@ Sun

i @\
\ ‘\

A

\INTERFACER2 1

Spring Web Flow
Dialogs for the Web

Keith Donald

Principal
Interface21
http://www.interface21.com

T1S-3456

2006 JavaOne®™ Conference | Session TS-3456 | jaua.sun.com /'ji':WEIOI'IEfo

¢ JavaOne

In the Next 60 Minutes...

2006 JavaOnes™ Conference | Session TS-3456 | 2 java.sun.com/javaone/sf

Agenda

Problem
Approach

Usage examples
Integration
Future

sssssssssssss

2006 JavaOneS™ Conference

Session TS-3456 | 3

java.sun.com/javaone/sf

Agenda

Problem
Approach

Usage examples
Integration
Future

sssssssssss

2006 JavaOneS™ Conference

Session TS-3456 | 4

java.sun.com/javaone/sf

Problem
Web applications are a mixed bag

* Consist of free navigations
* Browsing a product catalog
* Viewing product detalls

* And controlled page flows
* Completing a checkout process
* Applying for store credit

%‘“@Sun 2006 JavaOne® Conference | Session TS-3456 | 5 iava .sun.com/javaone/sf

Free Navigation
Characteristics

* A set of pages connected by links

* Each link accesses a public resource
* http://www.spring-shoes.com/catalog
* http://www.spring-shoes.com/catalog/nb/476

* Users have access to each link freely
* Links are often bookmarked

* There is no controlled page flow
* There Is no task to complete

2006 JavaOne®™ Conference | Session TS-3456 | 6 java .sun.com/javaone/sf

>,

Controlled Page Flow
Characteristics

* A user task consisting of multiple steps
* Has a starting point
* Usually has an ending point

* Each task is accessible as a public resource
* http://www.spring-shoes.com/checkout

* A task guides a single user toward completion
of a business goal

* The progress of one user's task execution is
iIndependent of other users

2006 JavaOnes" Conference | Session TS-3456 | 7 java.sun.com/javaone/sf

DEMO

Real-world examples

2006 JavaOne®™ Conference | Session TS-3456 | 8 jaua.sun.comfjauaone{sf

Controller Characteristics
Free vs. controlled navigation

A free navigation controller is simple
Stateless

Renders the view of a resource when requested
Existing frameworks do a good job here

A controlled page flow controller is more complex
Stateful
Orchestrates a task with a linear progression

Renders views as necessary to allow the user
to participate in the task

Not the focus of most existing frameworks

%%Sun 2006 JavaOne®™ Conference | Session TS-3456 | 9 iava.sun.com/iavaone/sf

Controlled Navigation Challenges
What is traditionally difficult

Enforcing a linear progression
Preventing the user from jumping around
Preventing the same task from being completed twice

Managing state
Storing and accessing task state
Cleaning up the state of ended or expired tasks
Keeping server state in sync with the client

Preventing server state from being overwritten
by other tasks executing in parallel

%%Sun 2006 JavaOne®™ Conference | Session TS-3456 | 10 iava.sun.com/iavaone/sf

Agenda

Problem
Approach

Usage examples
Integration
Future

sssssssssss

2006 JavaOneS™ Conference

Session TS-3456 | 11

java.sun.com/javaone/sf

Java

Enforcing a Linear Progression
Conventional approach

The client drives the progression
Navigation hints are often embedded in URLs

order.do? currentPage=3

order.do?_finish=true

The controller validates that the client does the
right thing according to the flow navigation rules

Figures out what step the client says she is at
Ensures task steps are executed in the correct order

@Sun 2006 JavaOnes™ Conference | Session TS-3456 | 12 java.sun.com/javaone/sf

DEMO

Enforcing a linear progression

Conventional

2006 JavaOnes" Conference | Session TS-3456 | 13 java.sun.com/javaone/sf

Enforcing a Linear Progression
Conventional implications

The client can attempt to short-circuit the flow
Maliciously or accidentally

order.do ?_conf irmed=true

The controller must prevent this

As a result both the client and controller are
often aware of flow navigation rules

