
2006 JavaOneSM Conference | Session TS-3608 |

The SOA
Programming Model
Rob High, Jr.—IBM
Ed Cobb—BEA
Sanjay Patil—SAP
Greg Pavlik—Oracle

SCA Collaboration Team, www.osoa.org
TS-3608

2006 JavaOneSM Conference | Session TS-3608 | 2

Discuss the role of Service Component
Architecture and Service Data Objects
in forming the basis of a SOA
programming model

Goal of this Talk

2006 JavaOneSM Conference | Session TS-3608 | 3

Agenda

Properties of Service Orientation
Roles and Components within SOA
Introspection on SCA and SDO
Java™ Language Bindings

2006 JavaOneSM Conference | Session TS-3608 | 4

Goals of SOA

• Business and IT alignment
• Software design derived from an intrinsic

understanding of business design
• Separation of concerns and roles driven by business

design goals
• IT systems that enable business agility

2006 JavaOneSM Conference | Session TS-3608 | 5

Service Oriented Architecture
• In April 2006 the Object Management Group's (OMG) SOA Special Interest Group

adopted the following definition for SOA
• Service Oriented Architecture is an architectural style for a community of providers and

consumers of services to achieve mutual value, that
• Allows participants in the communities to work together with minimal co-dependence or

technology dependence
• Specifies the contracts to which organizations, people and technologies must adhere in order to

participate in the community
• Provides for business value and business processes to be realized by the community
• Allows for a variety of technologies to be used to facilitate interactions within the community

• In March 2006 the OASIS group SOA Reference Model released its first public
review draft. This defines the basic principles of SOA that apply at all levels of a
service architecture, from business vision through to technical and infrastructure
implementation

• Service Oriented Architecture; a paradigm for organizing and utilizing distributed capabilities
that may be under the control of different ownership domains.

• It provides a uniform means to offer, discover, interact with and use capabilities to produce
desired effects consistent with measurable preconditions and expectations

Source: Wikipedia

2006 JavaOneSM Conference | Session TS-3608 | 6

Principles of SOA

• Services share a formal contract
• Services are loosely coupled
• Services abstract underlying logic
• Services are composable
• Services are reusable
• Services are autonomous
• Services are stateless
• Services are discoverable

Source: Thomas Erl; SearchWebService.com

2006 JavaOneSM Conference | Session TS-3608 | 7

Loose-Coupling
Platform

Location

Protocol

Language

Time

Data Format

Delivery Assurance

Service Version

Interaction State

Service Provider Identity

Semantic Interface

Security

De-coupled Coupled

2006 JavaOneSM Conference | Session TS-3608 | 8

Atomic Service Composite Service Registry

Services
Atomic and Composite

Operational Systems

Service Components

Consumers

Business Process
Composition; Choreography;
Business State Machines

Service Provider
Service C

onsum
er

Integration (Enterprise Service B
us)

Q
oS Layer (Security, M

anagem
ent &

 M
onitoring Infrastructure Services)

D
ata A

rchitecture (m
eta-data) &

 B
usiness Intelligence

G
overnance

Channel B2B

Packaged
Application

Custom
Application

OO
Application

Composite Applications

2006 JavaOneSM Conference | Session TS-3608 | 9

Composite Applications
• Applications are created by composing a set of reusable services
• Applications are Compositions
• Can be created easily, frequently, quickly—respond to the demands

of your business in real-time
• Exploiting the underlying services that you’ve taken more time to

construct, harden, protect from the day-to-day implications of
the business

• Separate the static, rigorous aspects of your application from the
more dynamic, evolving, and customized aspect of your application

• Apply the appropriate language for the task
• Java is a good language for service implementations
• BPEL is a good language for service composition

• (Service Compositions are also Services that can be composed)

2006 JavaOneSM Conference | Session TS-3608 | 10

Legacy Application Components
• Significant amounts of relevant business function already exists in

deployed systems
• Java/J2EE™ platforms
• CICS/COBOL
• C++/Tuxedo/TXSeries/Orbix
• MOM (MQ, Tibco, Sonic, etc.)
• CORBA/IIOP
• Packaged Apps
• IMS
• …

