 iava .sun.com/iavaone/sf

EJB 2.1 Specification vs EJB 3.0
Specification Performance: Cached Entities

400%
375%

350%

325%
300%

275%
250%

225%

200%

175%

150%
125%

100% -
75% -
50% -
25% -

0% -

Lookup CMR

Source: Internal benchmarks

e

Traverse

2006 JavaOne®M Conference | Session TS-1624 | 56

B AppA 2.1
B AppA 3.0

java.sun.com/javaone/sf

Performance Conclusions

- Still early

» Lots of new features enabled by 3.0
+ Cached entities

* Vendor independence lets you be nimble in the
performance arena

2006 JavaOne®M Conference | Session TS-1624 | 57 java .sun.com/iavaone/sf

Q&A

http://performance.dev.java.net/

2006 JavaOne®™ Conference | Session TS-1624 | 58 jaua.sun.comfjauaone{sf

@ Sun

Writing Performant EJB ™ Beans
in the Java " Platform, EE 5
(EJB " 3.0) Using Annotations

Scott Oaks, Sr. Staff Engineer
Eileen Loh, Staff Engineer
Rahul Biswas, MTS

Sun Microsystems

1S-1624

2006 JavaOne®M Conference | Session TS-1624 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

