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Problem
Web applications are a mixed bag

* Consist of free navigations
* Browsing a product catalog
* Viewing product detalls

* And controlled page flows
* Completing a checkout process
* Applying for store credit

%‘“@Sun 2006 JavaOne® Conference | Session TS-3456 | 5 iava .sun.com/javaone/sf



Free Navigation
Characteristics

* A set of pages connected by links

* Each link accesses a public resource
* http://www.spring-shoes.com/catalog
* http://www.spring-shoes.com/catalog/nb/476

* Users have access to each link freely
* Links are often bookmarked

* There is no controlled page flow
* There Is no task to complete
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Controlled Page Flow
Characteristics

* A user task consisting of multiple steps
* Has a starting point
* Usually has an ending point

* Each task is accessible as a public resource
* http://www.spring-shoes.com/checkout

* A task guides a single user toward completion
of a business goal

* The progress of one user's task execution is
iIndependent of other users
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DEMO

Real-world examples
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Controller Characteristics
Free vs. controlled navigation

A free navigation controller is simple
Stateless

Renders the view of a resource when requested
Existing frameworks do a good job here

A controlled page flow controller is more complex
Stateful
Orchestrates a task with a linear progression

Renders views as necessary to allow the user
to participate in the task

Not the focus of most existing frameworks
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Controlled Navigation Challenges
What is traditionally difficult

Enforcing a linear progression
Preventing the user from jumping around
Preventing the same task from being completed twice

Managing state
Storing and accessing task state
Cleaning up the state of ended or expired tasks
Keeping server state in sync with the client

Preventing server state from being overwritten
by other tasks executing in parallel
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Java

Enforcing a Linear Progression
Conventional approach

The client drives the progression
Navigation hints are often embedded in URLs

order.do? currentPage=3

order.do?_finish=true

The controller validates that the client does the
right thing according to the flow navigation rules

Figures out what step the client says she is at
Ensures task steps are executed in the correct order
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Enforcing a linear progression

Conventional
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Enforcing a Linear Progression
Conventional implications

The client can attempt to short-circuit the flow
Maliciously or accidentally

order.do ?_conf irmed=true

The controller must prevent this

As a result both the client and controller are
often aware of flow navigation rules

This often leads to:
Hard coded navigation hints in your JSPs

Many if/else statements within your controller
Implementation

@Sun 2006 JavaOnes" Conference | Session TS-3456 | 14 java.sun.com/javaone/sf



WEBFLOW

@Szm 2006 JavaOne®M Conference | Session TS-3456 | 15 iava.sun.com/iavaone/sf



Enforcing a Linear Progression
Spring Web Flow approach

* The controller drives the progression not
the client

* The client simply provides the controller
input when asked

* Client is not navigation rule aware

client:
server:
client:
server:
client:
server:

start task

start; process input; render the starting form
submit

resume; process input; render the next form
submit

resume; finish; render confirmation
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Enforcing a linear progression
Spring Web Flow
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Enforcing a Linear Progression
Spring Web Flow benefits

The client can not short-circuit the flow

She can only provide the flow input from a
specific point when asked

The controller always knows what step the
client is at

You no longer have to figure this out

You get a callback to resume processing from
the correct point

All flow navigation rules are encapsulated
within the controller

Changing navigation rules does not impact clients
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Managing State

Conventional approach

The controller is stateless
Stores task context in the session

Cleans up context in the session after task
completion

Manages a session token to prevent completing
the same task execution more than once
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Code Sample

public Forward onFormSubmit (HttpServletRequest request) {
if (isStartRequest (request)) {
assertTaskNotInProgress (request) ;
createTaskContext (request) ;
return startingForm(request) ;
} else if (isResumeRequest (request)) {
assertSessionToken (request) ;
if (isCurrentForm(request)) {
updateSessionData (request) ;
return errors (request) ? currentForm(request)
nextForm(request) ;
} else {
return handleOutofSyncSubmit (request) ;
}
} else if (isFinishRequest (request)) {
assertSessionToken (request) ;
processSubmit (request) ;
cleanupSessionData (request) ;
removeSessionToken (request) ;
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Managing State

