
2006 JavaOneSM Conference | Session TS-3352 |

Introducing Seam
Gavin King
JBoss
gavin.king@jboss.com
http://jboss.com/products/seam

TS-3352

2006 JavaOneSM Conference | Session TS-3352 | 2

DEMO
Hibernate Tools

2006 JavaOneSM Conference | Session TS-3352 | 3

Java™ Platform, Enterprise Edition 5
Programming Model
• JavaServer™ Faces 1.2 technology

• Template language
• Extensible component model for widgets

• “Managed bean” component model
• JavaBeans™ specification with dependency injection
• XML-based declaration
• Session/request/application contexts

• Defines interactions between the page and managed beans
• Fine-grained event model (true MVC)
• Phased request lifecycle
• EL for binding controls to managed beans

• XML-based “Navigation rules”
• Ad hoc mapping from logical outcomes to URL

2006 JavaOneSM Conference | Session TS-3352 | 4

Java EE 5 Programming Model

• Enterprise JavaBeans™ (EJB™) 3.0
specification
• Component model for transactional components

• Dependency injection
• Declarative transaction and persistence context demarcation
• Sophisticated state management

• ORM for persistence
• Annotation-based programming model

2006 JavaOneSM Conference | Session TS-3352 | 5

Let’s Suppose We Have Some Data

create table Document (
id bigint not null primary key,
title varchar(100) not null unique,
summary varchar(1000) not null,
content clob not null

)

2006 JavaOneSM Conference | Session TS-3352 | 6

We’ll Use an Entity Bean

@Entity
public Document {

@Id @GeneratedValue private Long id;
private String title;
private String summary
private String content;

 //getters and setters...
}

Surrogate Key
Identifier Attribute

2006 JavaOneSM Conference | Session TS-3352 | 7

Search Page
<h:form>
 <table>
 <tr>
 <td>Document Id</td>
 <td><h:inputText value="#{documentEditor.id}"/></td>
 </tr>
 </table>
 <h:commandButton value=“Find" action="#{documentEditor.get}"/>
</h:form>

A JSF-EL value
binding

A JSF control A JSF-EL method
binding

2006 JavaOneSM Conference | Session TS-3352 | 8

<h:form>
 <table>
 <tr>
 <td>Title</td>
 <td>
 <h:inputText value=“#{documentEditor.title}”>
 <f:validateLength maximum=“100"/>
 </h:inputText>
 </td>
 </tr>
 <tr>
 <td>Real Name</td>
 <td>
 <h:inputText value=“#{documentEditor.summary}”>
 <f:validateLength maximum=“1000"/>
 </h:inputText>
 </td>
 </tr>
 <tr>
 <td>Password</td>
 <td><h:inputText value=“#{documentEditor.content}”/></td>
 </tr>
 </table>
 <div><h:messages/></div>
 <h:commandButton value=“Save" action="#{documentEditor.save}"/>
</h:form>

Edit Page

A JSF validator

2006 JavaOneSM Conference | Session TS-3352 | 9

We Could Use a Stateless
Session Bean

@Stateless
public EditDocumentBean implements EditDocument {

@PersistenceContext
private EntityManager em;

public Document get(Long id) {
return em.find(Document.class, id);
}

public Document save(Document doc) {
return em.merge(doc);
}

}

2006 JavaOneSM Conference | Session TS-3352 | 10

And a “Backing Bean”
public class DocumentEditor {

private Long id;
private Document document;

public String getId() { return id; }
public void setId(Long id) { this.id = id; }
public String getTitle() { return document.getTitle(); }
public void setTitle(String title) { document.setTitle(title); }
//etc...
private EditDocument getEditDocument() {
return (EditDocument) new InitialContext().lookup(…);

}
public String get() {
document = getEditDocument.get(id);
return document==null ? “notFound” : “success”;

}
public String save() {
document = getEditDocument().save(document);
return “success”;

}
}

Properties bound
to controls via the

value bindings

Action listener
methods bound to

controls via the
method bindings

JSF outcome

2006 JavaOneSM Conference | Session TS-3352 | 11

Declare the Managed Bean

<managed-bean>
<managed-bean-name>documentEditor</managed-bean-name>
<managed-bean-class>

com.jboss.docs.DocumentEditor
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

This is a session-
scoped

component!

