@ Sun

Enterprise JavaBeans " 3.0

Linda DeMichiel
Sun Microsystems, Inc.

TS-3396

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.
2006 JavaOne®M Conference | Session TS-3396 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

& JavaOne

Goal of This Talk

2006 JavaOnesM Conference | Session 3396 | 2 iava.sun.com/iavaone/sf

Agenda

EJB 3.0 approach

Simplified Bean classes
Client view

Using container services
Current status and summary

2006 JavaOnesM Conference | Session

3396 | 3

java.sun.com/javaone/sf

Motivation

- EJB" 2.1 technology very powerful,
but too complex

» Original goal of EJB technology: providing
a managed environment to aid enterprise

application development

2006 JavaOne®M Conference | Session 3396 | 4 iava .sun.com/iavaone/sf

EJB Container

- Managed environment for the execution
of components

» Container interposes to provide services
- Container-provided services

« Concurrency Distribution
» Transactions EIS integration
* Environment access Resource pooling

* Security Persistence

2006 JavaOnesM Conference | Session 3396 | 5 java .sun.com/javaone/sf

Problem

» APIs to support use of services were designed
for container, not application

- EJBHome interface
EJBODbject interface
EnterpriseBean interfaces
JNDI interfaces
Deployment descriptor

» They got the job done, but at the cost of
complexity and heavy-weight component
programming model

@ii@Sun 2006 JavaOnesM Conference | Session 3396 | 6 java .sun.com/javaone/sf

®Sun

Example

// EJB 2.1 Stateless Session Bean: Bean Class

public class PayrollBean
implements javax.ejb.SessionBean ({

SessionContext ctx;
DataSource payrollDB;

public void setSessionContext (SessionContext ctx) ({
this.ctx = ctx;

public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbRemove() {}

2006 JavaOne®M Conference | Session 3396 | 7 iava .sun.com/javaone/sf

Example

// EJB 2.1 Stateless Session Bean: Bean Class (continued)

public void ejbCreate() {
Context initialCtx = new InitialContext() ;
payrollDB = (DataSource)initialCtx.lookup
(V“java:com/env/jdbc/empDB”) ;
}

public void setTaxDeductions (int empId,int deductions)

{

Connection conn = payrollDB.getConnection() ;
Statement stmt = conn.createStatement() ;

of’f@SZﬂ’l 2006 JavaOne®™ Conference | Session 3396 | 8 iava .sun.com/iavaone/sf

Example

// EJB 2.1 Stateless Session Bean: Interfaces

public interface PayrollHome
extends javax.ejb.EJBLocalHome {

public Payroll create() throws CreateException;
public interface Payroll
extends javax.ejb.EJBLocalObject {

public void setTaxDeductions (int empID, int
deductions) ;

‘%%SM?} 2006 JavaOne®™ Conference | Session 3396 | 9 iava .sun.com/iavaone/sf

Example

// EJB 2.1 Stateless Session Bean: Deployment Descriptor

<session>
<ejb-name>PayrollBean</ejb-name>
<local-home>com.example.PayrollHome</local-home>
<local>com.example.Payroll</local>
<ejb-class>com.example.PayrollBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<resource-ref>
<res-ref-name>jdbc/empDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>
</session>

%

45”71 2006 JavaOne®™ Conference | Session 3396 | 10 java .sun.com/javaone/sf

Example

// Deployment Descriptor (continued)
<assembly-descriptor>
<method-permission>
<unchecked/>
<method>
<ejb-name>PayrollBean</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
<container-transaction>
<method>
<ejb-name>PayrollBean</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

@f@Sun 2006 JavaOnes" Conference | Session 3396 | 11 java .sun.com/javaone/sf

EJB 3.0 Goal

FIX THIS!

@Szm 2006 JavaOne®" Conference | Session 3396 | 12 iava .sun.com/iavaone/sf

sssssssssss

How?
EJB 3.0 Approach

More work is done by container,
less by developer

Inversion of contractual view

Contracts benefit developer rather than container
Bean specifies what it needs through metadata
No longer written to unneeded container interfaces
Deployment descriptor no longer required
Configuration by exception

