
2006 JavaOneSM Conference | Session TS-1624 |

TS-1624

Writing Performant EJB™ Beans
in the Java™ Platform, EE 5
(EJB™ 3.0) Using Annotations
Scott Oaks, Sr. Staff Engineer
Eileen Loh, Staff Engineer
Rahul Biswas, MTS
Sun Microsystems

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-1624 | 2

Goal

Learn to make best use of EJB™ 3.0
specification features to write high
performance Enterprise JavaBean™ objects

2006 JavaOneSM Conference | Session TS-1624 | 3

Agenda

Performance Impact of Deployment
Performance Feature of Session Beans
Performance Features of Persistent Entities
Comparative Performance Data
Conclusion

2006 JavaOneSM Conference | Session TS-1624 | 4

Agenda

Performance Impact of Deployment
● Developer Performance Effects

Performance Features of Session Beans
Performance Features of Persistent Entities
Comparative Performance Data
Q&A

2006 JavaOneSM Conference | Session TS-1624 | 5

EJB 3.0 Specification

● New modes of Session and MDB beans
● Java Persistence API replaces Entity Beans
● Lots of good sessions on how to program

EJB 3.0 objects
● How EJB 3.0 specification features affect

developer performance
● Deployment annotations
● Runtime annotations

2006 JavaOneSM Conference | Session TS-1624 | 6

EJB 3.0 Specification
Deployment Annotations

● Deployment annotations
● @Stateless, @Entity, @TransactionSupport…
● Entity mappings
● Can be overridden with deployment descriptors

● No noticeable performance impact (YMMV)
● Deployment is faster because

● Less XML parsing
● Deployment is slower because

● Annotation processing, whether or not they are present

2006 JavaOneSM Conference | Session TS-1624 | 7

EJB 3.0 Specification
Runtime Annotations

● Runtime annotations
● @EJB, @PersistenceContext, @Resource,…

● Performance considerations
● Lookup code
● Stateless session usage

2006 JavaOneSM Conference | Session TS-1624 | 8

EJB 3.0 Specification Annotations:
Lookup Code
@EJB MySession ses;
// Logically equivalent to:
public MySession() {
 MySession x = (MySession)
 new

InitialContext().lookup(“java:comp/env/foo”);
 Field f = MySession.class.getDeclaredField(“ses”);
 f.set(x);
}
● Reflection adds some overhead

(usually only once)

2006 JavaOneSM Conference | Session TS-1624 | 9

EJB 3.0 Specification Annotations:
Session Usage
// EJB 2.1 pattern
public void doServletOperation(...) {
 MyStatelessSession ses = sesHome.create();
 ses.doOperation();
 ses.remove();
}
// EJB 3.0 pattern (also valid for 2.1)
@EJB MyStatelessSession ses;
public void doServletOperation(...) {
 ses.doOperation();
}
● We’ll explore this pattern in a few examples

2006 JavaOneSM Conference | Session TS-1624 | 10

EJB 3.0 Specification Configuration

● Developer performance on the machine
is little affected

● Think of other performance factors
● Developer productivity
● Data center maintenance

● How you program the beans is the key

2006 JavaOneSM Conference | Session TS-1624 | 11

Agenda

Performance Impact of Deployment
Performance Features of Session and MDBs

● Local vs. Remote Interfaces
● One Time Operations
● Interceptor Methods
● Transaction Management
● Transaction Attributes

Performance Features of Persistent Entities
Comparative Performance Data
Conclusion

2006 JavaOneSM Conference | Session TS-1624 | 12

Local vs. Remote Interfaces
Session Beans

● Calls to remote interfaces can be expensive
● Parameter copy
● Serialization
● Network latency
● Client/server stack overhead

● Use coarse grained methods for remote
interfaces

● Use local interfaces for better performance

2006 JavaOneSM Conference | Session TS-1624 | 13

tx/sec
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Local
Remote

Session Beans
Local vs. Remote Interface

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 14

One Time Operations
Session and MDBs

● Resource lookups can incur high overhead
● Cache resources to improve performance

● EJB object references
● JDBC™ connections
● Message/topic queue connections

● Dependency injections make one-time
lookups easy
● Occur after bean is created, but
● Occur before invocation of business methods

2006 JavaOneSM Conference | Session TS-1624 | 15

tx/sec
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Dependency Injection
Dynamic lookup

