@ Sun

The Java™ Persistence API
in the Web Tier

Linda DeMichiel, Sun Microsystems
Gavin King, JBoss

Craig McClanahan, Sun Microsystems

Session 1887

2006 JavaOne®™ Conference | Session TS-1887 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

¢ JavaOne

Goal of This Talk

2006 JavaOnes™ Conference | Session TS-1887 | 2 java.sun.com/javaone/sf

Agenda

Java Persistence API—Key Concepts
JavaServer™ Faces—Key Concepts
Threading models and injection
Managing transactions

Extended persistence contexts
Summary

2006 JavaOne®™ Conference | Session TS-1887 | 3 java .sun.com/javaone/sf

Java Persistence API

Part of JSR-220 (Enterprise JavaBeans™ 3.0)
Began as simplification of entity beans

Evolved into POJO persistence technology
Rich modeling capabilities, inheritance, polymorphism
Standardized object/relational mapping

Powerful query capabilities

Scope expanded at request of community
Into persistence technology for Java EE platform
To support use in Java SE environments
To support pluggable persistence providers

%%Sun 2006 JavaOne®™ Conference | Session TS-1887 | 4 iava.sun.com/iavaone/sf

@ Sun

Java Persistence API: Key Concepts

* Entities
* Persistence Units
* Persistence Contexts

2006 JavaOne®™ Conference | Session TS-1887 | 5 iava .sun.com/iavaone/sf

Java

Entities

Plain old Java objects
Created using new
No required interfaces
Support inheritance, polymorphism
Have persistent identity
May have both persistent and non-persistent state

Usable outside the container
Serializable; usable as detached objects

Queryable via Java Persistence query language
Managed at runtime through EntityManager API

%%Sun 2006 JavaOne®™ Conference | Session TS-1887 | 6 iava.sun.com/iavaone/sf

@ Sun

Entity Class

@Entity
public class Customer ({

@Id private Long id;

private String name;

@OneToMany Set<Order> orders = new HashSet() ;
public Set<Order> getOrders() { return orders; }

public void addOrder (Order order) {
getOrders () .add (order) ;

}

2006 JavaOne®™ Conference | Session TS-1887 | 7 iava .sun.com/iavaone/sf

Persistence Unit

* Unit of persistence packaging and deployment
Set of managed classes (entities and related classes)

Defines scope for
* Queries
* Entity relationships

O/R mapping information
* Java language annotations and/or XML files
- Defines Java language view onto a relational database

Configuration information for persistence provider
* persistence.xml file

2006 JavaOne®™ Conference | Session TS-1887 | 8 java .sun.com/javaone/sf

>,

Persistence Context

Runtime application context

Set of managed entity instances, belonging to a
single persistence unit
Entities that have been read from the database
Entities that will be written to the database
Including entities that are newly persistent
Persistent entity identity equivalent to Java identity

Persistence context lifetime may be
Transaction-based—scoped to a single transaction
Extended—spanning multiple sequential transactions

2006 JavaOnes" Conference | SessionTS-1887 | 9 java.sun.com/javaone/sf

Persistence Contexts

May be managed by application or container

Container-managed persistence contexts
Provide ease-of-use in Java EE environments
Propagated across components with JTA transaction
Obtained by injection or lookup in JNDI

May be scoped to single transaction or extended
Application-manager persistence contexts

Provided for use in Java SE and Java EE environments
Obtained from EntityManagerFactory

Extended scope is managed by application
Web tier supports both

@Sun 2006 JavaOnes" Conference | Session TS-1887 | 10 java.sun.com/javaone/sf

>,

EntityManager API

Entity lifecycle operations
* persist; remove; refresh; merge

* Finder operations
* find, getReference

Factory for Query objects
 createNamedQuery, createQuery, createNativeQuery

* Operations for managing persistence context
* flush, clear, close, getTransaction, joinTransaction,...

