
2006 JavaOneSM Conference | Session TS-3117 |

TS-3117

Advanced Sun™ Grid
Creating Applications
for Horizontal Scale
Amir Halfon
Keith Thompson
Sun Grid Engineering
Sun Microsystems, Inc.
http://developer.network.com

Copyright © 2006, Sun Microsystems Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-3117 | 2

Goals

Develop a clearer understanding of the
design considerations associated with
developing massively scalable applications
for Sun™ Grid

2006 JavaOneSM Conference | Session TS-3117 | 3

Agenda

Background
Grid and Utility Computing
The Sun Grid Compute Utility

Distributed Parallel Computing Paradigm
Problem Space
Solution Space
Implementation Mechanisms

Compute Server
Overview
Demo

2006 JavaOneSM Conference | Session TS-3117 | 4

Problem Statement

“Only 5% of today’s applications are
suitable for grid computing...”

 How do we accelerate the development of
 applications that can benefit from the grid?

 First, some background...

2006 JavaOneSM Conference | Session TS-3117 | 5

Grid Computing

● A node-centric, rather than a
CPU-centric paradigm—
the commodity is the computer...
● Enterprises are following HPTC

● Economies of scale: “a cluster
of cheap boxes” instead of a large,
expensive SMP box
● Thousands of CPUs instead of dozens
● Distributed instead of shared memory
● Distributed parallelism—has to be designed

2006 JavaOneSM Conference | Session TS-3117 | 6

Financing

ServicesServices

Utility Utility
ComputingComputing

TechnologyTechnology

The Ability to Intelligently Match IT Resources
to Business Demand on a Pay-for-Use Basis

Utility Computing (UC)

Attributes
• Standardization (aggregation)
• High utilization
• Multi-tenancy
• Immediate provisioning
• Granular costing

2006 JavaOneSM Conference | Session TS-3117 | 7

Sun Grid Compute Utility
Available Today! (www.network.com)

● Intersection of grid computing and the utility
computing model

● Pay-per-use compute power at a standard pricing
—$1/CPU-hour

● No contract or minimum commitment

2006 JavaOneSM Conference | Session TS-3117 | 8

The Sun Grid Commodity Unit

● Sun Fire™ V20z servers, each containing:
● Dual 2.4 GHz AMD Opteron™ processors with

HyperTransport technology for memory and
I/O interface

● 8 GByte RAM
● Solaris™ 10 Operating System

● Grid network infrastructure built on a Gbit/s
switched-Ethernet data network

2006 JavaOneSM Conference | Session TS-3117 | 9

The Distributed Resource Manager

● A utility model requires sharing a highly utilized
pool of systems

● Demand is managed by a scheduler
● Sun Grid uses Sun N1™ Grid Engine 6 software
● As a developer, this means working in a

constrained environment...

2006 JavaOneSM Conference | Session TS-3117 | 10

Typical Sun Grid Workflow

Upload
Resources

Assemble
Job

Run
Job

Retrieve
Results

2006 JavaOneSM Conference | Session TS-3117 | 11

Behind the Scenes…
● Resources are uploaded through the portal
● Jobs are assembled from resources
● Job execution is scripted

using Sun Grid Engine
commands

● Users can
schedule
jobs to run
“at will”

● Results are
picked up
through the
portal

2006 JavaOneSM Conference | Session TS-3117 | 12

Agenda

Background
Grid and Utility Computing
The Sun Grid Compute Utility

Distributed Parallel Computing Paradigm
Problem Space
Solution Space
Implementation Mechanisms

Compute Server
Overview
Demo

2006 JavaOneSM Conference | Session TS-3117 | 13

Back to Our Problem Statement…

● Clusters of cheap boxes abound,utility
computing models beginning to appear…

● Yet, Applications that fully exploit this
infrastructure are still relatively scarce
(except in HPC)

● The challenge: Can we make parallel
programming easier?

