@ Sun

- The Professional
Open Source Company

JavaOne

S e e

Introducing Seam

Gavin King

JBoss
gavin.king@jboss.com
http://jpboss.com/products/seam

T1S-3352

2006 JavaOne®™ Conference | Session TS-3352 | jaua.sun.com )"ji':IUEIOI'IE!(Sf



JavaOne

DEMO

Hibernate Tools

java.sun.com/javaone/sf



Java™ Platform, Enterprise Edition 5
Programming Model

JavaServer™ Faces 1.2 technology
Template language
Extensible component model for widgets
“Managed bean” component model
JavaBeans™ specification with dependency injection
XML-based declaration
Session/request/application contexts
Defines interactions between the page and managed beans
Fine-grained event model (true MVC)
Phased request lifecycle
EL for binding controls to managed beans
XML-based “Navigation rules”
Ad hoc mapping from logical outcomes to URL

%%Sun 2006 JavaOne®™ Conference | Session TS-3352 | 3 iava.sun.com/iavaone/sf



Java EE 5 Programming Model

* Enterprise JavaBeans™ (EJB™) 3.0
specification
* Component model for transactional components
* Dependency injection
* Declarative transaction and persistence context demarcation
* Sophisticated state management

* ORM for persistence
* Annotation-based programming model

@%Sun 2006 JavaOne® Conference | Session TS-3352 | 4 java .sun.com/javaone/sf



Let’s Suppose We Have Some Data

create table Document (
id bigint not null primary key,
title varchar (100) not null unique,
summary varchar (1000) not null,
content clob not null

of’f@SZﬂ’l 2006 JavaOne®™ Conference | Session TS-3352 | 5 iava .sun.com/iavaone/sf



We’ll Use an Entity Bean

@Entity
public Document {
@Id @GeneratedValue private Long id;

private String title;
private String summary
private String content;

//getters and setters...

%*%Sun 2006 JavaOne®" Conference | Session TS-3352 |

6

java.sun.com/javaone/sf



A JSF-EL value

Search Page binding

<h:form>
<table>
<tr>
<td>Document Id</td>

<td><h:inputText
value="#{documentEditor.id}"/></td>

</tr>
</table>

<h:commaJaButton value="“Find
action="#{documentEditor.get}"

</h:form>

s con

@SM?} 2006 JavaOne® Conference | Session TS-3352 | 7 iava .sun.com/iavaone/sf

A JSF-EL method

binding



Edit Page

<h:form>
<table>
<tr>
<td>Title</td>
<td>
<h:inputText value="“#{documentEditor.title}”>
<f:validateLength maximum=“100"/>
</h:inputText>
</td>
</tr> A JSF validator
<tr>
<td>Real Name</td>
<td>
<h:inputText value=“#{documentEditor.summary}”>
<f:validateLength maximum=“1000"/>
</h:inputText>
</td>
</tr>
<tr>
<td>Password</td>
<td><h:inputText value="“#{documentEditor.content}”/></td>
</tr>
</table>

<div><h:messages/></div>

<h:commandButton value=“Save" action="#{documentEditor.save}"/>
</h:form>

@Sun 2006 JavaOne® Conference | Session TS-3352 | 8 iava .sun.com/iavaone/sf

sssssssssss



We Could Use a Stateless
Session Bean

@Stateless
public EditDocumentBean implements EditDocument {
@PersistenceContext

private EntityManager em;

public Document get(Long id) ({

return em. find (Document.class, id);

}

public Document save (Document doc) ({
return em.merge (doc) ;

}

é’f@SMﬂ } 2006 JavaOne® Conference | Session TS-3352 | 9 java.sun.com/iavaone/sf



And a “Backing Bean”

Properties bound

public class DocumentEditor { to cont
private Long id;
private Document document;

value

public String getId() { return id; }
public void setId(Long id) { this.id = id; }

public String getTitle() { return document.getTitle(); }
public void setTitle(String title) { document.setTitle(title

//etc. ..

private EditDocument getEditDocument() ({
return (EditDocument) new InitialContext() .lookup(..);