Container provides requested services to bean

”%:%S’Mﬂ 2006 JavaOneSM Conference | Session 3396 | java .sun.com/iavaone/sf

>,

Compatibility Constraints

Existing EJB applications work unchanged

New EJB components interoperate with existing
EJB components

Components can be updated or replaced without
change to existing clients

Clients can be updated without change to
existing components

Compatibility with other Java EE 5 APls

2006 JavaOneS" Conference | Session 3396 | iava .sun.com/iavaone/sf

@ Sun

Agenda

EJB 3.0 approach
Simplified Bean classes
Client view

Using container services
Current status and summary

2006 JavaOnesM Conference | Session

3396 | 15

java.sun.com/javaone/sf

Bean Classes

In EJB 3.0, session beans, message-driven
beans are ordinary Java classes

Container interface requirements removed
Bean type specified by annotation or XML

Annotations
@Stateless, @Stateful, @MessageDriven
Specified on bean class

EJB 2.x entity beans are unchanged

Java™ Persistence API entities provide new
functionality

@Entity applies to Java Persistence API entities only

@%’SM?’I 2006 JavaOneSM Conference | Session 3396 | iava .sun.com/iavaone/sf

Example

// EJB 2.1 Stateless Session Bean: Bean Class

public class PayrollBean
implements javax.ejb.SessionBean ({
SessionContext ctx;

public

void

this.ctx

}

public
public
public
public

public

void
void
void
void

void

setSessionContext (SessionContext ctx) {
= ctx;

ejbCreate() {...}
ejbActivate () {}
ejbPassivate () {}
ejbRemove () {}

setTaxDeductions (int empId, int

deductions) {

sssssssssss

2006 JavaOnes" Conference | Session 3396 | 17 iava .sun.com/iavaone/sf

Example

// EJB 3.0 Stateless Session Bean: Bean Class

@Stateless public class PayrollBean implements Payroll {

public void setTaxDeductions (int empId,int deductions)

{

@Sun 2006 JavaOne®™ Conference | Session 3396 | 18 iava .sun.com/iavaone/sf

sssssssssss

Business Interfaces

Plain Java language interface
Unless you want something else
EJBObject, EJBHome interface requirements removed

Either local or remote access
Local by default
Remote by annotation or deployment descriptor

Remote methods not required to throw
RemoteException

Bean class can implement its interface
Annotations: @Remote, @Local, @WebService

Can specify on bean class or interface

@%’SM?’I 2006 JavaOneSM Conference | Session 3396 | iava .sun.com/iavaone/sf

Example

// EJB 2.1 Stateless Session Bean: Interfaces

public interface PayrollHome
extends javax.ejb.EJBLocalHome ({

public Payroll create() throws CreateException;
public interface Payroll
extends javax.ejb.EJBLocalObject {

public void setTaxDeductions (int empId, int
deductions) ;

@Sun 2006 JavaOne®™ Conference | Session 3396 | 20 iava .sun.com/iavaone/sf

ssssssssssss

Example

// EJB 3.0 Stateless Session Bean: Business Interface

public interface Payroll {

public void setTaxDeductions (int empId, int
deductions) ;

@Sun 2006 JavaOne®" Conference | Session 3396 | 21 iava .sun.com/iavaone/sf

sssssssssss

Example

// EJB 3.0 Stateless Session Bean: Remote Interface

@Remote public interface Payroll {

public void setTaxDeductions (int empId, int
deductions) ;

@Sun 2006 JavaOne®" Conference | Session 3396 | 22 iava .sun.com/iavaone/sf

sssssssssss

Example

// EJB 3.0 Stateless Session Bean:
// Alternative: Remote Interface specified on bean class

@Stateless (@Remote public class PayrollBean
implements Payroll ({

public void setTaxDeductions (int empId,int deductions)

{

2006 JavaOneSM Conference | Session 3396 | 23 iava .sun.com/iavaone/sf

Message-Driven Beans

* Message listener interface is business interface

* Bean class implements it or designates with
@MessagelListener

» No requirement to implement other interfaces

* Annotations
* @MessageDriven

é’f@Sun 2006 JavaOnesM Conference | Session 3396 | 24 java .sun.com/javaone/sf

Example

// EJB 3.0 Message-driven bean: Bean Class

@MessageDriven public class PayrollMDB
implements javax.]jms.MessageListener ({

public void onMessage (Message msg) {

@Sun 2006 JavaOne®™ Conference | Session 3396 | 25 iava .sun.com/iavaone/sf

sssssssssss

Environment Access

- By dependency injection or simple lookup
» Use of JNDI interfaces no longer needed

- Specify dependencies by annotations or XML

- Annotations applied to:
 Instance variable or setter property => injection
- Bean class => dynamic lookup

2006 JavaOnesM Conference | Session 3396 | 26 java .sun.com/javaone/sf

Environment Access Annotations

@Resource

For connection factories, simple environment entries,
topics/queues, EJBContext, UserTransaction, etc.