2006 JavaOneSM Conference | Session TS-3117 | 14

Designing for Concurrency*

● Decomposition
● Tasks
● Data

● Task dependency analysis
● Temporal constraints
● Grouping
● Data sharing

* Based on Patterns for Parallel Programming by Timothy G. Mattson, et al

2006 JavaOneSM Conference | Session TS-3117 | 15

Mapping to a Solution

● Determine major organizing principle
to choose the right algorithm

● Map tasks to Units of Execution (UE)
● Target platform considerations

● Number of UEs: efficiency vs. overhead
● Communications between UEs
● Synchronization needs

● Deutsch’s fallacies still apply…

2006 JavaOneSM Conference | Session TS-3117 | 16

Organization Principles

● Tasks
● Problem can readily be described as a

group of relatively independent tasks
● Data decomposition

● Focus on data decomposition and data sharing
between tasks

● Data flow
● Focus on the interaction between the tasks

2006 JavaOneSM Conference | Session TS-3117 | 17

Task Parallelism

● Based directly on the tasks
● Design involves task definition, dependencies

(e.g. data sharing), and scheduling
● In most cases, tasks are associated with the

iterations of a loop
● Example: imaging (ray tracing), frame rendering,

financial risk management/interest calculation/
index calculation

2006 JavaOneSM Conference | Session TS-3117 | 18

Program Structuring Patterns: SPMD

● Single program, multiple data
● Units execute the same program, each on a

different set of data

Task 0 Task 1 Task n

Fragment
0

Fragment
1

Fragment
n

. . .

2006 JavaOneSM Conference | Session TS-3117 | 19

Task 0 Task n. . .

Program Structuring Patterns:
ForkJoin

● Main Process forks units, which continue
in parallel before re-joining

Task 1

2006 JavaOneSM Conference | Session TS-3117 | 20

Program Structuring Patterns:
MasterWorker

● Master sets up a pool of workers and a task
queue; workers pull from the queue until
completion

. . .

Master

Worker 0 Worker 1 Worker n

QUEUE

2006 JavaOneSM Conference | Session TS-3117 | 21

Implementation Mechanisms

● Process management
● UE creation and destruction

● Communication
● Inter-task
● Collective

● Synchronization
● Temporal constraints
● Serial constraints

2006 JavaOneSM Conference | Session TS-3117 | 22

UE Management

● Java technology typically uses threads
● Executors in Java SE 5 platform
● Higher level Containers (app servers, etc.)

● On Sun Grid: Using N1 Grid Engine...
● Grid Engine directives (qsub commands)
● DRMAA (Distributed Resource Management

Application API) instructions to the GE
● …Or programmatically

● MPI (Java based encapsulation available at hpjava.org)
● Custom Mechanisms

2006 JavaOneSM Conference | Session TS-3117 | 23

Grid Engine Commands
qsub submit “task” to queue
qstat get snapshot of queue status to determine task status
qdel hard stop of a queued task by name or identity

#submit a task to up to 4 nodes on the grid, with a
minimum of 1 node

qsub -t 1-4:1 foo

● Remember: scheduler is non-deterministic
● Request what you think that you’ll need, realize the potential

wait time for requesting more

2006 JavaOneSM Conference | Session TS-3117 | 24

Continuum of Job Control

“Command line” scripting
(+) Fine grained control of Grid Engine Tasks

= minimize spend
(–) May “spin” while acquiring “incremental” resources

and no guarantee
(–) Complex “scripting”

Programmatic control
(+) Application level language flexibility
(–) Growing resource pool requires calls to “native”

queue management

2006 JavaOneSM Conference | Session TS-3117 | 25

Inter-Task Communications

● Do you need it?
● Some problems are embarrassingly parallel

● Cost
● Overhead
● Communication instead of computation
● Network saturation
● Usually implies synchronization

● Challenge
● Lookup and discovery

2006 JavaOneSM Conference | Session TS-3117 | 26

Collective Communications

● Broadcast
● Single message to all UEs

● Reduction
● Reducing a collection to a single item (sum, max, etc.)

● Barrier
● Synchronization—could be implemented as a

collective communication

2006 JavaOneSM Conference | Session TS-3117 | 27

Communications (Cont.)