The name of
a contextual
variable we

can refer to in
the EL

2006 JavaOneSM Conference | Session TS-3352 | 12

JavaServer Faces Technology
Navigation Rules

<navigation-rule>
<from-view-id>/getDocument.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>editDocument.jsp</to-view-id>

</navigation-case>
</navigation-rule>

<navigation-rule>
<from-view-id>/editDocument.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>findDocument.jsp</to-view-id>

</navigation-case>
</navigation-rule>

Navigation rules map
logical, named

“outcomes” to URL of
the resulting view

The outcome returned
by the action listener

method

2006 JavaOneSM Conference | Session TS-3352 | 13

Compared to J2EE™ Technology

• Much simpler code
• Fewer artifacts (no DTO, for example)
• Less noise (EJB specification boilerplate, Struts

boilerplate)
• More transparent (no direct calls to HttpSession,

HttpRequest)
• Much simpler ORM (even compared to Hibernate)
• Finer grained components

2006 JavaOneSM Conference | Session TS-3352 | 14

Compared to J2EE Technology
• Much simpler code

• Fewer artifacts (no DTO, for example)
• Less noise (EJB specification boilerplate, Struts boilerplate)
• More transparent (no direct calls to HttpSession, HttpRequest)
• Much simpler ORM (even compared to Hibernate)
• Finer grained components

• Also more powerful for complex problems
• JavaServer Faces technology is amazingly flexible and

extensible
• EJB specification interceptors support a kind of “AOP lite”
• Powerful ORM engine

2006 JavaOneSM Conference | Session TS-3352 | 15

Compared to J2EE Technology
• Much simpler code

• Fewer artifacts (no DTO, for example)
• Less noise (EJB specification boilerplate, Struts boilerplate)
• More transparent (no direct calls to HttpSession, HttpRequest)
• Much simpler ORM (even compared to Hibernate)
• Finer grained components

• Also more powerful for complex problems
• JavaServer Faces is amazingly flexible and extensible
• EJB specification interceptors support a kind of “AOP lite”
• Powerful ORM engine

• Unit testable
• All these components (except the JavaServer Pages™ specifications)

may be unit tested using JUnit or TestNG

2006 JavaOneSM Conference | Session TS-3352 | 16

Room for Improvement

• The managed bean is just noise—its concern
is pure “glue”
• And it accounts for more LOC than any other

component!
• It doesn’t really decouple layers, in fact the code

is more coupled than it would otherwise be

2006 JavaOneSM Conference | Session TS-3352 | 17

Room for Improvement

• The managed bean is just noise—its concern
is pure “glue”
• And it accounts for more LOC than any other

component!
• It doesn’t really decouple layers, in fact the code

is more coupled than it would otherwise be
• This code does not work in a multi-window

application
• And to make it work is a major architecture change!

2006 JavaOneSM Conference | Session TS-3352 | 18

Room for Improvement
• The managed bean is just noise—its concern is

pure “glue”
• And it accounts for more LOC than any other component!
• It doesn’t really decouple layers, in fact the code is more

coupled than it would otherwise be

• This code does not work in a multi-window application
• And to make it work is a major architecture change!

• The application leaks memory
• The backing bean sits in the session until the user logs out
• In more complex apps, this is often a source of bugs!

2006 JavaOneSM Conference | Session TS-3352 | 19

Room for Improvement
• The managed bean is just noise—its concern is pure “glue”

• And it accounts for more LOC than any other component!
• It doesn’t really decouple layers, in fact the code is more coupled

than it would otherwise be

• This code does not work in a multi-window application
• And to make it work is a major architecture change!

• The application leaks memory
• The backing bean sits in the session until the user logs out
• In more complex apps, this is often a source of bugs!

• “Flow” is weakly defined
• Navigation rules are totally ad hoc and difficult to visualize
• How can this code be aware of the long-running business process?

2006 JavaOneSM Conference | Session TS-3352 | 20

Room for Improvement
• The managed bean is just noise—its concern is pure “glue”

• And it accounts for more LOC than any other component!
• It doesn’t really decouple layers, in fact the code is more coupled

than it would otherwise be

• This code does not work in a multi-window application
• And to make it work is a major architecture change!

• The application leaks memory
• The backing bean sits in the session until the user logs out
• In more complex apps, this is often a source of bugs!