@EJB

For EJB business interfaces or EJB Home interfaces

@PersistenceContext
For container-managed EntityManager

@PersistenceUnit
For EntityManagerFactory

”%:%S’Mﬂ 2006 JavaOneSM Conference | Session 3396 | java .sun.com/iavaone/sf

>,

Dependency Injection

- Bean instance is supplied with references
to resources in environment

* Qccurs when instance of bean class is created
* No assumptions as to order of injection

» Optional @PostConstruct method is called
when injection is complete

2006 JavaOnesM Conference | Session 3396 | 28 java .sun.com/javaone/sf

Example

// EJB 3.0 Stateless Session Bean: Bean Class
// Data access using injection and Java Persistence API

@Stateless public class PayrollBean implements Payroll ({
@PersistenceContext EntityManager payrollMgr;
public void setTaxDeductions (int empId,int deductions)

{
payrollMgr. find (Employee.class,

empld) .setTaxDeductions (deductions) ;

}

@SM?} 2006 JavaOne®™ Conference | Session 3396 | 29 iava .sun.com/iavaone/sf

Dynamic Environment Lookup

» Use EJBContext lookup method

» Dependencies declared using annotations
on bean class

%‘“@Sun 2006 JavaOne®™ Conference | Session 3396 | 30 iava .sun.com/javaone/sf

Example

// EJB 3.0 Stateless Session Bean
// Using dynamic lookup

@PersistenceContext (name="payrollMgr”)
@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

public void setTaxDeductions (int empId,int deductions)
{
EntityManager payrollMgr = ctx.lookup (“payrollMgr”) ;
payrollMgr. find (Employee.class,
empId) . setDeductions (deductions) ;

}

2006 JavaOnes" Conference | Session 3396 | 31 iava .sun.com/iavaone/sf

@ Sun

Agenda

EJB 3.0 approach

Simplified Bean classes
Client view

Using container services
Current status and summary

2006 JavaOnesM Conference | Session

3396 | 32

java.sun.com/javaone/sf

Simplification of Client View
How?

Use of dependency injection
Simple business interface view

Remova
Remova
Remova

of need for Home interface

of need for RemoteExceptions

of need for handling of other

checked exceptions

2006 JavaOne®sM™ Conference | Session 3396 | 33

java.sun.com/javaone/sf

Example

// EJB 2.1: Client View

Context initialContext = new InitialContext() ;
PayrollHome payrollHome = (PayrollHome)
initialContext.lookup (“java:comp/env/ejb/payroll”) ;

Payroll payroll = payrollHome.create()

// Use the bean

payroll.setTaxDeductions (1234, 3);

2006 JavaOne®M Conference | Session 3396 | 34 iava .sun.com/iavaone/sf

Example

// EJB 3.0: Client View

@EJB Payroll payroll;

// Use the bean

payroll.setTaxDeductions (1234, 3);

@Sun 2006 JavaOneSM Conference | Session 3396 | 35 iava .sun.com/iavaone/sf

sssssssssss

Removal of Home Interface

Stateless Session Beans
Home interface not needed anyway

Container creates or reuses bean instance when
business method is invoked

EJB 2.1 Home.create() method didn'’t really create
Stateful Session Beans

Container creates bean instance when business
method is invoked

Initialization is part of application semantics
Don’t need a separate interface for it!

Both support use of legacy home interfaces

@%’SM?’I 2006 JavaOneSM Conference | Session 3396 | iava .sun.com/iavaone/sf

@ Sun

Agenda

EJB 3.0 approach

Simplified Bean classes
Client view

Using container services
Current status and summary

2006 JavaOnesM Conference | Session

3396 | 37

java.sun.com/javaone/sf

Transactions
Transaction Demarcation Types

Container-managed transactions
Specify declaratively

Bean-managed transactions
UserTransaction API

Container-managed transaction demarcation
Is default

Annotation: @ TransactionManagement

Values: CONTAINER (default) or BEAN
Annotation is applied to bean class (or superclass)

@ii@Szm 2006 JavaOneSM Conference | Session 3396 | java .sun.com/javaone/sf

Container-managed Transactions
Transaction Attributes

Annotations are applied to bean class and/or
methods of bean class

Annotations applied to bean class apply to all methods
of bean class unless overridden at method-level