● In Java technology: Sockets, RMI, JavaSpaces™
technology, Java Message Service (JMS)

● On Sun Grid:
● RMI is an option, more on JavaSpaces

technology later…
● MPI libraries are available (tightly coupled

with Grid Engine)
● File system is easiest to use

● Applications read/write files
● NFS for sharing data (home directory as a

shared file system)
● Don’t forget to clean up

2006 JavaOneSM Conference | Session TS-3117 | 28

Establishing Lookup
and Discovery Context

Caveat: Multicast discovery is not currently allowed on Sun Grid

1) Write hostname to a file and have other
tasks use this file to locate each other

2) Start a lookup service first, then pass the
location of the lookup (from qstat) as a
parameter to all other tasks

2006 JavaOneSM Conference | Session TS-3117 | 29

Synchronization

● Barriers
● All UEs must arrive at a certain point before proceeding

● Mutual exclusion
● Modifying a shared resource: data, file, etc.

● Serialization
● Certain sections cannot proceed in parallel

(dependencies)

2006 JavaOneSM Conference | Session TS-3117 | 30

Synchronization (Cont.)

● In Java technology: synchronized blocks
and methods
● Locks in Java 5 (blocking and non blocking)

● On Sun Grid: Coordination using N1 Grid Engine
● Jobs may have dependencies

● One job can wait for another to complete
● Use qsub command with various options
● DRMAA is also available

● MPI offers a set of synchronization constructs

2006 JavaOneSM Conference | Session TS-3117 | 31

Example: Integral Pi Computation

● Computing time increases by an order of
magnitude for every decimal place of precision

2006 JavaOneSM Conference | Session TS-3117 | 32

Code Sample: Integral Pi Computation
BigDecimal x0 = BigDecimal.ZERO;

while (x0 < BigDecimal.ONE) {
BigDecimal x1 = x0.add(sliceSize);

//calculate the rectangle's height
height = sqrt(BigDecimal.ONE.subtract(x1.multiply(x1));

//add the rectangle's area to the sum
sum = sum.add(sliceSize.multiply(height));

x0 = x1;
}
BigDecimal pi = sum.multiply(new BigDecimal(4));

2006 JavaOneSM Conference | Session TS-3117 | 33

Parallelizing the Computation

● Slice the problem… (parallelize the loop)
● Organizing principle: Task Parallelization

● No dependency between tasks
● No data sharing, except for reducing the result
● Embarrassingly parallel

● Structuring patterns: SPMD, Master Worker
● Communication mechanism: Reduction

2006 JavaOneSM Conference | Session TS-3117 | 34

Code Sample: Computing Pi in Parallel
BigDecimal x0 = BigDecimal.ZERO;

while (x0 < BigDecimal.ONE) {
BigDecimal x1 = x0.add(sliceSize);

// create the task for this slice
Task task = new Task(x0, x1);

// send the task to be executed
// and add the results to the sum when its done
theHardPart(task);

x0 = x1;
}
BigDecimal pi = sum.multiply(new BigDecimal(4));

2006 JavaOneSM Conference | Session TS-3117 | 35

The Hard Part…
#fire off server
GSC=`qsub -sync n -N gsee-gsc -v GSEE_HOME=$GSEE_HOME -v \
GRID_HOME=$GRID_HOME -t 1-100:1
#get id from return
MATCH=”\(.*\) \(.*\) \([0-9]*\)\.\([0-9]*\)-\([0-
9]*\):\([0-9]*\)“ GSCparsed=(`echo $GSC | sed -n -e
”s/${MATCH}/\3/p“`)
#wait for service to start before proceeding
GSCstatus=0
until [[(”$GSCstatus“ > 0)]] do
GSCstatus=$(qstat -s r | nawk '/'${GSCparsed}'/{var1+=1}
END {print var1}')
sleep 10
done
#now submit task(s) using service
~/integral-pi.sh $1
#clean up
$(qdel $GSCparsed)

2006 JavaOneSM Conference | Session TS-3117 | 36

Agenda

Background
Grid and Utility Computing
The Sun Grid Compute Utility

Distributed Parallel Computing Paradigm
Problem Space
Solution Space
Implementation Mechanisms

Compute Server
Overview
Demo

2006 JavaOneSM Conference | Session TS-3117 | 37

Compute Server Project Overview

● Sun Grid Developers Network project that
eases use of Sun Grid

● Supports Master/Worker pattern
● Sub-dividable into independent pieces of work—tasks
● Single master generates tasks
● Multiple workers process the tasks

● IDE integration to support development
● NetBeans™ software plugin provides templates

and tools
● Local debug environment
● Packing/unpacking grid resources

2006 JavaOneSM Conference | Session TS-3117 | 38

Compute Server Project Overview
(Cont.)

