
2006 JavaOneSM Conference | Session TS-1969 |

TS-1969

Blueprints for Using the
Simplified Java™ EE 5
Programming Model
Smitha Kangath, Inderjeet Singh

Java BluePrints
Sun Microsystems Inc.

Copyright © 2006, Sun Microsystems Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-1969 | 2

Goal of the Talk

Sample the key features of the Java EE 5
Platform and see how it simplifies the
development of Enterprise Applications
and Web Services

Application Programming Model for Java™ EE 5 Platform

2006 JavaOneSM Conference | Session TS-1969 | 3

Speaker’s Qualifications
● Members of the Java BluePrints

Program
● http://blueprints.dev.java.net/
● Java BluePrints Solutions Catalog

● Topics: AJAX, JSF, Enterprise, Web Services
● J2EE 1.4 and Java EE 5

● Java Pet Store, a new version showing
Web 2.0 with Java EE 5

● Java Adventure Builder
● Books

● Designing Web Services with
the J2EE 1.4 Platform

● Designing Enterprise Applications
with the J2EE Platform, 2nd Ed

http://blueprints.dev.java.net/

2006 JavaOneSM Conference | Session TS-1969 | 4

Agenda

● POJO-based Programming
● Annotations and Dependency Injection

● Key Changes in Component Models
● EJB 3.0
● Web tier
● Web Services

● Programming Model for Java Persistence
● With EJB 3.0
● In Web-tier without EJBs

2006 JavaOneSM Conference | Session TS-1969 | 5

The J2EETM Challenges
● Powerful and comprehensive

● Supports lots of use-cases: Web applications, Web
Services, messaging, database applications, etc.

● Deployment Descriptors allow a lot of customization
● Challenges

● Rigid enforcement of “good” design and patterns
● Can be difficult to get started
● Boring boilerplate code
● Much Container configuration to get application to work

● Java EE 5 addresses these challenges

2006 JavaOneSM Conference | Session TS-1969 | 6

EoD through POJO based
Programming

● Express Programmer's intentions in Java Code
instead of in XML or other external configuration
actions
● Java Class is the main programming artifact
● Annotations add new capabilities to the class
● Lots of sensible defaults
● Can be overridden by XML based deployment

descriptors
● Still fully compatible with J2EE 1.4

2006 JavaOneSM Conference | Session TS-1969 | 7

Annotations

● Based on Java SE 5 Annotations Support
● Annotations available for

● Defining Web Services
● Defining Enterprise Beans
● Calling out EJB Lifecycle callbacks or Interceptors
● Dependency Injection
● Almost anything that you used to previously have a

Deployment Descriptor entry for
● Transaction Attributes
● Security

● Look at JSR-250: Common Annotations

2006 JavaOneSM Conference | Session TS-1969 | 8

Annotations: Pros/Cons

● Annotations: Pros
● Easier to write than .xml
● Easier to understand than .xml
● Fewer files to maintain

● Annotations: Cons
● Only visible in source-code
● Can’t express all Java Platform, EE 5 metadata
● Blurs lines between Java EE platform roles

(e.g., Component Provider vs. Application Assembler)

2006 JavaOneSM Conference | Session TS-1969 | 9

Best Uses for Annotations

● Metadata that does not change often
● Metadata tied to component development time
● Examples

● Structural metadata
● e.g., @Stateless, @WebService, @Entity

● Environment dependencies
● e.g., @EJB, @Resource, @PersistenceContext

● Callbacks
● e.g., @PostConstruct, @Timeout, @Remove

2006 JavaOneSM Conference | Session TS-1969 | 10

Best Uses for Deployment Descriptors

● Overriding annotations and defaults
● Application assembler metadata

● EJB Security Method Permissions
● Typically not known until assembly/deployment time
● Likely to change
● Independent of business logic

● Dependency linking info
● e.g. cross-module ejb-link

● Metadata that has no corresponding annotation
● e.g. EJB Default interceptors, EJB 2.x Entity Beans,

Message Destinations

2006 JavaOneSM Conference | Session TS-1969 | 11

Guidelines for .xml Overriding

● Use sparingly
● Overuse can make app difficult to understand/maintain

● Good with linking metadata
● e.g., ejb-link, persistence-unit-name

● Keep in mind not all annotations are overridable
● e.g., Session bean type (Stateful vs. Stateless)

can’t be overridden

2006 JavaOneSM Conference | Session TS-1969 | 12

Don’t Forget Spec-Defined Defaults!