}

public String get() {
document = getEditDocument.get(id) ;
return document==null ? “notFound” : “success”;

}

.7
public String save() ({

document = getEditDocument () .save (document) ;
return “success”;

5" ovtcome

2006 JavaOne®™ Conference | Session TS-3352 |

rols via the
bindings

)}

Action listener
methods bound to

controls via the
method bindings

10 java.sun.com/javaone/sf



Declare the Managed Bean

<managed-bean>
<managed-bean-name>documentEditor</managed-bean-name>
<managed-bean-class>

The name of
a contextual

com. jboss.docs.DocumentEditor

</managed-bean-class> variable we
<managed-bean-scope>session</managed-bean-scope> can refer to in
</managed-bean> * the EL

This is a session-

scoped
component!

2006 JavaOnes Conference | Session TS-3352 | 11 java.sun.com/javaone/sf



%

JavaServer Faces Technology
Navigation Rules

Navigation rules map
° logical, named
“outcomes” to URL of
the resulting view

<navigation-rule>

<from-view-id>/getDocument. jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>editDocument. jsp</to-view-id>
</navigation-case>

</navigation-rule> The outcome returned

by the action listener
<navigation-rule> method

<from-view-id>/editDocument. jsp</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>findDocument. jsp</to-view-id>
</navigation-case>
</navigation-rule>

2006 JavaOneS Conference | Session TS-3352 | 12 java.sun.com/javaone/sf



Compared to J2EE™ Technology

* Much simpler code

Fewer artifacts (no DTO, for example)

Less noise (EJB specification boilerplate, Struts
boilerplate)

More transparent (no direct calls to HttpSession,
HttpRequest)

Much simpler ORM (even compared to Hibernate)
Finer grained components

2006 JavaOnes" Conference | SessionTS-3352 | 13 java.sun.com/javaone/sf



Compared to J2EE Technology

* Much simpler code
* Fewer artifacts (no DTO, for example)
* Less noise (EJB specification boilerplate, Struts boilerplate)
* More transparent (no direct calls to HttpSession, HitpRequest)
* Much simpler ORM (even compared to Hibernate)
* Finer grained components

* Also more powerful for complex problems

* JavaServer Faces technology is amazingly flexible and
extensible

- EJB specification interceptors support a kind of “AOP lite”
* Powerful ORM engine

@Sun 2006 JavaOnes" Conference | Session TS-3352 | 14 java.sun.com/javaone/sf



@ Sun

Compared to J2EE Technology

Much simpler code
* Fewer artifacts (no DTO, for example)
* Less noise (EJB specification boilerplate, Struts boilerplate)
*  More transparent (no direct calls to HttpSession, HttpRequest)
* Much simpler ORM (even compared to Hibernate)
* Finer grained components

Also more powerful for complex problems
* JavaServer Faces is amazingly flexible and extensible
* EJB specification interceptors support a kind of “AOP lite”
* Powerful ORM engine

Unit testable

* All these components (except the JavaServer Pages™ specifications)
may be unit tested using JUnit or TestNG

2006 JavaOnesM Conference | Session TS-3352 | 15 iava .sun.com/iavaone/sf



Room for Improvement

* The managed bean is just noise—its concern
IS pure “glue”

* And it accounts for more LOC than any other
component!

* It doesn'’t really decouple layers, in fact the code
IS more coupled than it would otherwise be

2006 JavaOne®™ Conference | Session TS-3352 | 16 java .sun.com/javaone/sf



Room for Improvement

* The managed bean is just noise—its concern
IS pure “glue’

* And it accounts for more LOC than any other
component!

* It doesn'’t really decouple layers, in fact the code
IS more coupled than it would otherwise be

* This code does not work in a multi-window
application
* And to make it work is a major architecture change!

@Sun 2006 JavaOnes" Conference | Session TS-3352 | 17 java.sun.com/javaone/sf



Room for Improvement

* The managed bean is just noise—its concern is
pure “glue’

* And it accounts for more LOC than any other component!

* It doesn’t really decouple layers, in fact the code is more
coupled than it would otherwise be

* This code does not work in a multi-window application
* And to make it work is a major architecture change!