2006 JavaOnes Conference | Session TS-1887 | 11 java.sun.com/javaone/sf

@ Sun

Persisting an Entity

@PersistenceContext EntityManager em;

public Order addNewOrder (Customer customer, Product
product) {

Order order = new Order (product) ;
customer.addOrder (order) ;
em.persist (order) ;

return order;

2006 JavaOneS Conference | Session TS-1887 | 12 java.sun.com/javaone/sf

Removing an Entity

@PersistenceContext EntityManager em;

public void dropCustomer (Long custId) {
Customer customer = em.find(Customer.class, custId);
em.remove (customer) ;

@Sun 2006 JavaOne® Conference | Session TS-1887 | 13 java.sun.com/javaone/sf

sssssssssssss

Agenda

Java Persistence API—Key Concepts
JavaServer™ Faces—Key Concepts
Threading models and injection
Managing transactions

Extended persistence contexts
Summary

2006 JavaOneS Conference | Session TS-1887 | 14 java.sun.com/javaone/sf

>,

JavaServer Faces Technology

Comprehensive user interface component model
Flexible rendering model

JavaBeans™ style event and listener handling
Per-component validation framework

Basic page navigation support

Extensible controller architecture

2006 JavaOnes Conference | Session TS-1887 | 15 java.sun.com/javaone/sf

Standard Features

Hierarchical tree of Ul components

Converters (bidirectional)
Validators (input correctness checks)

User Interface event handling:

Action events
Value change events
Custom component events

Outcome based navigation:
Which command (on which view) was invoked?

What logical outcome was returned?

2006 JavaOnes Conference | Session TS-1887 | 16 java.sun.com/javaone/sf

Unique Features

* Value binding expressions:

* Bind Ul components to model tier data
* <h:outputText ... value="#{customer.address.city}"/>

* On form submit, used to push data back to the model

* Method binding expressions:

* Bind Ul components to “action” methods
* <h:commandButton ... action="#{mybean.save}"/>

* On form submit, used to select method invoked
based on which command component was activated

@Sun 2006 JavaOnes" Conference | Session TS-1887 | 17 java.sun.com/javaone/sf

Unique Features

Managed Beans:
Instantiate application beans on demand
Store instance in request/session/application scope
Optionally configure bean properties
Basic “setter injection” style dependency injection framework
Extensibility Points:
View Handler—Use non-JSP™ view technology
Navigation Handler—Customize navigation

Variable Resolver/Property Resolver—Customize
value binding and method binding evaluation

@Sun 2006 JavaOnes" Conference | Session TS-1887 | 18 java.sun.com/javaone/sf

Agenda

Java Persistence API—Key Concepts
JavaServer™ Faces—Key Concepts
Threading models and injection
Managing transactions

Extended persistence contexts
Summary

2006 JavaOnes Conference | Session TS-1887 | 19 java.sun.com/javaone/sf

Injection

* Resource injection:

* for datasources, UserTransaction, JMS queues/topics,
environment entries, etc.

° @Resource DataSource bookStoreDS;

* Persistence units and contexts:

* @PersistenceContext EntityManager em;
°* @PersistenceUnit EntityManagerFactory emf;

* EJB™ references:
°* @EJB ShoppingCart shoppingCart;

@Sun 2006 JavaOne® Conference | Session TS-1887 | 20 java.sun.com/javaone/sf

sssssssssss

Threading Models and Injection

Certain objects are not threadsafe
Especially stateful objects, like EntityManager
Some of these objects are injectable

Some other objects are multithreaded
Especially stateless objects, like servlets
Some of these objects may be injected into

It is dangerous to inject objects of the first kind
iInto objects of the second kind!