● Default values can be easier than annotations
and .xml
● EJB based transaction demarcation type

● Default: Container managed transaction
● EJB based transaction attribute

● Default: TX_REQUIRED
● Environment annotation name()

● Default: Derived from class and field/method

2006 JavaOneSM Conference | Session TS-1969 | 13

Component Dependency Annotations
● For declaring environment dependencies
● For eliminating JNDI lookups

● ejb-ref, resource-ref, service-ref, etc.
● Available on container-managed classes

● Enterprise beans and interceptors, Servlets, Filters,
ServletListeners, JSF Managed Beans, Web service
endpoints and Handlers

● Not for JSP, JSP beans, or other plain Java classes
that are not available at deployment

● Declared at class, field, or method level
● Field/method level dependencies injected

at runtime

2006 JavaOneSM Conference | Session TS-1969 | 14

annotation vs. .xml

@Resource(name=”Foo”) private DataSource ds;

<resource-ref>

 <res-ref-name>Foo</res-ref-name>

 <res-ref-type>javax.sql.DataSource</res-ref-type>

 <injection-target>

 <injection-target-class>com.acme.FooBean</...>

 <injection-target-name>ds</injection-target-name>

 </injection-target>

</resource-ref>

2006 JavaOneSM Conference | Session TS-1969 | 15

Dependency Injection

● Available for Fields as well as methods
● Available anywhere on the inheritence hierarchy

● Follows normal language overriding rules
● @PostConstruct annotation available to provide

initialization after injection

2006 JavaOneSM Conference | Session TS-1969 | 16

Injected Field/Method Access Modifiers

● Spec allows public, package, protected, private
● Which should you use?

● Private is best
● Injected data is typically internal to the .class

● Exception: Overriding of environment
dependencies within a class hierarchy
● Use sparingly

● Tightly couples classes
● Harder to understand/maintain

2006 JavaOneSM Conference | Session TS-1969 | 17

Which Is Best: Field, Method,
or Class-level?

● Field-level: Easiest
● e.g., @EJB Converter converter
● Takes fewest characters to declare
● Supports injection

● Method-level
● Useful for logic tied to a specific dependency injection
● But... Field-level + @PostConstruct would work too

2006 JavaOneSM Conference | Session TS-1969 | 18

Which Is Best: Field, Method,
or Class-level? (Cont.)

● Class-level
● Useful for dependency declaration WITHOUT injection
● Declare environment dependency for use by non

container-managed classes
FooBean.java:
@EJB(name=”ejb/bar”, beanInterface=Bar.class)
public class FooBean implements Foo { ... }
Utility.java:
Bar bar = (Bar) context.lookup(“java:comp/env/ejb/bar”);

2006 JavaOneSM Conference | Session TS-1969 | 19

Another Class-Level
Dependency Example

● Stateful Session Bean creation
● EJB 3.0 SFSBs are created as a side-effect

of injection/lookup
● Common need : many instances of same SFSB
● Using field-based dependency + injection:
@EJB Cart cart1;
@EJB Cart cart2;
@EJB Cart cart3;

Too static :-(

2006 JavaOneSM Conference | Session TS-1969 | 20

Another Class-Level
Dependency Example (Cont.)

● Alternative: class-level dependency + lookup
@EJB(name=”ejb/Cart”, beanInterface=Cart.class)
public class CartClient {
 ...
 Cart[] carts = new Cart[numCarts];
 for(int i = 0; i < carts.length; i++) {

 carts[i] = (Cart)
ctx.lookup(“java:comp/env/ejb/Cart”);

}

2006 JavaOneSM Conference | Session TS-1969 | 21

Concurrency and Injection

● Injection does not solve concurrency issues
● If an object obtained through lookup()

is non-sharable, it's non-sharable when injected
● Be careful with Servlet instance injection
public class MyServlet ... {
 private @EJB StatelessEJB stateless; // OK
 private @EJB StatefulEJB stateful; // dangerous!