* The application leaks memory
* The backing bean sits in the session until the user logs out
* In more complex apps, this is often a source of bugs!

@SM?} 2006 JavaOne® Conference | Session TS-3352 | 18 iava .sun.com/iavaone/sf



g microsystems

Room for Improvement

The managed bean is just noise—its concern is pure “glue”
* And it accounts for more LOC than any other component!

* It doesn’t really decouple layers, in fact the code is more coupled
than it would otherwise be

This code does not work in a multi-window application
* And to make it work is a major architecture change!

The application leaks memory
* The backing bean sits in the session until the user logs out
* In more complex apps, this is often a source of bugs!

“Flow” is weakly defined
* Navigation rules are totally ad hoc and difficult to visualize
* How can this code be aware of the long-running business process?

2006 JavaOne®™ Conference | Session TS-3352 | 19 iava .sun.com/iavaone/sf



Room for Improvement

The managed bean is just noise—its concern is pure “glue”
* And it accounts for more LOC than any other component!

* It doesn'’t really decouple layers, in fact the code is more coupled
than it would otherwise be

* This code does not work in a multi-window application
* And to make it work is a major architecture change!

* The application leaks memory
* The backing bean sits in the session until the user logs out
* In more complex apps, this is often a source of bugs!

* “Flow” is weakly defined
* Navigation rules are totally ad hoc and difficult to visualize
*  How can this code be aware of the long-running business process?

* JavaServer Faces technology is still using XML where it should
be using annotations

2006 JavaOnes™ Conference | Session TS-3352 | 20 iava .sun.com/iavaone/sf



The Case for SFSB

+ “Stateful session beans are unscalable™... why?

* Replicating conversational state in a clustered
environment (needed for transparent failover)
IS somewhat expensive

@Sun 2006 JavaOnes™ Conference | Session TS-3352 | 21 java.sun.com/javaone/sf



The Case for SFSB

+ “Stateful session beans are unscalable”... why?

* Replicating conversational state in a clustered
environment (needed for transparent failover)
IS somewhat expensive

* Solution 1: keep all state in the database

@Sun 2006 JavaOnes™ Conference | Session TS-3352 | 22 java.sun.com/javaone/sf

sssssssssssss



The Case for SFSB

+ “Stateful session beans are unscalable”... why?

* Replicating conversational state in a clustered
environment (needed for transparent failover)
IS somewhat expensive
* Solution 1: keep all state in the database

* Traffic to/from database is even more expensive
(database is the least scalable tier)

* S0, inevitably, end up needing a second-level cache

* Second-level cache must be kept transactionally
consistent between the database and every node on
the cluster—even more expensive!

@%Sun 2006 JavaOne® Conference | Session TS-3352 | 23 java .sun.com/javaone/sf



The Case for SFSB

« “Stateful session beans are unscalable”... why?

* Replicating conversational state in a clustered environment
(needed for transparent failover) is somewhat expensive

* Solution 1: keep all state in the database

 Traffic to/from database is even more expensive (database
is the least scalable tier)

* So, inevitably, end up needing a second-level cache

* Second-level cache must be kept transactionally consistent
between the database and every node on the cluster—even
more expensive!

* Solution 2: keep state in the HitpSession

@Sun 2006 JavaOnes" Conference | Session TS-3352 | 24 java.sun.com/javaone/sf



The Case for SFSB

« “Stateful session beans are unscalable” ... why?

* Replicating conversational state in a clustered environment
(needed for transparent failover) is somewhat expensive

* Solution 1: keep all state in the database

 Traffic to/from database is even more expensive (database is
the least scalable tier)

* S0, inevitably, end up needing a second-level cache

* Second-level cache must be kept transactionally consistent between
the database and every node on the cluster—even more expensive!