• Can often be adapted for use in Service Oriented solutions

2006 JavaOneSM Conference | Session TS-3608 | 11

Legacy Integration

Enterprise
Information

System
Connector Native

APIs

JCA CCI
interface

Service A
Impl = “BPEL”

Service
Import

Service
Export Service

Import

JCA 1.5 Adapter Deployment Architecture

2006 JavaOneSM Conference | Session TS-3608 | 12

SOA Developer Roles

• Service Developer
• Creates and publishes service implementations

• Service Consumer
• Subcase of Service Developer—implements programs that

consume services
• Service Composition Developer

• Creates and publishes a class of service that composes
other services

• Assembler
• Assembles related services for deployment and

operations management

2006 JavaOneSM Conference | Session TS-3608 | 13

Service Component Architecture
• A specification which describes a model for building applications and systems using

a Service Oriented Architecture (SOA)
• Service Component Architecture; building Systems using a Service Oriented Architecture.
• A joint whitepaper by BEA, IBM, Interface21, IONA, Oracle, SAP, Siebel, Sybase, Version

0.9, November 2005 (http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
sca/SCA_White_Paper1_09.pdf)

• A technology and language-neutral representation of services (and data, when
combined with SDO) that can be deployed to a variety of different hosting
environments—composing services implemented in a variety of heterogeneous
containers and frameworks

• Includes provisions for mapping to specific languages and technologies
• Emphasis on a wiring metaphor to enable composition

• Jointly developed and written by IBM, BEA, Oracle, SAP, IONA, Sybase,
Interface21, Siebel

• Currently at 0.9 level draft
• Will be completed and submitted for formal standardization

2006 JavaOneSM Conference | Session TS-3608 | 14

Service Component
• Configured instance of an implementation

• There can be more then one component using the same implementation
• Provides and consumes services
• Sets properties; overridable (no, may, must)
• Sets service references by wiring them to services

• Wiring to services provided by other components or by external services

<?xml version="1.0" encoding="ASCII"?>
<module xmlns="http://www.osoa.org/xmlns/sca/0.9"
 xmlns:v="http://www.osoa.org/xmlns/sca/values/0.9"

name="bigbank.accountmodule" >

<component name="AccountServiceComponent">
 <implementation.java class="services.account.AccountServiceImpl"/>
 <properties>
 <v:currency override="may">EURO</v:currency>
 </properties>
 <references>
 <v:accountDataService>AccountDataServiceComponent</v:accountDataService>
 <v:stockQuoteService>StockQuoteService</v:stockQuoteService>
 </references>
</component>
…

</module>

Component
Account
Service
Component

2006 JavaOneSM Conference | Session TS-3608 | 15

Assembly

• Composes one or more services and their
relationships, dependencies, policies and
declared visibility in a Module

2006 JavaOneSM Conference | Session TS-3608 | 16

Modularity

Module A

Component
AEntry

Point

Binding BindingImplementation

Component
B

Service
Reference

Wire WireWire

External
Service

2006 JavaOneSM Conference | Session TS-3608 | 17

System and Subsystem

Subsystem Y

ModuleComponent
B

ModuleComponent
A

Module A
Module B

Entry
Point

Subsystem X Subsystem X

implementation
implementation

WireWireWire

System

External
Service

2006 JavaOneSM Conference | Session TS-3608 | 18

Subsystem—BigBank Sample
SCA system

bigbank.webclientsubsystem

ModuleComponent
WebClientModule
Component

bigbank.webclientmodule

implements

bigbank.accountmodule

bigbank.accountsubsystem

ModuleComponent
AccountModule
Component

implements

deploy

deploy

<sca-system-folder>
 modules
 bigbank.accountmodule
 AccountModule.jar
 bigbank.webclientmodule
 WebClientModule.jar

 subsystems
 bigbank.accountsubsystem
 AccountSubsystem.jar
 bigbank.webclientsubsystem
 WebClientSubsystem.jar