• “Flow” is weakly defined
• Navigation rules are totally ad hoc and difficult to visualize
• How can this code be aware of the long-running business process?

• JavaServer Faces technology is still using XML where it should
be using annotations

2006 JavaOneSM Conference | Session TS-3352 | 21

The Case for SFSB

• “Stateful session beans are unscalable”… why?
• Replicating conversational state in a clustered

environment (needed for transparent failover)
is somewhat expensive

2006 JavaOneSM Conference | Session TS-3352 | 22

The Case for SFSB

• “Stateful session beans are unscalable”… why?
• Replicating conversational state in a clustered

environment (needed for transparent failover)
is somewhat expensive

• Solution 1: keep all state in the database

2006 JavaOneSM Conference | Session TS-3352 | 23

The Case for SFSB

• “Stateful session beans are unscalable”… why?
• Replicating conversational state in a clustered

environment (needed for transparent failover)
is somewhat expensive

• Solution 1: keep all state in the database
• Traffic to/from database is even more expensive

(database is the least scalable tier)
• So, inevitably, end up needing a second-level cache
• Second-level cache must be kept transactionally

consistent between the database and every node on
the cluster—even more expensive!

2006 JavaOneSM Conference | Session TS-3352 | 24

The Case for SFSB
• “Stateful session beans are unscalable”… why?

• Replicating conversational state in a clustered environment
(needed for transparent failover) is somewhat expensive

• Solution 1: keep all state in the database
• Traffic to/from database is even more expensive (database

is the least scalable tier)
• So, inevitably, end up needing a second-level cache
• Second-level cache must be kept transactionally consistent

between the database and every node on the cluster—even
more expensive!

• Solution 2: keep state in the HttpSession

2006 JavaOneSM Conference | Session TS-3352 | 25

The Case for SFSB
• “Stateful session beans are unscalable” … why?

• Replicating conversational state in a clustered environment
(needed for transparent failover) is somewhat expensive

• Solution 1: keep all state in the database
• Traffic to/from database is even more expensive (database is

the least scalable tier)
• So, inevitably, end up needing a second-level cache
• Second-level cache must be kept transactionally consistent between

the database and every node on the cluster—even more expensive!

• Solution 2: keep state in the HttpSession
• Totally nuts, since HttpSession is exactly the same as a SFSB
• But it does not have dirty-checking
• And methods of a JavaBeans specification in the session can’t

be transactional

2006 JavaOneSM Conference | Session TS-3352 | 26

JBoss Seam

• Unify the two component models
• Simplify Java EE 5 technology, filling a gap
• Improve usability of JavaServer Faces technology

2006 JavaOneSM Conference | Session TS-3352 | 27

JBoss Seam

• Unify the two component models
• Simplify Java EE 5 technology, filling a gap
• Improve usability of JavaServer Faces technology

• Integrate jBPM
• BPM technology for the masses

2006 JavaOneSM Conference | Session TS-3352 | 28

JBoss Seam

• Unify the two component models
• Simplify Java EE 5 technology, filling a gap
• Improve usability of JavaServer Faces technology

• Integrate jBPM
• BPM technology for the masses

• Deprecate so-called stateless architecture
• Managed application state—more robust, more

performant, richer user experience
• Take advantage of recent advances in clustering

technology

2006 JavaOneSM Conference | Session TS-3352 | 29

JBoss Seam
• Unify the two component models

• Simplify Java EE 5 technology, filling a gap
• Improve usability of JavaServer Faces technology

• Integrate jBPM
• BPM technology for the masses

• Deprecate so-called stateless architecture
• Managed application state—more robust, more performant,

richer user experience
• Take advantage of recent advances in clustering technology

• Decouple the technology from the execution environment
• Run EJB 3-based apps in Tomcat
• Or in TestNG
• Use Seam with JavaBeans specifications and Hibernate

2006 JavaOneSM Conference | Session TS-3352 | 30

JBoss Seam
• Unify the two component models

• Simplify Java EE 5 technology, filling a gap
• Improve usability of JavaServer Faces technology

• Integrate jBPM
• BPM technology for the masses

• Deprecate so-called stateless architecture
• Managed application state—more robust, more performant,

richer user experience
• Take advantage of recent advances in clustering technology

• Decouple the technology from the execution environment
• Run EJB 3-based apps in Tomcat
• Or in TestNG
• Use Seam with JavaBeans specifications and Hibernate