* Solution 2: keep state in the HttpSession
* Totally nuts, since HttpSession is exactly the same as a SFSB
* But it does not have dirty-checking

* And methods of a JavaBeans specification in the session can’t
be transactional

‘%%SM?} 2006 JavaOne® Conference | Session TS-3352 | 25 iava .sun.com/iavaone/sf



JBoss Seam

* Unify the two component models
+ Simplify Java EE 5 technology, filling a gap
* Improve usability of JavaServer Faces technology

@SM?} 2006 JavaOne® Conference | Session TS-3352 | 26 iava .sun.com/iavaone/sf



JBoss Seam

* Unify the two component models
* Simplify Java EE 5 technology, filling a gap
* Improve usability of JavaServer Faces technology

* Integrate |BPM
* BPM technology for the masses

@Sun 2006 JavaOne® Conference | Session TS-3352 | 27 java.sun.com/javaone/sf

sssssssssss



JBoss Seam

* Unify the two component models
* Simplify Java EE 5 technology, filling a gap
* Improve usability of JavaServer Faces technology

* Integrate |BPM

* BPM technology for the masses

* Deprecate so-called stateless architecture

* Managed application state—more robust, more
performant, richer user experience

* Take advantage of recent advances in clustering
technology

of’f@SZﬂ’l 2006 JavaOne® Conference | Session TS-3352 | 28 iava .sun.com/iavaone/sf



JBoss Seam

Unify the two component models
*  Simplify Java EE 5 technology, filling a gap
* Improve usability of JavaServer Faces technology

Integrate BPM
* BPM technology for the masses

Deprecate so-called stateless architecture

* Managed application state—more robust, more performant,
richer user experience

* Take advantage of recent advances in clustering technology

Decouple the technology from the execution environment
* Run EJB 3-based apps in Tomcat
* Orin TestNG
* Use Seam with JavaBeans specifications and Hibernate

2006 JavaOne®M Conference | Session TS-3352 | 29 iava .sun.com/iavaone/sf



JBoss Seam

Unify the two component models
« Simplify Java EE 5 technology, filling a gap
* Improve usability of JavaServer Faces technology

Integrate BPM
*  BPM technology for the masses

Deprecate so-called stateless architecture

* Managed application state—more robust, more performant,
richer user experience

* Take advantage of recent advances in clustering technology

Decouple the technology from the execution environment
*  Run EJB 3-based apps in Tomcat
* Orin TestNG
*  Use Seam with JavaBeans specifications and Hibernate

Enable richer user experience

2006 JavaOneS™ Conference | Session TS-3352 | 30

java.sun.com/javaone/sf



Java

Contextual Components

Most of the problems relate directly or indirectly
to state management

The contexts defined by the servlet spec are not
meaningful in terms of the application

EJB technology itself has no strong model of state
management

We need a richer context model that includes “logical”
contexts that are meaningful to the application

2006 JavaOnes" Conference | Session TS-3352 | 31 java.sun.com/javaone/sf



Contextual Components

* Most of the problems relate directly or indirectly to
state management

* The contexts defined by the servlet spec are not meaningful
in terms of the application

- EJB technology itself has no strong model of state management
* We need a richer context model that includes “logical” contexts
that are meaningful to the application

* We also need to fix the mismatch between the

JavaServer Faces technology and EJB 3.0-based
component models

* We should be able to use annotations everywhere

* An EJB specification should be able to be a JavaServer Faces-
based managed bean (and vice versa)

2006 JavaOne®M Conference | Session TS-3352 | 32 java .sun.com/javaone/sf



Contextual Components

* Most of the problems relate directly or indirectly to state management

*  The contexts defined by the servlet spec are not meaningful in terms
of the application

* EJB technology itself has no strong model of state management
*  We need a richer context model that includes “logical” contexts that
are meaningful to the application
* We also need to fix the mismatch between the JavaServer Faces
technology and EJB 3.0-based component models
*  We should be able to use annotations everywhere
* An EJB specification should be able to be a JavaServer Faces-based
managed bean (and vice versa)
* It makes sense to think of binding EJB-based components directly
to the JavaServer Faces-based view

* A session bean acts just like a backing bean, providing event listener
methods, etc.