2006 JavaOneSM Conference | Session TS-3608 | 19

Implementation

Module A

Component
AEntry

Point

Component
B

Wire WireWire

External
Service

Binding
 Web Service
 SCA
 JCA
 JMS
 SLSB
 …

Binding
 Web Service
 SCA
 JCA
 JMS
 SLSB
 …

Implementation
 - Java technology
 - BPEL
 …

Service
 - Java technology interface
 - WSDL PortType

Reference
 - Java technology interface
 - WSDL PortType

2006 JavaOneSM Conference | Session TS-3608 | 20

Service Data Objects
• Data is stored in a disconnected, source-independent

format defined by the DataObject
• Stored in a graph
• Provides both dynamic loosely-typed and static strongly-typed

interfaces to the data
• getAddress()
• getString(“Address”)

• DataGraph holds the root data object
• Remembers change history
• Provides Access to metadata about the DataObjects

• Data Access Service is responsible for filling graph of
DataObjects from data source, updating data source
from DataObject changes

Client
Data

Access
Service

Data
Source

DataGraph

DataObject

Metadata

read

update

2006 JavaOneSM Conference | Session TS-3608 | 21

SDO Topologies

Mediator
Service

Data
Graph

“Client”

Data
Source

Retrieve

CUDFill

Read

Data
Graph

Servlet

Stateless Session EJB™ bean

Mediator Service

Fill

Read

Data
Source

Ret’ve

CUD

Stateless Session EJB bean

Mediator Service

Entity EJB 1

Entity EJB 2

Entity EJB 3

Entity EJB 4

Data
Graph

Servlet

Stateless Session EJB bean

Mediator Service

Read
Ret’ve

CUD

Stateless Session EJB bean

Mediator Service

Data
Graph

Client
Web service

Data
Graph

Client
Data

Source

Stored Proc

Mediator Service

Fill

Read Ret’ve

CUD

Stored Proc

Mediator Service

Data
Graph

Data
Graph

Data
Graph

Data
Graph

Data
Graph

Data
Graph

Fill

Read

Data
Graph

Data
Graph

{

2006 JavaOneSM Conference | Session TS-3608 | 22

UML of SDO Classes

DataMediatorService

ChangeSummary

DataGraph

11Type
name : String
uri : String
instanceClass : Class

Property
name : String
many : boolean
containment : boolean
default : Object

0..*0..*

11

Sequence

0..*0..*

DataObject

0..10..1

11

0..*0..*

0..*0..*+type +type

+container

+root

+properties

2006 JavaOneSM Conference | Session TS-3608 | 23

Service Development Languages

• Services will be derived from many different sources
• SOA explicitly presumes to embrace business

application function where it already exists
• Businesses want to compose business services, they don’t want

to be constrained by the technology choices made in the past
• Java language, COBOL, C++, WSBPEL, XML, …, are all

legitimate sources of business function
• The programming model for SOA needs to allow the use

of an extensible set of implementation and composition
languages and technologies

2006 JavaOneSM Conference | Session TS-3608 | 24

Implementation—
Java Technology

public class AccountServiceImpl implements AccountService {
@Property
private String currency = "USD";
@Reference
private AccountDataService accountDataService;
@Reference
private StockQuoteService stockQuoteService;
public AccountReport getAccountReport(String customerID) {

DataFactory dataFactory = DataFactory.INSTANCE;
AccountReport accountReport = (AccountReport)dataFactory.create(AccountReport.class);
List accountSummaries = accountReport.getAccountSummaries();
CheckingAccount checkingAccount = accountDataService.getCheckingAccount(customerID);
AccountSummary checkingAccountSummary = (AccountSummary)dataFactory.create(AccountSummary.class);
checkingAccountSummary.setAccountNumber(checkingAccount.getAccountNumber());
checkingAccountSummary.setAccountType("checking");
checkingAccountSummary.setBalance(fromUSDollarToCurrency(checkingAccount.getBalance()));
accountSummaries.add(checkingAccountSummary);
…
return accountReport;

}
private float fromUSDollarToCurrency(float value){

if (currency.equals("USD")) return value; else
if (currency.equals("EURO")) return value * 0.8f; else
return 0.0f;

}
}

annotations

dependency
injection

2006 JavaOneSM Conference | Session TS-3608 | 25

Implementation—C++
Service interface
// LoanService interface
class LoanService {
public:

virtual bool approveLoan(unsigned long customerNumber,
unsigned long loanAmount)

= 0;
};