● Content experts not Distributed Computing
Experts
● Compute Server takes care of the details

● Provisioning of master and workers
● Distribution of tasks to workers
● Facilitates feedback and output

● Simple Java programming model
● Single-threaded POJOs

● Single-threaded tasks executed by workers
● Single-threaded task generator executed by master
● Output processed off-grid

2006 JavaOneSM Conference | Session TS-3117 | 39

What We Will See

● Using the NetBeans IDE
● Create a Compute Server project
● “Write” the application-specific code—Pi in parallel
● Test locally to ensure correctness
● Specify key execution parameters
● Generate package for submission to Sun Grid

● Submit to Sun Grid
● Use IDE to process output and displays results

2006 JavaOneSM Conference | Session TS-3117 | 40

DEMO
Sun Compute Server

2006 JavaOneSM Conference | Session TS-3117 | 41

Compute Server

2006 JavaOneSM Conference | Session TS-3117 | 42

Summary

● The Sun Grid Compute Utility is a unique
offering that brings the benefits of Grid and
Utility Computing to the masses

● The real challenge in realizing these benefits
is designing massively scaling applications

● Patterns have been established to help solve
this problem

● Frameworks such as Compute Server make
things easier

2006 JavaOneSM Conference | Session TS-3117 | 43

For More Information

Sessions
● 1109: The Sun Grid Compute Utility

BOFs
● 7995: What’s Next for Sun Grid

Labs
● 7135: Building Grid-Enabled Applications

URLs
● http://developer.network.com
● http://www.llnl.gov/computing/tutorials/parallel_comp

Related books
● Patterns for Parallel Programming by Timothy G. Mattson, et al

2006 JavaOneSM Conference | Session TS-3117 | 44

Q&A
amir.halfon@sun.com
keith.thompson@sun.com

http://developer.network.com

2006 JavaOneSM Conference | Session TS-3117 |

TS-3117

Advanced Sun™ Grid
Creating Applications
for Horizontal Scale
Amir Halfon
Keith Thompson
Sun Grid Engineering
Sun Microsystems, Inc.
http://developer.network.com

2006 JavaOneSM Conference | Session TS-3117 | 46

Supplemental
Material

2006 JavaOneSM Conference | Session TS-3117 | 47

Compute Server
Application Packaging

NetBeans IDE

User Application

Execution Parameters

Compute Server
On-grid Framework

Generator Class

Task Class
Supporting User
Code and Data

Master
Worker

Communication
Infrastructure

Resource Zip File

2006 JavaOneSM Conference | Session TS-3117 | 48

Compute Server
Task Generation and Distribution

Master

Generator
Task

Communication
Infrastructure

Worker

Task

Task

2006 JavaOneSM Conference | Session TS-3117 | 49

Communication
Infrastructure

Compute Server
Task Execution and Feedback

Feedback

Feedback

Master

Generator

Worker

Task

2006 JavaOneSM Conference | Session TS-3117 | 50

Worker

Task

Master

Generator

Compute Server
Job Output On-grid File System

Generator
Output

Task
Output

Communication
Infrastructure

2006 JavaOneSM Conference | Session TS-3117 | 51

Compute Server
Output Processing

Job Output Zip File

Generator
Output

Task
Output

NetBeans IDE

JobOutputProcessor
Class

2006 JavaOneSM Conference | Session TS-3117 | 52

Generator Interface
public interface Generator<F, TO, GO> {

public interface Context<GO> {

void addOutput(GO output);
}

public enum State {

GENERATE,
WAIT,
DONE

}

...

2006 JavaOneSM Conference | Session TS-3117 | 53

Generator Interface (Cont.)

public void init(Context<GO> genCtx, String... args)
throws Exception;

public State getState() throws Exception;

public Task<F, TO> generate() throws Exception;

public void consume(F feedback) throws Exception;

public void done() throws Exception;

}

2006 JavaOneSM Conference | Session TS-3117 | 54

Task Interface

public interface Task<F, O> {

public interface Context<GO> {

public void setFeedback(F feedback);
public void setOutput(O output);
public void addTask(Task<F, O>);

}

public void run(Context<F, O> taskCtx) throws Exception;
}