2006 JavaOneSM Conference | Session TS-1969 | 22

Concurrency and Injection (Cont.)

● Most common issues: Stateful Session Beans,
PersistenceContexts

● Recommended alternative: lookup() and store
in HttpSession

@PersistenceContext(name=”pc”,
type=EntityManager.class)

public class MyServlet ... {
 EntityManager em = ctx.lookup(“java:comp/env/pc”);
 httpSession.setAttribute(“entityManager”, em);

2006 JavaOneSM Conference | Session TS-1969 | 23

Performance and Injection

● Use of injection is unlikely to cause
performance issues

● Injection is essentially a ctx.lookup() + one
reflective operation

● Injection occurs at instance creation-time
● Overhead of injection typically small compared

to instance creation itself
● Most lookups() resolved locally within server
● Instances are typically long-lived/reused

2006 JavaOneSM Conference | Session TS-1969 | 24

Agenda

● POJO-based Programming
● Annotations and Dependency Injection

● Key Changes in Component Models
● EJB 3.0
● Web tier
● Web Services

● Programming Model for Java Persistence
● With EJB 3.0
● In Web-tier without EJBs

2006 JavaOneSM Conference | Session TS-1969 | 25

What Changed in EJB?

● Issues with EJB 2.1
● Good component model, but required too much coding

and concepts
● Too many classes, interfaces, concepts
● javax.ejb interfaces
● Complex JNDI lookups
● Awkward programming model
● Deployment descriptors
● Entity bean anti-patterns

2006 JavaOneSM Conference | Session TS-1969 | 26

What is Different in EJB 3.0?

● POJO-based Component Definition
● No required Container interfaces
● No required deployment descriptor

● Dependency Injection
● Decoupled Java Persistence from EJB

components
● Simple lookups
● No required Deployment descriptor

2006 JavaOneSM Conference | Session TS-1969 | 27

Stateless Session Bean with J2EE
public class PayrollBean implements javax.ejb.SessionBean {
 SessionContext ctx;
 DataSource empDB;
 public void setSessionContext(SessionContext ctx) {
 this.ctx = ctx;
 }
 public void ejbCreate() { empDB = (DataSource)
ctx.lookup(“jdbc/empDb”); }
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void ejbRemove) {}
 public void setBenefitsDeduction(int empId, double deduction) {
 ...
 Connection conn = empDB.getConnection();
 ...
 }
...
}
Need Remote/Local, Home interfaces, Deployment descriptors

2006 JavaOneSM Conference | Session TS-1969 | 28

Stateless Bean Example with Java EE 5
@Stateless
public class PayrollBean implements Payroll
{
 @Resource DataSource empDB;
 public void setBenefitsDeduction(int empId,
 double deduction) {
 ...

DataSource conn = empDB.getConnection();
 }
 ...
}

2006 JavaOneSM Conference | Session TS-1969 | 29

Dependency Injection in EJB

● Resources a bean depends upon are injected
when bean instance is constructed

● References to
● EJBContext
● DataSources
● UserTransaction
● Environment entries
● EntityManager
● TimerService
● Other EJB beans
● ...

2006 JavaOneSM Conference | Session TS-1969 | 30

Dependency Injection

● Annotations
● @EJB

● References to EJB business interfaces
● References to Home interfaces (when accessing

EJB 2.1 components)
● @Resource

● Almost everything else
● Number of annotations is simplified from EJB 3

specification early draft
● Injection can also be specified using deployment

descriptor elements

2006 JavaOneSM Conference | Session TS-1969 | 31

Simplified Client View

● Session beans have plain Java language
business interface
● No more EJB(Local)Home interface
● No more EJB(Local)Object interface

● Bean class implements interface
● Looks like normal Java class to Bean developer

● Looks like normal Java interface
to client

2006 JavaOneSM Conference | Session TS-1969 | 32

EJB 3.0 Client Example
// EJB 3.0 client view

@EJB ShoppingCart myCart;

...