This often leads to:
Hard coded navigation hints in your JSPs

Many if/else statements within your controller
Implementation

@Sun 2006 JavaOnes" Conference | Session TS-3456 | 14 java.sun.com/javaone/sf

WEBFLOW

@Szm 2006 JavaOne®M Conference | Session TS-3456 | 15 iava.sun.com/iavaone/sf

Enforcing a Linear Progression
Spring Web Flow approach

* The controller drives the progression not
the client

* The client simply provides the controller
input when asked

* Client is not navigation rule aware

client:
server:
client:
server:
client:
server:

start task

start; process input; render the starting form
submit

resume; process input; render the next form
submit

resume; finish; render confirmation

2006 JavaOnesM Conference | Session TS-3456 | 16 java .sun.com/javaone/sf

DEMO

Enforcing a linear progression
Spring Web Flow

2006 JavaOnes" Conference | Session TS-3456 | 17 java.sun.com/javaone/sf

Enforcing a Linear Progression
Spring Web Flow benefits

The client can not short-circuit the flow

She can only provide the flow input from a
specific point when asked

The controller always knows what step the
client is at

You no longer have to figure this out

You get a callback to resume processing from
the correct point

All flow navigation rules are encapsulated
within the controller

Changing navigation rules does not impact clients

@::”’SMW 2006 JavaOnesM Conference | Session TS-3456 | 18 iava.sun.com/iavaone/sf

Managing State

Conventional approach

The controller is stateless
Stores task context in the session

Cleans up context in the session after task
completion

Manages a session token to prevent completing
the same task execution more than once

2006 JavaOnes™ Conference | Session TS-3456 | 19 java .sun.com/javaone/sf

Code Sample

public Forward onFormSubmit (HttpServletRequest request) {
if (isStartRequest (request)) {
assertTaskNotInProgress (request) ;
createTaskContext (request) ;
return startingForm(request) ;
} else if (isResumeRequest (request)) {
assertSessionToken (request) ;
if (isCurrentForm(request)) {
updateSessionData (request) ;
return errors (request) ? currentForm(request)
nextForm(request) ;
} else {
return handleOutofSyncSubmit (request) ;
}
} else if (isFinishRequest (request)) {
assertSessionToken (request) ;
processSubmit (request) ;
cleanupSessionData (request) ;
removeSessionToken (request) ;

} 2006 JavaOne®M Conference | Session TS-3456 | 20 java .sun.com/javaone/sf

Managing State

Conventional implications

Use of the back button refers to session state
captured at later point

Opening a new window overwrites the other
window’s data

Not properly cleaning up after task completion
brings consequences

Memory leaks

Duplicate submission

Including stale data in a new task execution
Flow short circuit

2006 JavaOnes Conference | Session TS-3456 | 21 java.sun.com/javaone/sf

WEBFLOW

@Szm 2006 JavaOne®™ Conference | Session TS-3456 | 22 iava.sun.com/iavaone/sf

Managing State
Spring Web Flow approach

* The controller is stateful
* Represents an executing task at a point in time

* Stored in a repository between requests

* Clients resume the controller to continue task
execution from a point in time

@f@Sun 2006 JavaOne® Conference | Session TS-3456 | 23 java .sun.com/javaone/sf

Flow
Execution
Repository

Task

Execution

@Sun 2006 JavaOne® Conference | Session TS-3456 | 24 java.sun.com/javaone/sf

sssssssssss

>,

Managing State
Spring Web Flow benefits

Use of the back button refers to the state of
the task execution at that point in history

Opening a new window clones an independent
task execution at the current step

When a task completes it is purged from its
repository

All managed state is eligible for garbage collection

It is impossible to continue a task that has completed

2006 JavaOne®™ Conference | Session TS-3456 | 25 iava.sun.com/iavaone/sf

end

Active Paused

A 4

user input
needed

user event
signaled

Resuming

%‘“@Sun 2006 JavaOne® Conference | Session TS-3456 | 26 iava .sun.com/javaone/sf

Approach Summary

Spring Web Flow vs. Conventional

One controller, the flow, drives the entire task
execution

The flow pauses when client input is required

The flow resumes when client input is provided
Initiated by an event

Event processing logic is encapsulated within
the flow

Client has no knowledge of flow navigation rules

Can only influence navigation via an event model, can not
drive navigation

@Sun 2006 JavaOnes" Conference | Session TS-3456 | 27 java.sun.com/javaone/sf

Agenda

Problem
Approach

Usage examples
Integration
Future

sssssssssss

2006 JavaOneS™ Conference

Session TS-3456 | 28

java.sun.com/javaone/sf

Flow Definition
How do you define a flow?