Annotations applied to method apply to method only

Annotation: @ TransactionAttribute

Values: REQUIRED (default), REQUIRES_NEW,
MANDATORY, NEVER, NOT_SUPPORTED,
SUPPORTS

@%’SM?’I 2006 JavaOneSM Conference | Session 3396 | iava .sun.com/iavaone/sf

Example

// EJB 3.0: Container-managed transactions

@Stateless public class PayrollBean implements Payroll {

@TransactionAttribute (MANDATORY)
public void setTaxDeductions (int empId,int deductions)

{

public int getTaxDeductions (int empId)
{

@SM?} 2006 JavaOne®™ Conference | Session 3396 | 40 iava .sun.com/iavaone/sf

Example

// EJB 3.0: Container-managed transactions

@TransactionAttribute (MANDATORY)
@Stateless public class PayrollBean implements Payroll ({

public void setTaxDeductions (int empId,int deductions)

{

@TransactionAttribute (REQUIRED)
public int getTaxDeductions (int empId)

{

@SM?} 2006 JavaOne® Conference | Session 3396 | 41 iava .sun.com/iavaone/sf

Example

// EJB 3.0: Bean-managed transactions

@TransactionManagement (BEAN)
@Stateless public class PayrollBean implements Payroll ({

@Resource UserTransaction utx;
@PersistenceContext EntityManager payrollMgr;

public void setTaxDeductions (int empId, int
deductions) {
utx.begin () ;
payrollMgr.find (Employee.class,
empId) . setDeductions (deductions) ;
utx.commit () ;

}

of’f@SZﬂ’l 2006 JavaOne® Conference | Session 3396 | 42 iava .sun.com/iavaone/sf

Security
Aspects

* Method permissions

+ Security roles that are allowed to execute a given set
of methods

 Caller principal

« Security principal under which a method is executed
* @RunAs for run-as principal

» Runtime security role determination

- isCallerInRole, getCallerPrincipal
* @DeclareRoles

é’f@Sun 2006 JavaOnesM Conference | Session 3396 | 43 java .sun.com/javaone/sf

Method Permissions

Annotations are applied to bean class and/or
methods of bean class

Annotations applied to bean class apply to all methods
of bean class unless overridden at method-level

Annotations applied to method apply to method only
No defaults

Annotations
@RolesAllowed

Value is a list of security role names

@PermitAll
@DenyAll (applicable at method-level only)

@%’SMW 2006 JavaOneSM Conference | Session 3396 | java .sun.com/iavaone/sf

Example

// EJB 3.0: Security View

@RolesAllowed (HR Manager)
@Stateless public class PayrollBean implements Payroll ({

public void setSalary(int empId, double salary) {

}

@RolesAllowed ({HR Manager, HR Admin})
public int getSalary(int empId)

{

@SM?} 2006 JavaOne®™ Conference | Session 3396 | 45 iava .sun.com/iavaone/sf

Event Notification
Bean Lifecycle Events

- EJB 2.1 specification required EnterpriseBean interfaces
EJB 3.0 specification: only specify events you need

Annotations:

* @PostConstruct
* @PreDestroy

* @PostActivate
* @PrePassivate

Annotations applied to method of bean class or method
of interceptor class

Same method can serve for multiple events

2006 JavaOneSM Conference | Session 3396 | 46 java .sun.com/javaone/sf

@ Sun

Example

// EJB 3.0: Event Notification

@Stateful public class TravelBookingBean
implements TravelBooking {

@PostConstruct

@QPostActivate
private void connectToBookingSystem() {...}

@PreDestroy

@QPrePassivate
private void disconnectFromBookingSystem() {...}

2006 JavaOne®M Conference | Session 3396 | 47 iava .sun.com/iavaone/sf

>,

Interceptors

Ease-of-use facility for more advanced cases

Container interposes on all business method
Invocations

Interceptors interpose after container

Invocation model: “around” methods
Wrappered around business method invocations

Control invocation of next method (interceptor
or business method)

Can manipulate arguments and results
Context data can be maintained by interceptor chain

2006 JavaOneSM Conference | Session 3396 | iava .sun.com/iavaone/sf

Interceptors

Default Interceptors
Apply to all business methods of components in ejb-jar

Specified in deployment descriptor
Due to lack of application-level metadata annotations

