
2006 JavaOneSM Conference | Session TS-3744 |

Spring Framework Update:
Introducing Spring 2.0
Rod Johnson
CEO
Interface21
www.interface21.com

TS-3744

2006 JavaOneSM Conference | Session TS-3744 | 2

Goals of This Talk

Understand the major enhancements
in Spring 2.0, the latest generation of
the most popular application
programming framework for the
Java™/J2EE™ platforms

2006 JavaOneSM Conference | Session TS-3744 | 3

Agenda

The Story So Far
Goals of Spring 2.0
Feature Overview
Extensible XML Configuration
AOP Enhancements and Aspectj Integration

2006 JavaOneSM Conference | Session TS-3744 | 4

Aims of Spring

• Starting goal of Spring (from 2002) was to help to
reduce the complexity of J2EE™ based development
• To simplify without sacrificing power
• To facilitate best practices that were otherwise difficult to follow
• Grew from practical experience of myself and other practising

architects/developers of J2EE based applications

• Simple things should be simple and complex things
should be possible—Alan Kay

• Unless simple things are simple, complex things are
impossible

2006 JavaOneSM Conference | Session TS-3744 | 5

Technical Aims of Spring

• Enable applications to be coded from POJOs
• Offer sophisticated configuration capabilities that

scale to real-world complexity
• Allow enterprise services to be applied to those

POJOs in a declarative, non-invasive way
• Examples

• POJOs can be made transactional without the need
to know about transaction APIs

• POJOs can be exposed for management via JMX
without the need to implement an MBean interface

• …

2006 JavaOneSM Conference | Session TS-3744 | 6

POJO Development

• POJO stands for Plain Old Java based Object
• A POJO is not bound to any environment

• No imports of classes that bind it to a specific
environment

• Not dependent on a particular lookup mechanism
• Collaborating instances are injected using plain Java

constructors or setter methods
• Prolongs the life of business logic by decoupling it

from volatile infrastructure
• True POJOs are testable in isolation

2006 JavaOneSM Conference | Session TS-3744 | 7

Applying Services to
POJOs Declaratively

• Decouples your application objects from
their environment
• Brings leverage, enables reuse

• Actually more powerful than traditional invasive
component models
• Lets you scale up or down without rewriting application code

• Examples
• Switch to global transactions over Java TA
• Export your business objects in different environments

• Switch between SLSB, web service, write/take from JavaSpaces™

technology etc.

2006 JavaOneSM Conference | Session TS-3744 | 8

Enabling Technologies:
The Spring Triangle

AOPPortable service
abstractions

Power to the POJO

IOC

2006 JavaOneSM Conference | Session TS-3744 | 9

Spring in Practice

• Solidity of core Spring abstractions has since
seen Spring demonstrate value in a wide range
of environments beyond J2EE™ technology

• Strategic adoption in many enterprises moving
away from traditional costly, inefficient J2EE
technology approaches

2006 JavaOneSM Conference | Session TS-3744 | 10

Who Uses Spring?

• Extensive and growing usage across many
industries, including:
• Retail and investment banks
• Insurance companies (US and Europe)
• Government

• European Patent Office
• French Online Taxation System
• US, Canadian and Australian Government Agencies

2006 JavaOneSM Conference | Session TS-3744 | 11

Who Uses Spring?

• Scientific Research
• CERN

• Airline industry
• Defence
• Media and online businesses

• eBay
• And many others

• Software
• BEA Systems

• WebLogic JEE 5 preview uses Spring internally
• Spring helped speed time to market

2006 JavaOneSM Conference | Session TS-3744 | 12

Focus: Banking

• 5 out of the world’s
10 largest banks are
Spring users and
Interface21 clients

• At least one more is
also using Spring on
multiple projects

40%

10%

50%

Source: The Economist – “The world’s biggest banks” (2005)

2006 JavaOneSM Conference | Session TS-3744 | 13

A User’s Perspective
“Ever since the introduction of Spring
I have been able to focus on what
really matters: the business focus of
an enterprise application. “Low-Level
plumbing" is a thing of the past and
as an architect I can tie modules and
functionality together – injecting
concerns “I” think matter, where
they matter

What has previously taken numerous
man-years to compose/understand
and implement has been achieved in
a few months using Spring and
Spring Modules”

Roland Nelson
European Patent Office

2006 JavaOneSM Conference | Session TS-3744 | 14

A User’s Perspective
French Taxation Office
Online Tax Submission System
Build by Accenture
Based on Spring

“Spring has had a significant impact
on the productivity of our J2EE
technology developments. Thanks to
its simple yet powerful programming
model we were able to significantly
improve time to market and build
better quality solutions.”