*  The entity bean provides data to the form, and accepts user input

‘%%SM?} 2006 JavaOne® Conference | Session TS-3352 | 33 iava .sun.com/iavaone/sf



Slight Change to the Edit Page

<h:form>
<table>
<tr>
<td>Title</td>
<td>
<h:inputText value=“#{documentEditor.document.title}”>
<f:validateLength maximum=“100"/>
</h:inputText>
</td> Bind view to the
</tr> entity bean directly
<tr>
<td>Real Name</td>
<td>
<h:inputText value=“#{documentEditor.document.summary}”>
<f:validateLength maximum=“1000"/>
</h:inputText>
</td>
</tr>
<tr>
<td>Password</td>
<td><h:inputText value="“#{documentEditor.document.content}”/></td>
</tr>
</table>

<h:messages/>

<h:commandButton value=“Save" action="#{documentEditor.savel}l"/>
</h:form>

@SM?} 2006 JavaOne® Conference | Session TS-3352 | 34 iava .sun.com/iavaone/sf



Our First Seam Component

The @Name annotation

@Stateful binds the component to a

@Name (“documentEditor”)
public EditDocumentBean implements EditDocument {

contextual variable—it’s
just like <managed-bean-

@PersistenceContext name> in the JSF XML

private EntityManager em;
private Long id;
public void setId(Long id) { this.id = id; }

private Document document; The @Begin annotation

public Document getDocument() { return document; } defines the beginning of a
logical scope—it starts a
conversation

@Begin ®—
public String get() {
document = em.find(Document.class, id);

return document==null ? “"notFound” : “success”;
} The @End annotation ends

*  the conversation—a
@End conversation can also end

by being timed out

public String save (Document doc) {
document = em.merge (doc) ;
return “"success”;

}

2006 JavaOnes™ Conference | Session TS-3352 | 35 java .sun.com/javaone/sf



Y g

The Seam Context Model

Seam defines a rich context model for stateful components,
enabling container-management of application state

The contexts are:

EVENT

PAGE
CONVERSATION
SESSTION
PROCESS

APPLICATION

Components are assigned to a scope using the @Scope annotation

The highlighted “logical” contexts are demarcated by the
application itself

For now, this is always done with annotations like @Begin, REnd,
@BeginProcess, (@BeginTask

2006 JavaOne®M Conference | Session TS-3352 | 36 java .sun.com/javaone/sf



JavaOne

DEMO

Seam Hotel Booking

java.sun.com/javaone/sf



Conversations

* Conversations are not that exciting until you really start thinking
about them:

*  Multi-window operation
* Back button support
* “Workspace management”

*  Nested conversations
* Multiple concurrent inner conversations within an outer conversation
* A stack of continuable states

* How is state stored between requests?
* Server-side conversations (HttpSession + conversation timeout)
- Client-side conversations (serialize into the page)
* Business process state is made persistent by BPM

é’f@SMﬂ 2006 JavaOne®™ Conference | Session TS-3352 | 38 java .sun.com/javaone/sf



JavaOne

DEMO

Seam Issue Tracker

java.sun.com/javaone/sf



Pageflow

Two models for conversational pageflow

The stateless model: JavaServer Faces technology
navigation rules

Ad hoc navigation (the app must handle backbutton)
Actions tied to Ul widgets

The stateful model: jBPM pageflow
No ad hoc navigation (back button bypassed)

Actions tied to Ul widgets or called directly from
pageflow transitions

Simple applications only need the
stateless model

Some applications need both models

”%:”fSZﬂ’l 2006 JavaOne® Conference | Session TS-3352 | 40 java .sun.com/javaone/sf



JBPM Pageflow Definition

o ==5Start State=>
start

o <=Decision=>
CIJ

get
falke true
= e:e:Pégezszs [ I:Igl =:=.’:Pa£!e:=:=
notfound | | edit

5 ::::Page::::
done

@Sun 2006 JavaOnes Conference | Session TS-3352 | 41 java.sun.com/javaone/sf

sssssssssss



Search Page

<h:form>
<table>
<tr>
<td>Document Id</td>

<td><h:inputText
value="#{documentEditor.id}"/></td>

</tr>
</table>

<h:commandButton value=“Find”/>
</h:form>

The method binding is

no longer needed

@Sun 2006 JavaOnes™ Conference | Session TS-3352 | 42 java.sun.com/javaone/sf

sssssssssssss



JBPM Pageflow Definition

<pageflow-definition name=“editDocument”>

A jBPM state

<start-page name=“start” page=“/search.jsp”>
<transition to=“get”>
<action expression=“#{documentEditor.get}”/>
</transition>
</start-page>