Class-level interceptors
Apply to business methods of bean class

Method-level interceptors
Apply to specific business method

Very flexible customization

Ability to exclude interceptors, reorder interceptors
for class or method

@%’SMW 2006 JavaOneSM Conference | Session 3396 | java .sun.com/iavaone/sf

Exceptions
System Exceptions

In EJB 2.1 specification
Remote system exceptions were checked exceptions
Subtypes of java.rmi.RemoteException

Local system exceptions were unchecked exceptions
Subtypes of EJBException

In EJB 3.0, system exceptions are unchecked
Extend EJBException

Same set of exceptions independent of whether
interface is local or remote

ConcurrentAccessException; NoSuchEJBEXxception;
EJBTransactionRequiredException;
EJBTransactionRolledbackException; EJBAccessException

@%’SM?’I 2006 JavaOneSM Conference | Session 3396 | iava .sun.com/iavaone/sf

Exceptions
Application Exceptions

- Business logic exceptions
» Can be checked or unchecked

» Annotation: @ApplicationException
* Applied to exception class (for unchecked exceptions)

+ Can specify whether container should mark transaction
for rollback

- Use rollback element

* @ApplicationException(rollback=true)
+ Defaults to false

@f@Sun 2006 JavaOnes" Conference | Session 3396 | 51 java .sun.com/javaone/sf

>,

Deployment Descriptors

Available as alternative to annotations
Some developers prefer them

Needed for application-level metadata
Default interceptors

Can be used to override (some) annotations

Useful for deferred configuration
Security attributes

Useful for multiple configurations
Java Persistence APl O/R mapping

Can be sparse, full, and/or metadata-complete

2006 JavaOneSM Conference | Session 3396 | iava .sun.com/iavaone/sf

@ Sun

Agenda

EJB 3.0 approach

Simplified Bean classes

Client view

Using container services
Current status and summary

2006 JavaOne®sM™ Conference | Session 3396 | 53

java.sun.com/javaone/sf

Current Status

- EJB 3.0 Specification Final Release last week
- EJB Simplified API
+ EJB Core Contracts
- Java Persistence AP

 //jcp.org/en/jsr/detail?id=220

» Reference implementation under Project
GlassFish as part of Java EE 5 platform release

2006 JavaOne®M Conference | Session 3396 | 54 java .sun.com/javaone/sf

>,

Summary

Major simplification of EJB technology

for developers
Beans are plain Java classes with plain Java interfaces
APls refocused on ease of use for developer
Easy access to container services and environment
Deployment descriptors available, but generally
unneeded

EJB 3.0 components interoperate with existing
components/applications

Gives developer powerful and easy-to-use
functionality

2006 JavaOneSM Conference | Session 3396 | iava .sun.com/iavaone/sf

For More Information

* Technical Sessions

+ TS-1365
+ TS-3395
- TS-3616
- TS-1887
- TS-9056

- URLs

Extending EJB 3.0 With Interceptors: Wed. @ 1:30pm
Java Persistence APIl: Wed. @ 2:45pm

Building EJB 3.0 Applications.... Thurs. @ 9:45am
Java Persistence in the Web Tier: Fri. @ 10:45am
Java Persistence in 60 Minutes: Fri. @ 2:30pm

 /ljicp.org/en/jsr/detail?id=220
 /ljava.sun.com/products/ejb/

2006 JavaOnesM Conference | Session 3396 | 56 java .sun.com/iavaone/sf

Java EE 5

Java
COMPATIBLE

ENTERPRISE EDITION

@Sun

Focus is on Ease of Development

Major Revamp of Programming Model

EJB 3.0 specification support for POJOs means
less to learn, less to code and less to maintain

New Java Persistence API makes object /
relational mapping cleaner and easier

New and updated Web Services (JAX-WS 2.0
and JAXB 2.0) simplifies SOA implementation

JavaServer" Faces 1.2 technology facilitates
building Web 2.0 Applications with AJAX

Annotations eliminate the need for deployment
descriptors, in most cases

Supported by NetBeans™ Enterprise Developer
Pack 5.5 Preview today

Get the SDK:
http://java.sun.com/javaee/downloads/

java.sun.com/javaone/sf

2006 JavaOne®™ Conference | Session TS-3396 | 58 jaua.sun.comfjauaone{sf

@ Sun

Enterprise JavaBeans " 3.0

Linda DeMichiel
Sun Microsystems, Inc.

TS-3396

2006 JavaOne®M Conference | Session TS-3396 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