Collection widgets = myCart.startToShop(“widgets”);

...

2006 JavaOneSM Conference | Session TS-1969 | 33

Why Use EJB 3.0?

● Nothing in the platform is REQUIRED to be used
● Use based on application requirements

● Benefits of EJB 3.0
● Helps componentize and modularize code
● Enforce good architecture
● Good integration with Java Persistence
● Greatly simplified concept

2006 JavaOneSM Conference | Session TS-1969 | 34

What Changed in the Web Tier?

● JSF 1.2 became part of the Java EE 5 platform
● Annotations support

● No component defining annotations
● Common annotations in container managed objects

● JSF managed beans, servlets, filters, event listeners
● Not in JSP. But available in JSP tag handlers or event listeners

● Web.xml not needed
● Not needed if only JSP and Web service annotated

classes
● Still needed for JSF, servlets, security settings, etc.

2006 JavaOneSM Conference | Session TS-1969 | 35

Programming Model for Web Tier

● Traditional JSP/Servlets based applications
● Use an MVC Framework
● For Web 2.0, use an AJAX library; for example, Dojo

● JSF 1.2: Standardized MVC framework
● Component-based
● Unified expression language for JSP and JSF
● Best used with a tool like Java Studio Creator

● Also possible to write applications by hand
● For Web 2.0, wrap AJAX functionality in reusable

components

2006 JavaOneSM Conference | Session TS-1969 | 36

What Changed for the Web Services?

● Significantly revised and simplified
● JAX-RPC 2.0 renamed to JAX-WS 2.0

● Breaks compatibility with JAX-RPC 1.1
● JAX-RPC 1.1 is also available

● Key Features
● Simplified programming model with annotations and

dependency injection
● Uses JAXB 2.0 for type-mappings
● Portable runtime artifacts

2006 JavaOneSM Conference | Session TS-1969 | 37

Key Features in Web Services

● Key Features (cont.)
● Supports Fast-Infoset for high performance
● JAX-WS supports REST services

● Useful for AJAX Backends
● Can generate annotated JAX-WS and JAXB code from

WSDL and XSD

2006 JavaOneSM Conference | Session TS-1969 | 38

JAX-WS 2.0 New Architecture

● Multiple protocols
● SOAP 1.1, SOAP 1.2, XML

● Multiple encodings
● XML, MTOM/XOP, FAST Infoset (Binary XML)

● Multiple transports
● HTTP
● Others to be added in future releases

2006 JavaOneSM Conference | Session TS-1969 | 39

JAXB 2.0 Is Now Bi-Directional

● 1.0: Schema Java only
● JAXB is for compiling schema
● Don’t touch the generated code

● 2.0: Java XML + schema compiler
● JAXB is about persisting POJOs to XML
● Annotations for controlling XML representation
● Modify the generated code to suit your taste

2006 JavaOneSM Conference | Session TS-1969 | 40

Web Service Annotation Example
@WebService(name=”Hello” serviceName=”HelloService”)
public class HelloWebService {

@WebMethod
public String sayHello(String s) {...}
public void unpublished() {...}

}

public class HelloClient {
@WebServiceRef (wsdlLocation=
”http://localhost:8080/HelloService?WSDL”)
static hello.HelloService service;
public static void main(String[] args) {
 hello.Hello wsPort = service.getHelloPort();
 System.out.println(wsPort.sayHello());
}

}

2006 JavaOneSM Conference | Session TS-1969 | 41

Agenda

● POJO-based Programming
● Annotations and Dependency Injection

● Key Changes in Component Models
● EJB 3.0
● Web tier
● Web Services

● Programming Model for Java Persistence
● With EJB 3.0
● In Web-tier without EJBs

2006 JavaOneSM Conference | Session TS-1969 | 42

Java Persistence API

● Part of JSR-220, but a separate document
● No reliance on EJB technology or EJB container
● Usable in Web-only applications and Java SE