Thomas van de Velde
Lead Java Architect
Accenture Delivery
Architectures

2006 JavaOneSM Conference | Session TS-3744 | 15

The Story So Far

Expert One-on-One J2EE
Nov 02

2002

Open source project founded
Feb 03

2003

Spring 1.0
Mar 04

The Spring Experience
Dec 05J2EE w/o EJB™

Jul 04

WebFlow Preview 1
Mar 05

Spring 1.2
May 05

Spring 2.0 M1
Dec 05

2004 2005

Spring 1.1
Sep 04

Spring 1.0 M1
Aug 03

Founding of
Interface21

Jul 04

Adrian Colyer
Joins Interface21

Oct 05

2006 JavaOneSM Conference | Session TS-3744 | 16

Spring 2.0

• Builds on this solid base

• Pursues vision of POJO-based development

• Adds new capabilities and makes many tasks
more elegant

2006 JavaOneSM Conference | Session TS-3744 | 17

Spring 2.0 Goals

• Simplify common tasks
• Make Spring more powerful

• Final release June 2006
• Spring 2.0 RC1 released for JavaOne

• Feature complete

2006 JavaOneSM Conference | Session TS-3744 | 18

Spring 2.0

• Numerous major enhancements and new
features, especially…
• Simpler, more extensible XML configuration

• Enhanced integration with AspectJ

• Integration with JPA (EJB 3.0 Java Persistence API)

• Further stretches Spring's leadership in POJO
programming model

2006 JavaOneSM Conference | Session TS-3744 | 19

Agenda

The Story So Far
Goals of Spring 2.0
Spring 2.0 Feature Overview
Extensible XML Configuration
AOP Enhancements and Aspectj Integration

2006 JavaOneSM Conference | Session TS-3744 | 20

Spring 2.0: New Features

• Additional scoping options for beans
• Backed by HttpSession etc.
• Pluggable backing store

• Not tied to web tier
• Used by Sony (major Spring users)
• Extensible and easy to use

• Numerous features in core IoC container and elsewhere
to take advantage of language improvements in Java 5

• Type inference for collections

2006 JavaOneSM Conference | Session TS-3744 | 21

Spring 2.0: New Features

• Customizable task execution framework for
asynchronous task execution

• CommonJ TimerManager implementation
• Great for WebLogic/Websphere users

• Portlet MVC framework
• Analogous to Spring MVC

2006 JavaOneSM Conference | Session TS-3744 | 22

Spring 2.0: New Features

• Ability to define any named bean in a scripting language
such as Groovy or JRuby
• Named bean conceals both configuration and implementation

language

• Allows for DI, AOP and dynamic reloading

• Spring MVC enhancements
• More intelligent defaulting to reduce configuration

in typical cases

• Beneficiary from scripting support

• New custom tag library to simplify working with common controls
• Analogous to Struts tag library

2006 JavaOneSM Conference | Session TS-3744 | 23

Spring 2.0: New Features

• Message-driven POJOs
• Support for asynchronous reception of Java Message

Service (JMS) API messages
• Full support for XA-transactional receive

• Usual Spring value proposition

● Works in J2EE and J2SE™ platforms

• Closes off one of the remaining corner cases
justifying EJB™ specification usage

2006 JavaOneSM Conference | Session TS-3744 | 24

Spring 2.0: Ease of Use

• Configuration simplification

• MVC simplification
• Greater use of intelligent defaulting

• SimpleJdbcTemplate

• Designed to take advantage of generics, varargs and
autoboxing on Java EE 5 platform

• And much, much more…

2006 JavaOneSM Conference | Session TS-3744 | 25

Spring and Java Persistence API
• Java Persistence API is the persistence part of the Enterprise

JavaBeans™ 3.0 specification
• Finally standardizes real-world O/R mapping functionality

• Spring 2.0 integrates Java Persistence API in its consistent data
access abstraction

• As always, Spring will offer
• Unified programming model for Java EE and Java SE platforms

• Ease of testing (without need to deploy to an application server)

• Spring allows access to full JPA functionality without an EJB
container

• Value adds beyond the JPA 1.0 specification that work portably
across all leading persistence providers

2006 JavaOneSM Conference | Session TS-3744 | 26

Spring 2.0 Enhancements

Middle tier definitions

DAO Implementations

Spring web-tier context

Presentation
Tier

DAO Interfaces

Service Objects / Business Facades
(Analogous to SLSBs)

RDBMS

Domain Objects

Transactional
Boundaries

Remote
Exporters

JDBC™ software/ ORM

Endpoints for
remote clients:
SOAP, RMI, …

Spring DAO

Spring
AOP

Views: JSP, Velocity,…

Java: MVC Controllers

2006 JavaOneSM Conference | Session TS-3744 | 27

Agenda

The Story So Far
Goals of Spring 2.0
Feature Overview
Extensible XML Configuration
AOP Enhancements and Aspectj Integration

2006 JavaOneSM Conference | Session TS-3744 | 28

XML Configuration in Spring 2.0
• Ability to define new XML tags to produce one or

more Spring bean definitions
• Tags out of the box for common configuration tasks
• Problem-specific configuration

• Easier to write and to maintain

• XML schema validation
• Better out of the box tool support
• Code completion for free