• Enable richer user experience

2006 JavaOneSM Conference | Session TS-3352 | 31

Contextual Components

• Most of the problems relate directly or indirectly
to state management
• The contexts defined by the servlet spec are not

meaningful in terms of the application
• EJB technology itself has no strong model of state

management
• We need a richer context model that includes “logical”

contexts that are meaningful to the application

2006 JavaOneSM Conference | Session TS-3352 | 32

Contextual Components
• Most of the problems relate directly or indirectly to

state management
• The contexts defined by the servlet spec are not meaningful

in terms of the application
• EJB technology itself has no strong model of state management
• We need a richer context model that includes “logical” contexts

that are meaningful to the application

• We also need to fix the mismatch between the
JavaServer Faces technology and EJB 3.0-based
component models
• We should be able to use annotations everywhere
• An EJB specification should be able to be a JavaServer Faces-

based managed bean (and vice versa)

2006 JavaOneSM Conference | Session TS-3352 | 33

Contextual Components
• Most of the problems relate directly or indirectly to state management

• The contexts defined by the servlet spec are not meaningful in terms
of the application

• EJB technology itself has no strong model of state management
• We need a richer context model that includes “logical” contexts that

are meaningful to the application

• We also need to fix the mismatch between the JavaServer Faces
technology and EJB 3.0-based component models

• We should be able to use annotations everywhere
• An EJB specification should be able to be a JavaServer Faces-based

managed bean (and vice versa)

• It makes sense to think of binding EJB-based components directly
to the JavaServer Faces-based view

• A session bean acts just like a backing bean, providing event listener
methods, etc.

• The entity bean provides data to the form, and accepts user input

2006 JavaOneSM Conference | Session TS-3352 | 34

Slight Change to the Edit Page
<h:form>
 <table>
 <tr>
 <td>Title</td>
 <td>
 <h:inputText value=“#{documentEditor.document.title}”>
 <f:validateLength maximum=“100"/>
 </h:inputText>
 </td>
 </tr>
 <tr>
 <td>Real Name</td>
 <td>
 <h:inputText value=“#{documentEditor.document.summary}”>
 <f:validateLength maximum=“1000"/>
 </h:inputText>
 </td>
 </tr>
 <tr>
 <td>Password</td>
 <td><h:inputText value=“#{documentEditor.document.content}”/></td>
 </tr>
 </table>
 <h:messages/>
 <h:commandButton value=“Save" action="#{documentEditor.save}"/>
</h:form>

Bind view to the
entity bean directly

2006 JavaOneSM Conference | Session TS-3352 | 35

@Stateful
@Name(“documentEditor”)
public EditDocumentBean implements EditDocument {

@PersistenceContext
private EntityManager em;
private Long id;
public void setId(Long id) { this.id = id; }

private Document document;
public Document getDocument() { return document; }

@Begin
public String get() {
document = em.find(Document.class, id);
return document==null ? “notFound” : “success”;

}

@End
public String save(Document doc) {
document = em.merge(doc);
return “success”;

}
}

Our First Seam Component
The @Name annotation

binds the component to a
contextual variable—it’s

just like <managed-bean-
name> in the JSF XML

The @Begin annotation
defines the beginning of a
logical scope—it starts a

conversation

The @End annotation ends
the conversation—a

conversation can also end
by being timed out

2006 JavaOneSM Conference | Session TS-3352 | 36

The Seam Context Model
• Seam defines a rich context model for stateful components,

enabling container-management of application state
• The contexts are:

• EVENT
• PAGE
• CONVERSATION
• SESSION
• PROCESS
• APPLICATION

• Components are assigned to a scope using the @Scope annotation
• The highlighted “logical” contexts are demarcated by the

application itself
• For now, this is always done with annotations like @Begin, @End,

@BeginProcess, @BeginTask

2006 JavaOneSM Conference | Session TS-3352 | 37

DEMO
Seam Hotel Booking

2006 JavaOneSM Conference | Session TS-3352 | 38

Conversations
• Conversations are not that exciting until you really start thinking

about them:
• Multi-window operation
• Back button support
• “Workspace management”

• Nested conversations
• Multiple concurrent inner conversations within an outer conversation
• A stack of continuable states