● POJO-based persistence
● Lightweight domain objects—no overhead of container-

managed components
● Sensible default mappings
● Complete query capabilities

● Key concepts - persistent entities, persistence
unit, persistence context, entity manager

2006 JavaOneSM Conference | Session TS-1969 | 43

Persistent Entities
● Plain old Java objects
● No more interfaces required
● Supports use of new, inheritance
● Persistent properties with JavaBean style

accessor methods or persistent instance
variables

● Usable as “detached” objects in other
application tiers—no more need for Data Transfer
Objects

● Persistence, querying, and O/R mapping
managed by the Java Persistence API

2006 JavaOneSM Conference | Session TS-1969 | 44

Persistent Entities (Cont.)
@Entity
public class Item implements java.io.Serializable {
 private String itemID;
 private String name;
 private String description;
 ...
 @Id
 public String getItemID() {
 return itemID;
 }
 public String getName() {
 return name;
 }
 ...
 public void setName(String name) {
 this.name = name; }
 ...
}

2006 JavaOneSM Conference | Session TS-1969 | 45

Persistence Unit

● Unit of packaging and deployment
● Set of related classes that map to a single

database
● Defined by a persistence.xml file
● Includes O/R mapping metadata—metadata

annotations or XML files

2006 JavaOneSM Conference | Session TS-1969 | 46

Persistence Context and
EntityManager

● Persistence Context
● Similar to transaction context, it's a scope
● Entity instances are managed within the persistence

context
● A unique instance exists for any persistent entity

identity
● EntityManager

● API to manage the entity instance lifecycle
● persist, remove, merge etc.

● Operations to find entities by primary keys, to create
Query objects, and to manage the persistence context
● find, createQuery, close, getTransaction etc.

2006 JavaOneSM Conference | Session TS-1969 | 47

Types of Persistence Context
● Persistence Context lifetime maybe transaction-

scoped or extended
● Transaction-scoped persistence context

● bound to a JTA transaction—starts and ends at
transaction boundaries

● entities are detached from the persistence context
when transaction ends

● Extended persistence context
● spans multiple transactions
● exists from the time the EntityManager instance is

created until it is closed
● Defined when the EntityManager instance is

created

2006 JavaOneSM Conference | Session TS-1969 | 48

Types of EntityManager
● Entity manager may be container-managed or

application-managed
● Container-managed entity manager

● Lifecycle managed by the Java EE container
● May use transaction-scoped or extended persistence

context
● Extended persistence context is only available to

stateful session beans
● Application-managed entity manager

● Life cycle managed by the application
● Also available in Java SE environments
● Must use extended persistence context

2006 JavaOneSM Conference | Session TS-1969 | 49

Container-Managed Entity Manager
Example

● Dependency injection of EntityManager with the
@PersistenceContext annotation or a JNDI
lookup

@Stateless
public class CatalogFacadeBean implements CatalogFacade{

 @PersistenceContext(unitName="PetstorePu")
 private EntityManager em;
 ...
 public List<Category> getCategories(){
 List<Category> categories = em.createQuery("SELECT
 c FROM Category c").getResultList();
 return categories;
 }
 ...
 }

2006 JavaOneSM Conference | Session TS-1969 | 50

Application-Managed Entity Manager
Example

● Dependency injection of EntityManagerFactory
with the @PersistenceUnit annotation

public class CatalogFacade implements
ServletContextListener {

 @PersistenceUnit(unitName="PetstorePu")
 private EntityManagerFactory emf;
 ...
 public List<Category> getCategories() {
 EntityManager em = emf.createEntityManager();
 List<Category> categories = em.createQuery("SELECT
 c FROM Category c").getResultList();
 em.close();
 return categories;
 }
 ...
 }

2006 JavaOneSM Conference | Session TS-1969 | 51

Transactions with Entity Manager

● JTA entity manager
● Transactions are controlled through JTA
● Container-managed entity manager always does JTA

transactions
● Resource-local entity manager

● Transactions are controlled through the
EntityTransaction API

● Application-managed entity manager can be either JTA
or resource-local

● Transactional type is defined in persistence.xml

2006 JavaOneSM Conference | Session TS-1969 | 52

Entity Operations

● Persisting an entity

@PersistenceContext(unitName="PetstorePu")
private EntityManager em;
...
Item item = new Item(itemID, name, description, price);
em.persist(item);