<decision name=“get” expression=“#{documentEditor.found}”>
<transition name=“false” to=“not found”/>
<transition name=“true” to=“edit”/>

</decision>

<page name=“not found" page="“/notFound.jsp”>
<end-conversation/>
</page>

<page name=“edit" page="“/editDocument.jsp”>
<transition to=“done”>
<action expression=“#{documentEditor.save}”/>
</transition>
</page>

<page name=“done” page="“/findDocument.jsp”>
<end-conversation/>
</page>

</pageflow-definition>

2006 JavaOne®M Conference | Session TS-3352

43

transition action,
instead of a JSF
action listener

A jBPM decision
node, instead of a
JSF navigation rule

Each <page> node
is a jBPM wait state

— the pageflow
“waits” for user
input

java.sun.com/javaone/sf



No Process Logic in Business Logic!

@Stateful

@Name (“documentEditor”)

public EditDocumentBean implements EditDocument {
@PersistenceContext private EntityManager em;
private Long id;
public void setId(Long id) { this.id = id; }

When the
component is first
created, the
pageflow execution
begins

private Document document;
public Document getDocument() { return document; }

@Create @Begin (pageflow="“editDocument”)
public void start() {}

public void get() {
document = em.find (Document.class, id);

public boolean isFound() { Notice that the

return document!=null; outcomes have
} disappeared from the

component code

QEnd
public void save (Document doc) {
document = em.merge (doc) ;

}

@Sun } 2006 JavaOnes" Conference | Session TS-3352 | 44 java.sun.com/javaone/sf



JavaOne

DEMO

Seam DVD Store (1)

java.sun.com/javaone/sf



%

What About the Business Process?

Different from a conversation

* Long-running (persistent)

* Multi-user

* (The lifespan of a business process instance is longer than the process

definition!)

* A conversation that is significant in terms of the overarching
business process is called a “task”

* Driven from the jBPM task list screen

* We demarcate work done in a task using @ReginTask /
@ResumeTask and REndTask

* Work done in the scope of a task also has access to the PROCESS
scope

* In addition to the task’s CONVERSATION scope

2006 JavaOne®M Conference | Session TS-3352 | 46 java .sun.com/javaone/sf



Start a Business Process

@Name (“documentSubmission”)

@Stateful

public class DocumentSubmissionBean implements DocumentSubmission {

@PersistenceContext entityManger; Outject documentld to

@Out (scope=PROCESS) Long documentId; the business process

i ntex
private Document document; context

//some conversation

Create a new business

o—

process instance

@CreateProcess (definition="DocumentSubmission”)
public String submitDocument() {
documentId = document.getId() ;

return “submitted”;

2006 JavaOnes Conference | Session TS-3352 | 47 java.sun.com/javaone/sf



JBPM Process Definition

' g <<Start State>>

start
' ¥ <<Task Node>>
. review
reject " approve
<<Fnd -‘.E‘:i:‘éfe:s:s ‘::“::l'_:.ﬂ'd State==
rejected approved

@Sun 2006 JavaOne® Conference | Session TS-3352 | 48 iava .sun.com/iavaone/sf

sssssssssss



JBPM Process Definition

<process-definition name="DocumentSubmission'">

In this case, the wait states
<start-state name=“start”> are <task> nodes, where

</start-state> waits for the user to begin
work on a task

<task-node name="review">

<task name="review">
<assignment actorId="“#{user .manager.id}” />
</task>

A jBPM task assignment,
via EL evaluated in the

Seam contexts

<transition name="approve" to=“approved”>
<action expression=“#{email . sendApprovalEmaill}l”/>
</transition>

<transition name="reject" to=“rejected"/>
</task-node>

<end-state name=“approved"/>
<end-state name=“rejected"/>

</process-definition> . .
2006 JavaOne®™ Conference | Session TS-3352 | 49 java .sun.com/javaone/sf

ems



Perform the Task

@Name (“reviewDocument”)