* You use a domain-specific language (DSL)
« XML form is most popular

@Sun 2006 JavaOne® Conference | Session TS-3456 | 29 iava .sun.com/iavaone/sf

sssssssssssss

XML Representation

<flow start-state="stepl”>
<my-state id=“stepl”>
<transition on=“event” to=“step2”/>
</my-state>
<my-state id=“step2”>
<transition on=“event” to=“finish”/>
</my-state>

<end-state id=“finish”/>

</flow>

@Sun 2006 JavaOne® Conference | Session TS-3456 | 30 java.sun.com/javaone/sf

sssssssssss

Flow Builder API

FlowBuilder builder = new AbstractFlowBuilder () {
protected void buildStates () {
addMyState (“'stepl”, on(“event”, to(“step2”))
addMyState (“step2”, on(“event”, to(“finish”));
addEndState (“finish”) ;

}
FlowAssembler assembler

new FlowAssembler (“myFlow”, builder)
assembler.assembleFlow() ;
Flow flow = builder.getResult() ;

2006 JavaOne® Conference | Session TS-3456 | 31 java.sun.com/javaone/sf

Flow Definition
Characteristics

Declarative instructions to an execution engine
A set of states that you define

Each state executes a behavior when entered
View states solicit user input
Action states execute commands
Decision states make routing decisions
Subflow states spawn child flows
End states terminate flows

Events you define drive state transitions
Transitions define the paths through the flow

%%Sun 2006 JavaOne®™ Conference | Session TS-3456 | 32 iava.sun.com/iavaone/sf

’ Enter Shipping
submit

start
yes
Enter Purchase > Is Shlpplng
. Required?
submit no

[View State Q

Decision State Show Confirmation
] Action State

() End State

@Szm 2006 JavaOnes™ Conference | Session TS-3456 | 33 iava .sun.com/iavaone/sf

sssssssssss

<flow start-state="enterPurchase’”>

<view-state id=“enterPurchase” view="purchaseForm”>
<transition on=%“submit” to=“"shippingRequired”>
<action bean=“form” method=“bindAndvValidate” />
</transition>
</view-state>

<decision-state id="“shippingRequired”>
<if test="“${purchase.shipping}”
then=“enterShipping” else=“placeOrder”/>
</decision-state>

<action-state id=“placeOrder”>
<action bean=“orderClerk”
method="“placeOrder (${purchase})” />
<transition on=“success” to=“showConfirmation”/>
</action-state>

<end-state id=“showConfirmation” wview=“confirmation”/>
<import resource=“purchase-flow-beans.xml”/>

</flow>

@Szm 2006 JavaOne®™ Conference | Session TS-3456 | 34 iava.sun.com/iavaone/sf

sssssssssss

Bean id to Implementation Binding

purchase-flow.xml
<action bean=“orderClerk”
method*"“placeOrder (${purchase})” />

purchase-flowtbeans.xml
<beans>

<bean id=“orderClerk” class=“example.StubOrderClerk”/>
</beans>

* Spring Web Flow can bind to any method on
any object:
public interface OrderClerk {

OrderConfirmation placeOrder (Purchase purchase);

v ...Without your object depending on SWF APIs

@SM?} 2006 JavaOne® Conference | Session TS-3456 | 35 iava .sun.com/iavaone/sf

Flow Definition
Benefits

One artifact defines all task controller logic

|s abstract; not concerned with:
State management
Servlet or Portlet APIs
URLs
Back button
Malicious clients

The execution system cares for those concerns

A flow definition defines a task executable
in any environment

2006 JavaOne®M Conference | Session TS-3456 | 36 iava.sun.com/iavaone/sf

DEMO

The same flow executing within a Servlet
and Portlet environment

2006 JavaOnes" Conference | Session TS-3456 | 37 java.sun.com/javaone/sf

Steps to Flow Execution
Readying a flow for execution

* Deploy your flow definitions to a registry:

<beans>

<xmlFlowRegistry id="“registry”
flowlLocations="“/WEB-INF/flows/**/* xml” />

</beans>

* By default a flow is assigned a registry identifier
by convention

* purchase-flow.xml becomes purchase-flow

of’f@SZﬂ’l 2006 JavaOne®™ Conference | Session TS-3456 | 38 iava .sun.com/iavaone/sf

Steps to Flow Execution
Readying a flow for execution

Configure the flow executor for the environment
you are running in

Spring MVC, JavaServer™ Faces, Struts supported
out-of-the-box

(Optional) Configure a strategy for how flow
executions will be persisted between requests

In the session
To the client

(Optional) Configure how flow executor
arguments are extracted from the request
From request parameters
From the request path

@Sun 2006 JavaOnes" Conference | Session TS-3456 | 39 java.sun.com/javaone/sf

Spring MVC Flow Executor

<beans>

<flowController name=“/*"
registry-ref="registry”
storage="client”
argumentExtractor="requestPath” />

</beans>

* Exposes flows in the registry for execution

* Uses request path parameterization to launch
new flow executions

* http://localhost/app/purchase
* http://localhost/app/credit \Registry identifier

‘%%SM?} 2006 JavaOnesM Conference | Session TS-3456 | 40 java.sun.com/javaone/sf

Flow Execution Rendering
Requirements

View selections made by your flows must be
resolvable to a response writer

Typically a view template
Template resolution is handled by the framework
SWEF is integrating with
ViewResolver (Spring MVC)