● Finding and removing an entity

Item item = em.find(Item.class, itemID);
em.remove(item);

2006 JavaOneSM Conference | Session TS-1969 | 53

Query API

● To query and retrieve entities
● Static and dynamic queries
● Named parameter binding and pagination control
● Queries are defined in Java Persistence Query

Language or native SQL
● Named Queries

2006 JavaOneSM Conference | Session TS-1969 | 54

An Example Using Queries
@PersistenceContext(unitName="PetstorePu")
private EntityManager em;
...
public List<Product> getProducts(String catID){
 Query query = em.createQuery("SELECT p FROM Product p
 WHERE p.categoryID LIKE :categoryID");
 List<Product> products = query.setParameter
 ("categoryID", catID).getResultList();
}

2006 JavaOneSM Conference | Session TS-1969 | 55

Refactoring Using Named Queries

● Defining named queries
 @NamedQuery(
 name="Item.getItemsPerProduct",
 query="SELECT i FROM Item i WHERE i.productID LIKE :
 pID")
 @Entity
 public class Item implements java.io.Serializable {
 ...
 }
● Using named queries
 Query query = em.createNamedQuery
 ("Item.getItemsPerProduct");
 query.setParameter("pID",prodID);
 List<Item> items = query.getResultList();

2006 JavaOneSM Conference | Session TS-1969 | 56

Native SQL vs. Java Persistence
Query Language

● Native SQL

● Returns raw data – field values for the entity
● Complex SQL for navigating relationships

● Java Persistence Query Language

● Returns entities
● Relationships can be navigated using a “.”
● Similar to SQL - small learning curve

2006 JavaOneSM Conference | Session TS-1969 | 57

Value List Handler

● Common design pattern
● Helper method in Java Persistence Query

Language to get chunks of data
public List<Item> getItemsVLH(String prodID, int start,
int chunkSize){ ...
 Query query = em.createQuery("SELECT i FROM Item i WHERE i.productID = :pID");
 List<Item> items = query.setParameter("pID",prodID). setFirstResult(start).setMaxResults(chunkSize).
 getResultList(); em.close();
 return items;}

2006 JavaOneSM Conference | Session TS-1969 | 58

O/R Mapping Metadata

● Physical mapping annotations
● tables, columns etc. eg.,@Column, @Table

● Logical mapping annotations
● Relationship modeling annotations eg.,@OneToOne

● Relationship mappings can be One-to-One, One-
to-many, Many-to-one, and Many-to-many

● Relationships may be unidirectional or
bidirectional

2006 JavaOneSM Conference | Session TS-1969 | 59

O/R Mapping Metadata: Example
@Entity
@Table(name=”Customer”)
public class Customer implements Serializable {

private String name;
private Collection<Order> orders;
...
@Column(name=”CUST_NAME”)
public String getName() {
 return name;
}
@OneToMany
public Collection<Order> getOrders() {
 return orders;
}
...

}

2006 JavaOneSM Conference | Session TS-1969 | 60

Automatic Generation of Primary Keys

● Different strategies – TABLE, SEQUENCE,
IDENTITY, AUTO

@Entity
public class Item implements java.io.Serializable {
 ...
 @TableGenerator(name="ITEM_ID_GEN", table="ID_GEN",
 pkColumnName="GEN_KEY",valueColumnName="GEN_VALUE”,
 pkColumnValue="ITEM_ID", allocationSize=1)
 @GeneratedValue(strategy=GenerationType.TABLE,
 generator="ITEM_ID_GEN")
 @Id
 public String getItemID() {
 return itemID;
 }
 ...
}

2006 JavaOneSM Conference | Session TS-1969 | 61

Java Persistence in the Web Tier

● Java Persistence was designed to be used
without requiring EJBs
● Can be used in the Web tier
● Can be used in Java SE environments