• How is state stored between requests?
• Server-side conversations (HttpSession + conversation timeout)
• Client-side conversations (serialize into the page)
• Business process state is made persistent by jBPM

2006 JavaOneSM Conference | Session TS-3352 | 39

DEMO
Seam Issue Tracker

2006 JavaOneSM Conference | Session TS-3352 | 40

Pageflow

• Two models for conversational pageflow
• The stateless model: JavaServer Faces technology

navigation rules
• Ad hoc navigation (the app must handle backbutton)
• Actions tied to UI widgets

• The stateful model: jBPM pageflow
• No ad hoc navigation (back button bypassed)
• Actions tied to UI widgets or called directly from

pageflow transitions

• Simple applications only need the
stateless model

• Some applications need both models

2006 JavaOneSM Conference | Session TS-3352 | 41

jBPM Pageflow Definition

2006 JavaOneSM Conference | Session TS-3352 | 42

Search Page
<h:form>
 <table>
 <tr>
 <td>Document Id</td>
 <td><h:inputText value="#{documentEditor.id}"/></td>
 </tr>
 </table>
 <h:commandButton value=“Find”/>
</h:form>

The method binding is
no longer needed

2006 JavaOneSM Conference | Session TS-3352 | 43

 <pageflow-definition name=“editDocument”>

 <start-page name=“start” page=“/search.jsp”>
 <transition to=“get”>
 <action expression=“#{documentEditor.get}”/>
 </transition>
 </start-page>

 <decision name=“get” expression=“#{documentEditor.found}”>
 <transition name=“false” to=“not found”/>
 <transition name=“true” to=“edit”/>
 </decision>

 <page name=“not found" page=“/notFound.jsp”>
 <end-conversation/>
 </page>

 <page name=“edit" page=“/editDocument.jsp”>
 <transition to=“done”>
 <action expression=“#{documentEditor.save}”/>
 </transition>
 </page>

 <page name=“done” page=“/findDocument.jsp”>
 <end-conversation/>
 </page>

 </pageflow-definition>

jBPM Pageflow Definition
A jBPM state

transition action,
instead of a JSF
action listener

A jBPM decision
node, instead of a

JSF navigation rule

Each <page> node
is a jBPM wait state

– the pageflow
“waits” for user

input

2006 JavaOneSM Conference | Session TS-3352 | 44

No Process Logic in Business Logic!
@Stateful
@Name(“documentEditor”)
public EditDocumentBean implements EditDocument {

@PersistenceContext private EntityManager em;
private Long id;
public void setId(Long id) { this.id = id; }

private Document document;
public Document getDocument() { return document; }

@Create @Begin(pageflow=“editDocument”)
public void start() {}

public void get() {
document = em.find(Document.class, id);

}

public boolean isFound() {
return document!=null;

}

@End
public void save(Document doc) {
document = em.merge(doc);

}
}

When the
component is first

created, the
pageflow execution

begins

Notice that the
outcomes have

disappeared from the
component code

2006 JavaOneSM Conference | Session TS-3352 | 45

DEMO
Seam DVD Store (1)

2006 JavaOneSM Conference | Session TS-3352 | 46

What About the Business Process?
• Different from a conversation

• Long-running (persistent)
• Multi-user
• (The lifespan of a business process instance is longer than the process

definition!)

• A conversation that is significant in terms of the overarching
business process is called a “task”
• Driven from the jBPM task list screen

• We demarcate work done in a task using @BeginTask /
@ResumeTask and @EndTask

• Work done in the scope of a task also has access to the PROCESS
scope
• In addition to the task’s CONVERSATION scope

2006 JavaOneSM Conference | Session TS-3352 | 47

Start a Business Process
@Name(“documentSubmission”)
@Stateful
public class DocumentSubmissionBean implements DocumentSubmission {
 @PersistenceContext entityManger;
 @Out(scope=PROCESS) Long documentId;
 private Document document;

 //some conversation ...