Session and MDBs
One Time Operations

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 16

Interceptors
Session and MDBs

● Interceptor overhead
● Deploy time cost
● Runtime cost

● Interceptor classes
● Creation and management overhead
● Passivation overhead

● Be careful with multiple interceptors

2006 JavaOneSM Conference | Session TS-1624 | 17

Session and MDBs

tx/sec
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% No inceptor methods
Single interceptor
Multiple interceptors

Interceptors

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 18

Transaction Management Type
Session and MDBs

● Container managed (default)
● Developer sets transaction attribute
● Container sets transaction context

● Bean managed
● Developer sets transaction begin and end
● Stateful session beans—transaction context

may span multiple business methods

2006 JavaOneSM Conference | Session TS-1624 | 19

Bean Transaction Management
Session and MDBs

● Helps performance
● When methods include expensive operations

that don’t need to be included in a transaction
● When used to minimize number of transactions

on low contention resources
● Hurts performance

● When long transaction context includes highly
contended resources

2006 JavaOneSM Conference | Session TS-1624 | 20

Bean Managed Example
@Stateful
@TransactionManagement(BEAN)
public CartSession {
 @PersistenceContext EntityManager em;
 CartEnt cart;
 @Resource UserTransaction ut;

@PostConstruct public startCart() {
ut.begin();
cart = new CartEnt();

}
public addItem (String itemid, int qty) {
 em.persist(new CartItem(itemid, qty, cart.getId());

cart.setItemQuantity(cart.getItemQuantity() + qty);
em.merge(cart);

}
public checkOut() {
 ut.commit();

}
}

2006 JavaOneSM Conference | Session TS-1624 | 21

tx/sec
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Bean
Container

Session and MDBs
Transaction Management Type

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 22

Transaction Attributes
Session and MDBs

● REQUIRED Attribute (default)
● Business method is run in a valid transaction context
● Container commits transaction at end of method
● Overkill for browsing situations

● Use least restrictive level of transaction attribute
per method to achieve data correctness
● SUPPORTS
● NOT_SUPPORTED
● NEVER

2006 JavaOneSM Conference | Session TS-1624 | 23

tx/sec
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Never
Required

Session and MDBs

Source: Internal benchmarks

Transaction Management Attribute

2006 JavaOneSM Conference | Session TS-1624 | 24

Session and MD Bean Performance
● Use remote interfaces only for coarse

grained access
● Cache resources to avoid overhead of

multiple lookups
● Consider the overhead of multiple interceptors

and interceptor classes
● Use bean managed transactions for special cases

to improve performance
● Use container managed transactions for ease of

programming, but use least restrictive transaction
attribute for data correctness

2006 JavaOneSM Conference | Session TS-1624 | 25

Agenda

Performance Impact of Deployment
Performance Feature of Session Beans
Performance Features of Persistent Entities

● Fetch Type
● Cascade
● Inheritance, Inheritance Strategy
● Flush Mode
● Optimistic Locking, Isolation Levels
● Persistence Context (Transaction vs. Extended)
● Secondary Tables

Comparative Performance Data
Conclusion

2006 JavaOneSM Conference | Session TS-1624 | 26

FetchType
Entity Beans

● Data fetching strategy
● Hint when FetchType is LAZY
● EAGER required if accessing properties outside a txn

● Used for BasicType, large objects, relationships
● Default is EAGER except for 1:M and M:N relationships

● FetchType LAZY benefits large objects and
relationships with deep hierarchies
● If property not accessed immediately

2006 JavaOneSM Conference | Session TS-1624 | 27

Entities—Benchmark
@Entity()
public class Order {
 @OneToMany
 public Collection<OrderLineItem> getLineItems(){
 return lineItems;
 }
}

@Entity
public class OrderLineItem {
 @OneToMany
 public Collection<OrderLineItem> getLineItems(){
 return lineItems;
 }
}

2006 JavaOneSM Conference | Session TS-1624 | 28

tx/sec
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% LAZY
EAGER

Entities
FetchType—Relationship

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 29

CascadeType
Entities

● Specifies operations cascaded to associated
entities

● Used for relationships
● ALL, PERSIST, MERGE, REMOVE, REFRESH
● Default is none

● If possible avoid MERGE in relationships
with deep hierarchy

2006 JavaOneSM Conference | Session TS-1624 | 30

Entities—Don’t
@Entity
public class Order {

@OneToMany(cascade=CascadeType.ALL, ...)
public Collection<OrderLineItem> getLineItems(){

return lineItems;
}

}
@Stateless
public class OrderSessionStateless {
 @PersistenceContext private EntityManager em;

 public void applyDiscount(
 Collection<OrderLineItem> lis, Order order){

applyDiscount(lis);
em.merge(order);