Implementation declaration
header file
class LoanServiceImpl : public LoanService
{
public:

LoanServiceImpl();
virtual ~LoanServiceImpl();
virtual bool approveLoan(unsigned long customerNumber,
unsigned long loanAmount);

};

Implementation

#include "LoanServiceImpl.h"
LoanServiceImpl::LoanServiceImpl()
{

…
}
LoanServiceImpl::~LoanServiceImpl()
{

…
}
bool LoanServiceImpl::approveLoan(

unsigned long customerNumber,
unsigned long loanAmount)

{
…

}

Source: Apache, Copyright 2005 The Apache Software Foundation or its licensors, as applicable.

2006 JavaOneSM Conference | Session TS-3608 | 26

Client—C++
#include "ComponentContext.h"
#include "CustomerService.h“

using namespace osoa::sca;

void clientMethod()
{

unsigned long customerNumber = 1234;
…
ComponentContext context = ComponentContext::getCurrent();
CustomerService* service =
(CustomerService*)context.getService("customerService");
short rating = service->getCreditRating(customerNumber);

}

Source: Apache, Copyright 2005 The Apache Software Foundation or its licensors, as applicable.

2006 JavaOneSM Conference | Session TS-3608 | 27

External Service
• Represent remote services that are external to the module

• Accessed by clients within a module like any other component service
• Valid reference values

• Use bindings to describe the access mechanism to the external service
• E.g. Web service, stateless session EJBTM bean, Java Message Service (JMS), J2EE Connector Architecture
• Binding type extensibility
• Overridable (no, may, must)

<?xml version="1.0" encoding="ASCII"?>
<module xmlns="http://www.osoa.org/xmlns/sca/0.9"
 xmlns:v="http://www.osoa.org/xmlns/sca/values/0.9“

name="bigbank.accountmodule" >

…
<externalService name="StockQuoteService">
 <interface.java interface="services.stockquote.StockQuoteService"/>
 <binding.ws port="http://www.quickstockquote.com/StockQuoteService#

wsdl.endpoint(StockQuoteService/StockQuoteServiceSOAP)"/>
</externalService>

</module>

ExternalService
StockQuote

Service

2006 JavaOneSM Conference | Session TS-3608 | 28

* Source: Wikipedia

SOA and Web 2.0
• SOA enables a systematic approach to dynamic composition of services as

a response to business design requirements
• Web 2.0 expresses a desire to enable the truly ad hoc—the ability to do

what I want and need to do without the constraints of a system of
conformance

• Web usage is increasingly oriented toward interaction and rudimentary social networks,
which can serve content that exploits network effects with or without creating a visual,
interactive web page*

• Are these competitive or complimentary?
• Consider: Every business, every commercial endeavor, has some aspects

which are strategically important for which stability is critical to economic
value, and has some aspects which are fundamentally dynamic and
inherently dependent on being able to customize to the situation and
leveraging the moment of potential arbitrage

2006 JavaOneSM Conference | Session TS-3608 | 29

Useful Information
• Contacts

• sharpc@uk.ibm.com
• mike_edwards@uk.ibm.com
• mrowley@bea.com

• SCA, SDO specs and related material
• http://www.ibm.com/developerworks/webservices/library/specification/ws-sca/
• http://www.ibm.com/developerworks/webservices/library/specification/ws-sdo/

• Apache “Tuscany” project
• http://incubator.apache.org/tuscany

• Eclipse STP project
• http://www.eclipse.org/stp/

2006 JavaOneSM Conference | Session TS-3608 | 30

Summary

• SOA is an architectural style designed
specifically to better align IT and Business

• Loose-coupling is an inherent property of
service oriented systems

• Composite applications are formed from
heterogeneous services, derived from a variety
of language and technologies, including Java

• SCA and SDO enable technology and language-
neutral composition of services

2006 JavaOneSM Conference | Session TS-3608 | 31

Q&A

2006 JavaOneSM Conference | Session TS-3608 |

The SOA
Programming Model
Rob High, Jr.—IBM
Ed Cobb—BEA
Sanjay Patil—SAP
Greg Pavlik—Oracle

SCA Collaboration Team, www.osoa.org
TS-3608