Conventional implications

Use of the back button refers to session state
captured at later point

Opening a new window overwrites the other
window’s data

Not properly cleaning up after task completion
brings consequences

Memory leaks

Duplicate submission

Including stale data in a new task execution
Flow short circuit
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Managing State
Spring Web Flow approach

* The controller is stateful
* Represents an executing task at a point in time

* Stored in a repository between requests

* Clients resume the controller to continue task
execution from a point in time
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Flow
Execution
Repository

Task

Execution
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Managing State
Spring Web Flow benefits

Use of the back button refers to the state of
the task execution at that point in history

Opening a new window clones an independent
task execution at the current step

When a task completes it is purged from its
repository

All managed state is eligible for garbage collection

It is impossible to continue a task that has completed
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Approach Summary

Spring Web Flow vs. Conventional

One controller, the flow, drives the entire task
execution

The flow pauses when client input is required

The flow resumes when client input is provided
Initiated by an event

Event processing logic is encapsulated within
the flow

Client has no knowledge of flow navigation rules

Can only influence navigation via an event model, can not
drive navigation
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Flow Definition
How do you define a flow?

* You use a domain-specific language (DSL)
« XML form is most popular
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XML Representation

<flow start-state="stepl”>
<my-state id=“stepl”>
<transition on=“event” to=“step2”/>
</my-state>
<my-state id=“step2”>
<transition on=“event” to=“finish”/>
</my-state>

<end-state id=“finish”/>

</flow>
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Flow Builder API

FlowBuilder builder = new AbstractFlowBuilder () {
protected void buildStates () {
addMyState (“'stepl”, on(“event”, to(“step2”))
addMyState (“step2”, on(“event”, to(“finish”));
addEndState (“finish”) ;

}
FlowAssembler assembler

new FlowAssembler (“myFlow”, builder)
assembler.assembleFlow() ;
Flow flow = builder.getResult() ;
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Flow Definition
Characteristics

Declarative instructions to an execution engine
A set of states that you define

Each state executes a behavior when entered
View states solicit user input
Action states execute commands
Decision states make routing decisions
Subflow states spawn child flows
End states terminate flows

Events you define drive state transitions
Transitions define the paths through the flow
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submit

start
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] Action State

() End State

@Szm 2006 JavaOnes™ Conference | Session TS-3456 | 33 iava .sun.com/iavaone/sf

sssssssssss



<flow start-state="enterPurchase’”>

<view-state id=“enterPurchase” view="purchaseForm”>
<transition on=%“submit” to=“"shippingRequired”>
<action bean=“form” method=“bindAndvValidate” />
</transition>
</view-state>

<decision-state id="“shippingRequired”>
<if test="“${purchase.shipping}”
then=“enterShipping” else=“placeOrder”/>
</decision-state>

<action-state id=“placeOrder”>
<action bean=“orderClerk”
method="“placeOrder (${purchase})” />
<transition on=“success” to=“showConfirmation”/>
</action-state>

<end-state id=“showConfirmation” wview=“confirmation”/>
<import resource=“purchase-flow-beans.xml”/>

</flow>
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Bean id to Implementation Binding

purchase-flow.xml
<action bean=“orderClerk”
method*"“placeOrder (${purchase})” />

purchase-flowtbeans.xml
<beans>

<bean id=“orderClerk” class=“example.StubOrderClerk”/>
</beans>

* Spring Web Flow can bind to any method on
any object:
public interface OrderClerk {

OrderConfirmation placeOrder (Purchase purchase);

v ...Without your object depending on SWF APIs
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Flow Definition
Benefits

One artifact defines all task controller logic

|s abstract; not concerned with:
State management
Servlet or Portlet APIs
URLs
Back button
Malicious clients

The execution system cares for those concerns

A flow definition defines a task executable
in any environment
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The same flow executing within a Servlet
and Portlet environment
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Steps to Flow Execution
Readying a flow for execution

* Deploy your flow definitions to a registry:

<beans>

<xmlFlowRegistry id="“registry”
flowlLocations="“/WEB-INF/flows/**/* xml” />

</beans>

* By default a flow is assigned a registry identifier
by convention

* purchase-flow.xml becomes purchase-flow
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Steps to Flow Execution
Readying a flow for execution

Configure the flow executor for the environment
you are running in

Spring MVC, JavaServer™ Faces, Struts supported
out-of-the-box

(Optional) Configure a strategy for how flow
executions will be persisted between requests

In the session
To the client

(Optional) Configure how flow executor
arguments are extracted from the request
From request parameters
From the request path
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Spring MVC Flow Executor

<beans>

<flowController name=“/*"
registry-ref="registry”
storage="client”
argumentExtractor="requestPath” />

</beans>

* Exposes flows in the registry for execution

* Uses request path parameterization to launch
new flow executions

* http://localhost/app/purchase
* http://localhost/app/credit \Registry identifier
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Flow Execution Rendering
Requirements

View selections made by your flows must be
resolvable to a response writer

Typically a view template
Template resolution is handled by the framework
SWEF is integrating with
ViewResolver (Spring MVC)

Supports JavaServer Pages™ technology, Velocity,
Freemarker, and custom views

Action forward (Struts)
View Name (JavaServer Faces technology)

View templates must output the flow execution
key to support a resume operation on submit
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Example Template (JSP™ Technology)

<form method=“post” action="${flowUrl}”>

<spring-webflow: flowExecutionKey/>
<input type="submit” name=" eventId submit”

value="Submit”>
</form>

* Flow execution key identifies a FlowExecution
In the repository

* Continues the conversation from the view-state
that selected this view

* Event id communicates what user action
occurred

* Drives a transition out of the current view-state
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Integrating Into Other Frameworks
Through an adaption layer
Struts
FlowAction executes all flows
View selections are mapped to action forwards
An action form adapter allows SWF data binding

JavaServer Faces platform

FlowPhasel.istener restores flow executions from
the repository on “restore view” phase

JSF components resolve flow expressions
Via FlowVariableResolver and FlowPropertyResolver

FlowNavigationHandler continues flows

Spring Web Flow is positioned as an
embeddable page flow engine
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JavaServer Faces Integration Example

<faces-config>

<navigation-handler>
o.s.webflow.executor. jsf.FlowNavigationHandler
</navigation-handler>

<property-resolver>

o.s.webflow.executor. jsf.FlowPropertyResolver
</property-resolver>
<variable-resolver>

o.s.webflow.executor. jsf.FlowVariableResolver
</wvariable-resolver>

<phase-listener>
o.s.webflow.executor. jsf.FlowPhaselistener
</phase-listener>

</flow>
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JavaServer Faces Integration Example

* Launching a flow as a command link
<h:commandLink value="Go" action="flowId:myflow"/>

* Resuming a flow with component binding
expressions

<h:form id="form">

<h:inputText id="propertyName"
value="#{managedBeanName.propertyName}" />

<h:commandButton type="submit" action="submit"/>
</h:form>
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Future
Spring Web Flow roadmap

* Nested, parallel flow executions
- JMX™-based flow execution management

* Monitor in-flight conversations

* Conversation history subsystem
* To support bread crumbs, statistics

* More integration

Tapestry

Business process management (BPM)

Acegi Security

Persistence providers (Session per flow)

Others?
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Getting Started
Spring Web Flow jumpstart

Access
http://www.springframework.com/download

Download Spring Web Flow 1.0 RC2

Extract zip archive

CD toprojects/build-spring-webflow
Execute ant samples to build sample apps

Deploy sample .WARs for evaluation

* Each sample is importable as a Eclipse project
for easy review
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Additional Resources
Spring Web Flow Related

* Reference and AP| documentation
* http://www.springframework.org/documentation

* Support forum
* http://forum.springframework.org

* Books
* Expert Spring MVC and Web Flow, Apress

* Confluence Wiki
* http://opensource2.atlassian.com/confluence/spring/display/WEBFLOW
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