 }
}

2006 JavaOneSM Conference | Session TS-1624 | 31

Entities—Do
@Entity
public class Order {

@OneToMany(cascade=CascadeType.ALL, ...)
public Collection<OrderLineItem> getLineItems(){

return lineItems;
}

}
@Stateless
public class OrderSessionStateless {
 @PersistenceContext private EntityManager em;
 public void applyDiscount(
 Collection<OrderLineItem> lis){

for(OrderLineItem li : lis) {
applyDiscount(li); em.merge(li);

}
 }
}

2006 JavaOneSM Conference | Session TS-1624 | 32

tx/sec
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% MERGE (Order)
MERGE (Item)

Entities
CascadeType

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 33

Inheritance
Entities

● Inheritance is possible for entities!
● Inherit from other entities
● Inherit from non-entities

● For behavior
● For mapping attributes

● All Java Persistence query language queries
are polymorphic

Source: Please add the source of your data here

2006 JavaOneSM Conference | Session TS-1624 | 34

Inheritance Strategy
Entities

● Single table per class hierarchy
● Provides good support for polymorphic queries

● Single table
● Not required to be supported
● Need SQL unions

● Joined subclass
● Need SQL unions

2006 JavaOneSM Conference | Session TS-1624 | 35

Entities
@Entity()
@Table(name="J1Order")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
 public class Order { }

@Entity()
public class SmallOrder extends Order{ }

@Entity()
public class MediumOrder extends SmallOrder{ }

@Entity()
public class LargeOrder extends MediumOrder{ }

Inheritance Strategy

2006 JavaOneSM Conference | Session TS-1624 | 36

Entities
@Stateless
public class OrderSessionStateless {

 @PersistenceContext private EntityManager em;

 public void queryOrder(String orderID){
...
Order order = em.find(Order.class, orderID);
...

 }
}

Inheritance Strategy

2006 JavaOneSM Conference | Session TS-1624 | 37

Entities

tx/sec
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Table/Hierarchy
Joined Subclass

Inheritance Strategy

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 38

FlushMode
Entities

● Control whether state of managed entities
is synchronized to the database before a query
is executed

● Set on the PersistenceContext level
or at a Query level

● Applicable only if transaction is active
● Possible values are AUTO, COMMIT, and

NEVER
● Default is AUTO

Source: Please add the source of your data here

2006 JavaOneSM Conference | Session TS-1624 | 39

Entities
@NamedQuery(name=”findLineItemsByOrderID”,
query=”SELECT OBJECT(li) from OrderLineItem li where
li.order.id=:id”)
@Entity public class OrderLineItem{ }
@Stateless
public int addLineItem(String orderID,
 OrderLineItem li){

Order order = em.find(Order.class, orderID);
addLineItem(order, li);

 Query q =
 em.createNamedQuery("findLineItemsByOrderID");
 q.setFlushMode(FlushModeType.AUTO);

q.setParameter("Id", orderID);
List list = q.getResultList();

return list.size();

}

FlushMode—Auto

2006 JavaOneSM Conference | Session TS-1624 | 40

Entities
@Stateless
public void assignCustomerAndCarrier(String customerID,
 String orderID, String carrierID){

 Order order = em.find(Order.class, orderID);
 Customer customer = em.find(Customer.class,customerID);

 order.setCustomer(customer);
 customer.addOrder(order);
 Query q = em.createNamedQuery("findCarrier");
 q.setFlushMode(FlushModeType.COMMIT);
 q.setParameter("Id", carrierID);
 Carrier carrier = (Carrier)q.getSingleResult();

 order.setCarrier(carrier);

}

FlushMode—Commit

2006 JavaOneSM Conference | Session TS-1624 | 41

tx/sec
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% AUTO
COMMIT

Entities
FlushMode

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 42

Optimistic Locking, Isolation Level
Entities

● Specification assumes
● Optimistic locking based on version consistency
● DB access at read-committed isolation level

● Vendor specific support for pessimistic locking
● All relationships with @Version included in check
● At high concurrency, pessimistic locking may be

a better option

2006 JavaOneSM Conference | Session TS-1624 | 43

Persistence Context—Transactional vs. Extended
Entities

● Persistence Context: set of managed
persistent entities

● Transactional
● Entities detached at end of transaction
● Stateless Session Bean

● Extended
● Entities stay managed beyond transaction
● Stateful Session Bean

● Does it affect performance?