@Stateful

public class ReviewDocumentBean implements ReviewDocument {

}

@Out Document document; .
document outjected to the
event context

@PersistenceContext entityManger; documentld injected from
business process context
@In Long documentId; P

@BeginTask
public String getDocument() {

document = entityManger.find (Document.class, documentId);

return “reviewDocument”;
End the task, specifying
} a transition name

@EndTask (transition="approve”)

public String approve() { return “documentApproved”; }

@EndTask (transition="reject”)

public String approve() { return “documentRejected”; }

2006 JavaOne®™ Conference | Session TS-3352 | 50 iava .sun.com/javaone/sf



DEMO

* Seam DVD Store (2)

@Szm 2006 JavaOne® Conference | Session TS-3352 | 51 iava .sun.com/iavaone/sf

sssssssssss



What About Dependency Injection?

Dependency injection is broken for stateful components
A contextual variable can be written to, as well as read!
Its value changes over time

A component in a wider scope must be able to have a reference
to a component in a narrower scope

Dependency injection was designed with J2EE technology-style
stateless services in mind—just look at that word “dependency”

It is usually implemented in a static, unidirectional, and
non-contextual way

For stateful components, we need bijection
Dynamic, contextual, bidirectional

Don’t think of this in terms of “dependency”

Think about this as aliasing a contextual variable into the namespace
of the component

”%:”’SMTZ 2006 JavaOneSM Conference | Session TS-3352 | 52 iava.sun.com/iavaone/sf



Bijection

@Stateless
@Name (“changePassword”)

public class ChangePasswordBean implements Login ({

@PersistenceContext

F
private EntjtyManager em;

@QIn @Out

private User currentUser;

public String changePassword() {

currentUser = em.merge (currentUser) ;

The QIn annotation injects
the value of the contextual
variable named
currentUser into the
instance variable each time
the component is invoked

The @Out annotation
“outjects” the value of the
instance variable back to

the currentUser
contextual variable at the
end of the invocation

2006 JavaOne®™ Conference | Session TS-3352 | 53 iava .sun.com/javaone/sf



Conversations and Persistence

The notion of persistence context is central to ORM
A canonicalization of pk—Java-based instance
Without it, you lose referential integrity
It is also a natural cache

A process-scoped persistence context is evil
Requires in-memory locking and sophisticated deadlock detection
A transaction-scoped persistence context has problems if you re-use
objects across transactions
LazylnitializationException navigating lazy associations
NonUniqueObjectException reassociating detached instances
Less opportunity for caching (workaround: use a second-level cache, which is quite unscalable)

EJB 3 specification-style component-scoped persistence context is nice, but...
Not held open for entire request (while rendering view)
Problems propagating across components

Solution: conversation-scoped persistence contexts
Much, much better than well-known “open session in view” pattern!

S
4

’SM?’I 2006 JavaOne®" Conference | Session TS-3352 | 54 java.sun.com/javaone/sf



JavaOne

DEMO

Seam Remoting

java.sun.com/javaone/sf



Roadmap

Seam 1.0 CR 1 out now

* JSR 168 Portlet Specification
* Seam Remoting

* i18n enhancements

Seam 1.0 final in May
Seam 1.1 in Q3

* Asynchronicity/Calendaring
* JBoss Rules integration

Seam 1.5in Q4
- Seam for SOA/ESB

Future
* Seam for rich clients?

2006 JavaOneS™ Conference | Session TS-3352 | 56

java.sun.com/javaone/sf



JavaOne

e e e e

java.sun.com/javaone/sf



JavaOne

e e e e

DEMO

java.sun.com/javaone/sf



@ Sun

- The Professional
Open Source Company

JavaOne

S e e

Introducing Seam

Gavin King

JBoss
gavin.king@jboss.com
http://jpboss.com/products/seam

T1S-3352

2006 JavaOne®™ Conference | Session TS-3352 | jaua.sun.com )"ji':IUEIOI'IE!(Sf