In particular, don’t inject EntityManager into a servlet

@Sun 2006 JavaOnes™ Conference | Session TS-1887 | 21 java.sun.com/javaone/sf

Bad

public class BookShoppingServlet extends HttpServlet {

@PersistenceContext EntityManager em;

protected void doPost (HttpServletRequest req,
HttpServletResponse res) throws .. {

Order order = .;
em.persist (order) ;

2006 JavaOneS Conference | Session TS-1887 | 22 java.sun.com/javaone/sf

Good

public class BookShoppingServlet extends HttpServlet {

protected void doPost (HttpServletRequest req,
HttpServletResponse res) throws .. {

Order order = ..;
EntityManager em = new InitialContext()

.lookup (“java:comp/env/persistence/bookStore”) ;
em.persist (order) ;

}

2006 JavaOneS Conference | Session TS-1887 | 23 java.sun.com/javaone/sf

Good

public class BookShoppingServlet extends HttpServlet {

@PersistenceUnit EntityManagerFactory emf;

protected void doPost (HttpServletRequest req,
HttpServletResponse res) throws .. {

Order order = ..;

EntityManager em = emf.createEntityManager ()
em.persist (order) ;

em.close () ;

2006 JavaOnes Conference | Session TS-1887 | 24 java.sun.com/javaone/sf

Agenda

Java Persistence API—Key Concepts
JavaServer™ Faces—Key Concepts
Threading models and injection
Managing transactions

Extended persistence contexts
Summary

2006 JavaOnes Conference | Session TS-1887 | 25 java.sun.com/javaone/sf

Transaction Demarcation

JTA transactions
UserTransaction API

Resource-local transactions
EntityTransaction API

Container-managed entity managers use JTA

Application-managed entity managers are either
JTA or resource-local

Determined by configuration of the persistence unit

Resource-local transactions needed in Java SE
environments

@Sun 2006 JavaOnes" Conference | Session TS-1887 | 26 java.sun.com/javaone/sf

Servlet Example

public class BookShoppingServlet extends HttpServlet {

protected void doPost (HttpServletRequest req,
HttpServletResponse res) throws .. {

String customer = req.getParameter (“customer”) ;

int custId = Integer.parselInt (customer);

String creditCard = req.getParameter (“creditCard”) ;
String book = req.getParameter (“book”) ;

buyBook (book, custId, creditCard) ;

@Sun 2006 JavaOnes" Conference | Session TS-1887 | 27 java.sun.com/javaone/sf

@ Sun

JTA Transaction

@Resource UserTransaction utx;
@PersistenceUnit EntityManagerFactory emf;

protected void buyBook (String book, int custId, String
creditCard) throws .. {

utx.begin () ;
EntityManager em = emf.createEntityManager () ;

Customer customer = em.find(Customer.class, custId);
Order order = new Order (customer) ;
order.setCreditCard(creditCard) ;

order.setBook (book) ;

em.persist (order) ;

utx.commit () ;
em.close () ;

2006 JavaOnes Conference | Session TS-1887 | 28 java.sun.com/javaone/sf

Resource-local Transaction

@PersistenceUnit EntityManagerFactory emf;

protected void buyBook (String book, int custId, String
creditCard) {

EntityManager em = emf.createEntityManager () ;
em.getTransaction () .begin () ;

Customer customer = em.find(Customer.class, custId);
Order order = new Order (customer) ;
order.setCreditCard(creditCard) ;

order.setBook (book) ;

em.persist (order) ;

em.getTransaction () .commit () ;
em.close() ;

2006 JavaOnes Conference | Session TS-1887 | 29 java.sun.com/javaone/sf

Problems

* Propagation of EntityManager between
components

* Messy exception handling
* Does not belong in business logic

@SM?} 2006 JavaOne® Conference | Session TS-1887 | 30 iava .sun.com/iavaone/sf

Container-managed EntityManager

protected void buyBook (String book, int custId, String
creditCard) throws .. {

utx.begin () ;
Customer customer =

new CustomerHelper () .getCustomer (custId) ;
Order order =

new OrderHelper () .create (book, creditCard, customer) ;

utx.commit () ;