Supports JavaServer Pages™ technology, Velocity,
Freemarker, and custom views

Action forward (Struts)
View Name (JavaServer Faces technology)

View templates must output the flow execution
key to support a resume operation on submit

@Sun 2006 JavaOnes™ Conference | Session TS-3456 | 41 java.sun.com/javaone/sf

Example Template (JSP™ Technology)

<form method=“post” action="${flowUrl}”>

<spring-webflow: flowExecutionKey/>
<input type="submit” name=" eventId submit”

value="Submit”>
</form>

* Flow execution key identifies a FlowExecution
In the repository

* Continues the conversation from the view-state
that selected this view

* Event id communicates what user action
occurred

* Drives a transition out of the current view-state

@Sun 2006 JavaOnes" Conference | Session TS-3456 | 42 java.sun.com/javaone/sf

Agenda

Problem
Approach

Usage examples
Integration
Future

2006 JavaOne®™ Conference | Session TS-3456 | 43 iava .sun.com/iavaone/sf

Integrating Into Other Frameworks
Through an adaption layer
Struts
FlowAction executes all flows
View selections are mapped to action forwards
An action form adapter allows SWF data binding

JavaServer Faces platform

FlowPhasel.istener restores flow executions from
the repository on “restore view” phase

JSF components resolve flow expressions
Via FlowVariableResolver and FlowPropertyResolver

FlowNavigationHandler continues flows

Spring Web Flow is positioned as an
embeddable page flow engine

@Sun 2006 JavaOnes" Conference | Session TS-3456 | 44 java.sun.com/javaone/sf

JavaServer Faces Integration Example

<faces-config>

<navigation-handler>
o.s.webflow.executor. jsf.FlowNavigationHandler
</navigation-handler>

<property-resolver>

o.s.webflow.executor. jsf.FlowPropertyResolver
</property-resolver>
<variable-resolver>

o.s.webflow.executor. jsf.FlowVariableResolver
</wvariable-resolver>

<phase-listener>
o.s.webflow.executor. jsf.FlowPhaselistener
</phase-listener>

</flow>

@Szm 2006 JavaOne® Conference | Session TS-3456 | 45 iava .sun.com/iavaone/sf

sssssssssss

JavaServer Faces Integration Example

* Launching a flow as a command link
<h:commandLink value="Go" action="flowId:myflow"/>

* Resuming a flow with component binding
expressions

<h:form id="form">

<h:inputText id="propertyName"
value="#{managedBeanName.propertyName}" />

<h:commandButton type="submit" action="submit"/>
</h:form>

@SM?} 2006 JavaOne®" Conference | Session TS-3456 | 46 java.sun.com/javaone/sf

Agenda

Problem
Approach

Usage examples
Integration
Future

sssssssssss

2006 JavaOneS™ Conference

Session TS-3456 | 47

java.sun.com/javaone/sf

>,

Future
Spring Web Flow roadmap

* Nested, parallel flow executions
- JMX™-based flow execution management

* Monitor in-flight conversations

* Conversation history subsystem
* To support bread crumbs, statistics

* More integration

Tapestry

Business process management (BPM)

Acegi Security

Persistence providers (Session per flow)

Others?

2006 JavaOneS™ Conference

Session TS-3456 | 48

java.sun.com/javaone/sf

Getting Started
Spring Web Flow jumpstart

Access
http://www.springframework.com/download

Download Spring Web Flow 1.0 RC2

Extract zip archive

CD toprojects/build-spring-webflow
Execute ant samples to build sample apps

Deploy sample .WARs for evaluation

* Each sample is importable as a Eclipse project
for easy review

2006 JavaOne®M Conference | Session TS-3456 | 49 java .sun.com/javaone/sf

g microsystems

Additional Resources
Spring Web Flow Related

* Reference and AP| documentation
* http://www.springframework.org/documentation

* Support forum
* http://forum.springframework.org

* Books
* Expert Spring MVC and Web Flow, Apress

* Confluence Wiki
* http://opensource2.atlassian.com/confluence/spring/display/WEBFLOW

2006 JavaOnes™ Conference | Session TS-3456 | 50 iava .sun.com/iavaone/sf

2006 JavaOnes" Conference | Session TS-3456 | 51 java.sun.com/javaone/sf

@ Sun

i @\
\ ‘\

A

\INTERFACER2 1

Spring Web Flow
Dialogs for the Web

Keith Donald

Principal
Interface21
http://www.interface21.com

T1S-3456

2006 JavaOne®™ Conference | Session TS-3456 | jaua.sun.com /'ji':WEIOI'IEfo