 @CreateProcess(definition=“DocumentSubmission”)
 public String submitDocument() {
 documentId = document.getId();
 return “submitted”;
 }
}

Create a new business
process instance

Outject documentId to
the business process

context

2006 JavaOneSM Conference | Session TS-3352 | 48

jBPM Process Definition

2006 JavaOneSM Conference | Session TS-3352 | 49

jBPM Process Definition
<process-definition name="DocumentSubmission">
 <start-state name=“start”>
 <transition to="review"/>
 </start-state>
 <task-node name="review">
 <task name="review">
 <assignment actorId=“#{user.manager.id}” />
 </task>

 <transition name="approve" to=“approved”>
 <action expression=“#{email.sendApprovalEmail}”/>
 </transition>
 <transition name="reject" to=“rejected"/>
 </task-node>
 <end-state name=“approved"/>
 <end-state name=“rejected"/>
</process-definition>

In this case, the wait states
are <task> nodes, where
the process execution

waits for the user to begin
work on a task

A jBPM task assignment,
via EL evaluated in the

Seam contexts

2006 JavaOneSM Conference | Session TS-3352 | 50

@Name(“reviewDocument”)
@Stateful
public class ReviewDocumentBean implements ReviewDocument {
 @PersistenceContext entityManger;
 @In Long documentId;
 @Out Document document;

 @BeginTask
 public String getDocument() {
 document = entityManger.find(Document.class, documentId);
 return “reviewDocument”;
 }

 @EndTask(transition=“approve”)
 public String approve() { return “documentApproved”; }

 @EndTask(transition=“reject”)
 public String approve() { return “documentRejected”; }
}

Perform the Task

documentId injected from
business process context

document outjected to the
event context

End the task, specifying
a transition name

2006 JavaOneSM Conference | Session TS-3352 | 51

DEMO

• Seam DVD Store (2)

2006 JavaOneSM Conference | Session TS-3352 | 52

What About Dependency Injection?
• Dependency injection is broken for stateful components

• A contextual variable can be written to, as well as read!
• Its value changes over time
• A component in a wider scope must be able to have a reference

to a component in a narrower scope

• Dependency injection was designed with J2EE technology-style
stateless services in mind—just look at that word “dependency”
• It is usually implemented in a static, unidirectional, and

non-contextual way

• For stateful components, we need bijection
• Dynamic, contextual, bidirectional

• Don’t think of this in terms of “dependency”
• Think about this as aliasing a contextual variable into the namespace

of the component

2006 JavaOneSM Conference | Session TS-3352 | 53

Bijection
@Stateless
@Name(“changePassword”)
public class ChangePasswordBean implements Login {

@PersistenceContext
private EntityManager em;

@In @Out
private User currentUser;

public String changePassword() {
currentUser = em.merge(currentUser);

}
}

The @In annotation injects
the value of the contextual
variable named
currentUser into the
instance variable each time
the component is invoked

The @Out annotation
“outjects” the value of the
instance variable back to
the currentUser
contextual variable at the
end of the invocation

2006 JavaOneSM Conference | Session TS-3352 | 54

Conversations and Persistence
• The notion of persistence context is central to ORM

• A canonicalization of pk—Java-based instance
• Without it, you lose referential integrity
• It is also a natural cache

• A process-scoped persistence context is evil
• Requires in-memory locking and sophisticated deadlock detection

• A transaction-scoped persistence context has problems if you re-use
objects across transactions

• LazyInitializationException navigating lazy associations
• NonUniqueObjectException reassociating detached instances
• Less opportunity for caching (workaround: use a second-level cache, which is quite unscalable)

• EJB 3 specification-style component-scoped persistence context is nice, but…
• Not held open for entire request (while rendering view)
• Problems propagating across components

• Solution: conversation-scoped persistence contexts
• Much, much better than well-known “open session in view” pattern!

2006 JavaOneSM Conference | Session TS-3352 | 55

DEMO
Seam Remoting

2006 JavaOneSM Conference | Session TS-3352 | 56

Roadmap
• Seam 1.0 CR 1 out now

• JSR 168 Portlet Specification
• Seam Remoting
• i18n enhancements

• Seam 1.0 final in May
• Seam 1.1 in Q3

• Asynchronicity/Calendaring
• JBoss Rules integration

• Seam 1.5 in Q4
• Seam for SOA/ESB

• Future
• Seam for rich clients?

2006 JavaOneSM Conference | Session TS-3352 | 57

Q&A

2006 JavaOneSM Conference | Session TS-3352 | 58

DEMO

2006 JavaOneSM Conference | Session TS-3352 |

Introducing Seam
Gavin King
JBoss
gavin.king@jboss.com
http://jboss.com/products/seam

TS-3352