@Sun 2006 JavaOnes™ Conference | Session TS-1887 | 31 java.sun.com/javaone/sf

Container-managed EntityManager

public Customer getCustomer (int id) {
EntityManager em = (EntityManager) new InitialContext ()

.lookup (“java:comp/env/persistence/bookStore”) ;
return em.find (Customer.class, id);

public Order create(String book, String creditCard,
Customer customer) {
EntityManager em = (EntityManager) new InitialContext()
.lookup (“java:comp/env/persistence/bookStore”) ;
Order order = new Order (customer) ;
order.setCreditCard (creditCard) ;
order.setBook (book) ;
em.persist (order) ;

@Sun 2006 JavaOnes™ Conference | Session TS-1887 | 32 java.sun.com/javaone/sf

Servlet Filter for Tx Demarcation

@Resource UserTransaction utx;

public void doFilter (ServletRequest request,
ServletResponse response, FilterChain chain) throws

utx.begin () ;
try {

chain.doFilter (request, response);
}

catch (Exception e) {
utx.rollback() ;

throw new ServletException (e);

}

utx.commit () ;

2006 JavaOne®™ Conference | Session TS-1887 | 33 iava .sun.com/iavaone/sf

Servlet Filter for Tx Demarcation

protected void buyBook (String book, int custId, String
creditCard) throws .. {

Customer customer =
new CustomerHelper () .getCustomer (custId) ;
Order order =
new OrderHelper () .create (book, creditCard, customer)

@Sun 2006 JavaOnes" Conference | Session TS-1887 | 34 java.sun.com/javaone/sf

Caveat

Transaction is not committed until response
complete

In fact, SQL statements may not even have been
executed

Servlet container may flush reponse to browser
at any time

So we might display success message to user
and then transaction subsequently fails

Solution: use a persistence context that spans two
transactions, one for read/write, one for pure readonly

%%Sun 2006 JavaOneSM Conference | Session TS-1887 | 35 iava.sun.com/iavaone/sf

Using EJB Components

@EJB CustomerMgr customerMgr;
@EJB OrderMgr orderMgr;

protected void buyBook (String book, int custId, String
creditCard) throws .. {

Customer customer = customerMgr.getCustomer (custId) ;
Order order = orderMgr.create (book, creditCard,

customer) ;

}

2006 JavaOne®M Conference | Session TS-1887 | 36 iava .sun.com/javaone/sf

Injecting the EntityManager

@Stateless

public class CustomerMgrBean implements CustomerMgr {
@PersistenceContext EntityManager em;

public Customer getCustomer (int id) {
return em.find (Customer.class, id);
}

}

@Stateless

public class OrderMgrBean implements OrderMgr (
@PersistenceContext EntityManager em;

create (String book, String creditCard, Customer cust) {
Order order = new Order (cust);
order.setCreditCard(creditCard) ;
order.setBook (book) ;
em.persist (order) ;

2006 JavaOnes Conference | Session TS-1887 | 37 java.sun.com/javaone/sf

>,

Non-transactional Reads

What happens if there is no JTA transaction in progress
when we execute a query?

You are allowed to perform read-only operations upon
an EntityManager when no JTA transaction is in
progress

Resulting SQL queries run outside of well-defined transaction
context

In practice this usually means that the SQL is executed against
a connection with autocommit enabled

Entity lifecycle depends on persistence context scope

Transaction scope (container managed EM)—entity instances
returned by the query are immediately detached (a temporary
persistence context is created and destroyed)

Extended scope—entity instances are managed

2006 JavaOne®M Conference | Session TS-1887 | 38 iava.sun.com/iavaone/sf

Agenda

Java Persistence API—Key Concepts
JavaServer™ Faces—Key Concepts
Threading models and injection
Managing transactions

Extended persistence contexts
Summary

2006 JavaOne®M Conference | Session TS-1887 | 39 java .sun.com/javaone/sf

>,

Conversations

A conversation takes place whenever a single
user interaction spans more than one request