● Web-only application may have
● Application-managed or container-managed entity

manager
● Transaction-scoped or extended persistence context
● Application-managed transactions

2006 JavaOneSM Conference | Session TS-1969 | 62

What Is Wrong with This Code?
public class CatalogServlet extends HttpServlet {
 @PersistenceContext(unitName="PetstorePu")
 EntityManager em;
 ...
 public void doGet(HttpServletRequest req,
 HttpServletResponse resp) throws ServletException,
 IOException {
 ...
 Item item = new Item(itemID, name, description,
 price);
 em.persist(item)
 ...
 }
}

2006 JavaOneSM Conference | Session TS-1969 | 63

This Code Is Not Thread-Safe

● PersistenceContext is injected just once during
the entire lifecycle of the application

● Concurrent requests coming to the servlet will
access the same PersistenceContext object

● PersistenceContext is NOT a thread-safe object!

2006 JavaOneSM Conference | Session TS-1969 | 64

A Better Way of Using Java
Persistence in Web Tier

● Dependency injection of EntityManagerFactory
with the @PersistenceUnit annotation

public class CatalogServlet extends HttpServlet {
 @PersistenceUnit(unitName="PetstorePu")
 EntityManagerFactory emf;
 ...
 public void doGet(HttpServletRequest req,
 HttpServletResponse resp) throws ServletException,
 IOException {
 EntityManager em = emf.createEntityManager();
 Item item = new Item(itemID, name, description,
 price);
 em.persist(item);
 em.close();
 ...
 }
}

2006 JavaOneSM Conference | Session TS-1969 | 65

A Better Way of Using Java
Persistence in Web Tier (Cont.)

● JNDI lookup to obtain the entity manager

@PersistenceContext(name="PetstorePu")
public class CatalogServlet extends HttpServlet {
 ...
 public void doGet(HttpServletRequest req,
 HttpServletResponse resp) throws ServletException,
 IOException {
 ...
 EntityManager em = (EntityManager) new
 InitialContext().lookup("java:comp/env/PetstorePu");
 Item item = new Item(itemID, name, description,
 price);
 em.persist(item)
 ...
 }
}

2006 JavaOneSM Conference | Session TS-1969 | 66

Managing Transactions in the Web
Tier
● JTA transactions

@Resource UserTransaction utx;
...
public void addItem(Item item){
 try{
 utx.begin();
 em.joinTransaction();
 em.persist(item);
 utx.commit();
 } catch(Exception exe){
 ...
 } finally {
 em.close();
 }
}

2006 JavaOneSM Conference | Session TS-1969 | 67

Managing Transactions in the Web
Tier (Cont.)
● Resource-local transactions

public void addItem(Item item){
 try{
 em.getTransaction().begin();
 em.joinTransaction();
 em.persist(item);
 em.getTransaction().commit();
 } catch(Exception exe){
 ...
 } finally {
 em.close();
 }
}

2006 JavaOneSM Conference | Session TS-1969 | 68

Facade Pattern
● Centralizes requests to the domain
● Handles and encapsulates transactions,

entity managers, etc.
● May need to do dependency injections—

use container-managed classes
● May return detached entities
● May aggregate calls to multiple entities
● May aggregate multiple calls to the entity

manager, such as a find and then merge

2006 JavaOneSM Conference | Session TS-1969 | 69

Summary

● Use annotations and defaults to define
components and external dependencies

● Use DD entries to override
● Use EJB 3.0 for simplified components
● Use JSF components for drag-and-drop Web

application development
● Use JAX-WS (with integrated JAXB 2.0) for

creating Web services use Java Persistence for
OR mappings

2006 JavaOneSM Conference | Session TS-1969 | 70

If You Only Remember One
Thing…

Java EE 5 Dramatically Simplifies The Programming
Model for Enterprise Web Applications and Web

Services

2006 JavaOneSM Conference | Session XXXX | 71

Q&A

2006 JavaOneSM Conference | Session TS-1969 |

TS-1969

Blueprints for Using the
Simplified Java™ EE 5
Programming Model
Smitha Kangath, Inderjeet Singh

Sun Microsystems Inc.