2006 JavaOneSM Conference | Session TS-1624 | 44

tx/sec
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Extended
Transactional

Entities
Persistence Context

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 45

Secondary Tables
Entities

● Entity data is stored across multiple tables
● Result of extensive normalization
● Need SQL unions to retrieve data
● So avoid secondary tables?

2006 JavaOneSM Conference | Session TS-1624 | 46

tx/sec
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Single table
Secondary

Entities
Secondary Table

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 47

Entities

● Caching
● 3.0 Entities are usually cached
● Cache size is usually limited

● Relationship join
● Not all vendors fetch relationships in a single

SQL statement
● If a JOIN is absolutely required, use a Query

Other Performance Effects

2006 JavaOneSM Conference | Session TS-1624 | 48

Entities: Join vs. Find

 //Owner and Pet have a 1-1 relationship
 Owner o = em.find(Owner.class, “me”);
 // Two SQL statments: select * from owner
 // and select * from pets

 @NamedQuery(query=”SELECT Owner(o) from OWNER o LEFT JOIN
FETCH o.pet WHERE o.id = :id”, name=”findOwner”)

 Query q = em.createNamedQuery(“findOwner”);
 query.setParameter(“id”, “me”);
 Owner o = query.getSingleResult();
 // 1 SQL statement

Other Performance Effects

2006 JavaOneSM Conference | Session TS-1624 | 49

Entities

● Understand your data model
● Use appropriate lazy/eager loading

● Understand how properties accessed
● Understand how best to join tables

● Single query for eager fetch?
● Minimize database access

● Use cache appropriately
● Use flush mode appropriately

● Prepare for optimistic locking effects

Summary

2006 JavaOneSM Conference | Session TS-1624 | 50

Agenda

Performance Impact of Deployment
Performance Features of Session Beans
Performance Features of Persistent Entities
Comparative Performance Data
Q&A

2006 JavaOneSM Conference | Session TS-1624 | 51

EJB 2.1 Specification vs. EJB 3.0
Specification Performance Data

● Internal microbenchmarks
● Throughput of N users (~ 10 per CPU)
● No business logic
● No think time

2006 JavaOneSM Conference | Session TS-1624 | 52

Session Bean Microbenchmark
public class MyServlet extends HttpServlet {
 private MySession sess; //2.1
 private MySessionHome sessHome;
 @EJB MySession sess30; //3.0

 public void doGet(...) {
 if (2.1)
 if (reuseSession)
 s = sess;
 else s = sessHome.create();
 else s = sess30;
 s.doOperation();
 if (!reuseSession)
 s.remove():
 }
}

2006 JavaOneSM Conference | Session TS-1624 | 53

EJB 2.1 Specification vs. EJB 3.0 Specification
Performance Data Session Beans

Appserver A Appserver B
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110% EJB 2.1 Create
EJB 2.1 Reuse
EJB 3.0

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 54

Entity Bean Microbenchmark
● Lookup
 obj = em.find(MyBean.class, id); // 3.0
 obj = myHome.findByPrimaryKey(id); // 2.1
● Update
 obj.setField(obj.getField() + 1); // both
● Traverse
 Collection c = obj.getRelatedField(); // both
● Query
 Query q = em.findNamedQuery();
 List = q.getResultSet(); // 3.0
 List = home.findByQuery(...); // 2.1

2006 JavaOneSM Conference | Session TS-1624 | 55

EJB 2.1 Specification vs EJB 3.0
Specification Performance: Entities

Lookup Lookup
CMR

Update Traverse Query
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%

AppA 2.1
AppA 3.0
AppB 2.1
AppB 3.0

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 56

EJB 2.1 Specification vs EJB 3.0
Specification Performance: Cached Entities

Lookup CMR Traverse
0%

25%
50%
75%

100%
125%
150%
175%
200%
225%
250%
275%
300%
325%
350%
375%
400%

AppA 2.1
AppA 3.0

Source: Internal benchmarks

2006 JavaOneSM Conference | Session TS-1624 | 57

Performance Conclusions

● Still early
● Lots of new features enabled by 3.0

● Cached entities
● Vendor independence lets you be nimble in the

performance arena

2006 JavaOneSM Conference | Session TS-1624 | 58

Q&A
http://performance.dev.java.net/

2006 JavaOneSM Conference | Session TS-1624 |

TS-1624

Writing Performant EJB™ Beans
in the Java™ Platform, EE 5
(EJB™ 3.0) Using Annotations
Scott Oaks, Sr. Staff Engineer
Eileen Loh, Staff Engineer
Rahul Biswas, MTS
Sun Microsystems