May span multiple atomic database/JTA
transactions

Sometimes convenient to keep and reuse

references to the entities that are the subject
of the conversation

In the HTTPSession

In a stateful session bean that represents the
conversation

2006 JavaOneS Conference | Session TS-1887 | 40 java.sun.com/javaone/sf

>,

Extended Persistence Context

A natural cache of data that is relevant to a
conversation

Allows stateful components to maintain
references to managed instances
(instead of detached instances)

Maintained across multiple sequential
transactions

Until the EntityManager is closed

Optimistic transaction semantics
With version checking

2006 JavaOnes Conference | Session TS-1887 | 41 java.sun.com/javaone/sf

Extended Persistence Context Helper

public class ExtendedPersistenceContextServlet
extends HttpServlet {

@PersistenceUnit EntityManagerFactory emf;

public EntityManager getEntityManager (HttpSession s) {
EntityManager em = s.getAttribute (“entityManager”) ;
if (em==null) {
em = emf.createEntityManager() ;
s.setAttribute (“entityManager”, em);
}
em. joinTransaction() ;
return em;

}

public void endConversation (HttpSession s) {
getEntityManager () .close() ;
s.removeAttribute (“entityManager”) ;

}

@Sun 2006 JavaOnes™ Conference | Session TS-1887 | 42 java.sun.com/javaone/sf

Using the Helper

public class BuyBookServlet
extends ExtendedPersistenceContextServlet {

protected void doPost (HttpServletRequest req,
HttpServletResponse res) throws .. {

String customer = req.getParameter (“customer”) ;

int custId = Integer.parselInt (customer);

String creditCard = req.getParameter (“creditCard”) ;
String book = req.getParameter (“book”) ;

Order order = buyBook (book, custId, creditCard);

req.getSession () .setAttribute (Yorder”, order);

@Sun 2006 JavaOnes" Conference | Session TS-1887 | 43 java.sun.com/javaone/sf

Starting the Conversation

protected Order buyBook (String book, int custId, String
creditCard) {

EntityManager em = getEntityManager() ;

Customer customer = em.find(Customer.class, custId);
Order order = new Order (customer) ;
order.setCreditCard(creditCard) ;
order.setBook (book) ;

em.persist (order) ;

return order;

@Sun 2006 JavaOnes" Conference | Session TS-1887 | 44 java.sun.com/javaone/sf

Ending the Conversation

public class ConfirmOrderServlet
extends ExtendedPersistenceContextServlet {

protected void doPost (HttpServletRequest req,
HttpServletResponse res) throws .. {

Order order = (Order)
req.getSession () .getAttribute (“Yorder”) ;

confirmOrder (order) ;

endConversation () ;

}

public void confirmOrder () ({
order.confirm() ;

}

@Sun 2006 JavaOnes" Conference | Session TS-1887 | 45 java.sun.com/javaone/sf

Using an EJB Component

public class BuyBookServlet {

protected void doPost (HttpServletRequest req,
HttpServletResponse res) throws .. {

String customer = req.getParameter (“customer”) ;

int custId = Integer.parselInt (customer);

String creditCard = req.getParameter (“creditCard”) ;
String book = req.getParameter (“book”) ;

OrderMgr orderMgr = (OrderMgr)
new InitialContext () .lookup(“java:/comp/..”) ;

orderMgr .buyBook (book, custId, creditCard) ;

reqg.getSession () .setAttribute (YorderMgr”, orderMgr) ;

@Sun } 2006 JavaOnes" Conference | Session TS-1887 | 46 java.sun.com/javaone/sf

Starting the Conversation

@Stateful public class OrderMgrBean implements OrderMgr ({

@PersistenceContext (type=EXTENDED)
private EntityManager em;

private Order order;

protected void buyBook (String book, int custId, String
creditCard) {

Customer customer =

em.find (Customer.class, custId);
order = new Order (customer) ;
order.setCreditCard(creditCard) ;
order.setBook (book) ;

em.persist (order) ;

2006 JavaOnes Conference | Session TS-1887 | 47 java.sun.com/javaone/sf

Ending the Conversation

public class ConfirmOrderServlet {

protected void doPost (HttpServletRequest req,
HttpServletResponse res) throws .. {

OrderMgr orderMgr = (OrderMgr)
req.getSession () .removeAttribute (“orderMgr”) ;

orderMgr.confirmOrder (order) ;

orderMgr.remove () ;

@Sun 2006 JavaOnes" Conference | Session TS-1887 | 48 java.sun.com/javaone/sf

>,

Caveat

What if we have multiple concurrent
conversations?
In a multi-window application

The persistence context should not be shared
between the different conversations

But we have shared the EntityManager across the
whole session, by keeping it in the HttpSession!

Solution: associate the persistence context with a
conversation id that is passed to the server in
each request

2006 JavaOnes Conference | Session TS-1887 | 49 java.sun.com/javaone/sf

Non-transactional Writes

What happens when we update data outside of
a transaction?

We are allowed to call persist(), merge(), remove()
outside of a JTA transaction,

Or mutate entities associated with an extended
persistence context outside of a JTA transaction

The actual database updates will be made the
first time a transaction commits

This is very useful!

We can “queue” changes on the server, over multiple
requests, and make them persistent at the end of the
conversation

@Sun 2006 JavaOnes" Conference | Session TS-1887 | 50 java.sun.com/javaone/sf

>,

Using the Java Persistence APl and
JavaServer Faces Together

Previous examples illustrated with servlets:
Technically feasible solution, however...

Most applications use an application framework
Already provides a controller servlet
Application logic encapsulated in actions or backing beans

JavaServer Faces provides opportunities to leverage the
Java Persistence APl without writing servlets

Resource injection into backing beans

Expression-based access to JNDI APl naming context

Filter based designs (tx demarcation) are also
compatible

2006 JavaOnes Conference | Session TS-1887 | 51 java.sun.com/javaone/sf

Resource Injection

* Works with managed beans just like servlets:

* Use request scope managed beans to avoid thread
safety issues

public class MyBackingBean ({
@PersistenceContext EntityManager em;
public String save() {
Order order = ...; // Populate from input fields
em.persist (order) ;

return null;

@Sun 2006 JavaOnes™ Conference | Session TS-1887 | 52 java.sun.com/javaone/sf

DEMO

Trying it all together

2006 JavaOnes" Conference | Session TS-1887 | 53 java.sun.com/javaone/sf

Agenda

Java Persistence API—Key Concepts
JavaServer™ Faces—Key Concepts
Threading models and injection
Managing transactions

Extended persistence contexts
Summary

2006 JavaOnes" Conference | Session TS-1887 | 54 java.sun.com/javaone/sf

Summary

* Java Persistence API provides range of
mechanisms for use in web tier

* Container-managed and application-managed
EntityManagers

* Integration with JTA and resource-local transactions
* Support for use in servlets, filters, managed beans

* Modeling of transaction-scoped interactions as well
as conversations

@%Sun 2006 JavaOne®M Conference | Session TS-1887 | 55 java .sun.com/javaone/sf

For More Information

* http://jcp.org/en/jsr/detail?id=220
* http://jcp.org/en/jsr/detail?id=252

@Sun 2006 JavaOne® Conference | Session TS-1887 | 56 java.sun.com/javaone/sf

sssssssssss

2006 JavaOnes" Conference | Session TS-1887 | 57 java.sun.com/javaone/sf

@ Sun

The Java™ Persistence API
in the Web Tier

Linda DeMichiel, Sun Microsystems
Gavin King, JBoss

Craig McClanahan, Sun Microsystems

Session 1887

2006 JavaOne®™ Conference | Session TS-1887 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