• Exploits the full power of XML
• Namespaces, schema, tooling

• Backward compatibility
• Full support for <beans> DTD

2006 JavaOneSM Conference | Session TS-3744 | 29

XML Configuration in Spring 2.0

<bean id="dataSource" class="...JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/StockData"/>

</bean>

<jee:jndi-lookup id="dataSource"
jndiName="jdbc/StockData"/>

2006 JavaOneSM Conference | Session TS-3744 | 30

XML Configuration in Spring 2.0

<bean id="properties" class="...PropertiesFactoryBean">
<property name="location" value="jdbc.properties"/>

</bean>

<util:properties id="properties"
location="jdbc.properties"/>

2006 JavaOneSM Conference | Session TS-3744 | 31

Transaction Simplification

• Specialized tags for making objects
transactional
• Benefit from code assist

• <tx:annotation-driven />

• Code assist for transaction attributes

2006 JavaOneSM Conference | Session TS-3744 | 32

Extended Configuration Options

• Java Management Extensions

• Remoting

• Scheduling

• MVC

• Suggestions and contributions welcome
• A rich library will build over time

2006 JavaOneSM Conference | Session TS-3744 | 33

XML Configuration Best Practices

• Standard <bean> tags
• Still a great solution
• General configuration tasks
• Application-specific components

• DAOs, Services, Web Tier

• Custom tags
• Infrastructure tasks

• Java Naming and Directory Interface™ API , Properties,
AOP, Transactions

• 3rd party packages

2006 JavaOneSM Conference | Session TS-3744 | 34

Agenda

The Story So Far
Goals of Spring 2.0
Feature Overview
Extensible XML Configuration
AOP Enhancements and Aspectj
Integration

2006 JavaOneSM Conference | Session TS-3744 | 35

Recap: Why AOP Matters

• Essential complement to DI to enable a POJO
programming model

• Both parts of the same big picture

• Let’s step back

2006 JavaOneSM Conference | Session TS-3744 | 36

Information Hiding Makes It Possible
to Build Large Systems

“Every module in the decomposition is characterized
by its knowledge of a design decision which it hides
from all others…Its interface or definition was chosen
to reveal as little as possible about its inner workings.”

—On the criteria to be used in decomposing a
system into modules
Parnas, 1972

2006 JavaOneSM Conference | Session TS-3744 | 37

Separation of Concerns
• A software engineering principle, each module

• Does one thing
• Knows one thing
• keeps the secret of how it does it hidden

“But nothing is gained—on the contrary!—by tackling these
various aspects simultaneously. It is what I sometimes have
called “the separation of concerns”, which, even if not perfectly
possible, is yet the only available technique for effective ordering
of one's thoughts, that I know of.”

—On the role of scientific thought
Edsger W. Dijkstra, 1974

2006 JavaOneSM Conference | Session TS-3744 | 38

DI as Information Hiding

• Where the
dependencies
come from

• What particular
implementation

• Singleton or not

2006 JavaOneSM Conference | Session TS-3744 | 39

Dependency Injection and Aspects

• Information hiding
• DI hides the details of resource and

collaborator discovery
• Modularity

• Aspects hide the detail of service invocation
• Separation of concerns

• Aspects can encapsulate rules and policies shared
by implementation constructs

• A complementary partnership

2006 JavaOneSM Conference | Session TS-3744 | 40

AOP in Spring 2.0

• So AOP is important
• How do we make Spring AOP better?

• Simplified XML configuration using <aop:*/> tags
• Closer AspectJ integration

• Pointcut expression language
• AspectJ-style aspects in Spring AOP
• @AspectJ-style aspects in Spring AOP

• Fully interoperable with ajc compiled aspects

• Spring ships with AspectJ aspects for
Spring/AspectJ users
• Dependency injection on any object even if it isn’t constructed

by the Spring IoC container

2006 JavaOneSM Conference | Session TS-3744 | 41

Spring AOP (1.2.x): Pros and Cons

• Pros
• Solid proxy-based model
• Highly extensible
• Ease of adoption

• Zero impact on development process and
server environment

• Cons
• No real pointcut expression language
• XML configuration can be verbose
• Highly extensible, but only in Java technology

2006 JavaOneSM Conference | Session TS-3744 | 42

Spring 2.0 Aims for Spring AOP

• Build on strengths, eliminate weaknesses
• Preserve ease of adoption

• Still zero impact on development
process, deployment

• Easier to adopt
• Benefit from the power of AspectJ
• Provide a comprehensive AOP roadmap

for Spring users, spanning
• Spring AOP
• AspectJ

2006 JavaOneSM Conference | Session TS-3744 | 43

Spring 2.0 Aims for Spring AOP

• Solution
• Work with AspectJ, the de facto standard

for full-featured AOP

• AspectJ lead Adrian Colyer is now Chief Scientist
at Interface21

• Adrian is now working on Spring as well as AspectJ

• Take advantage of XML configuration extensions

2006 JavaOneSM Conference | Session TS-3744 | 44

Benefits for Spring AOP

• Benefits from industry leading pointcut
expression language

• Benefits from well thought-out semantics
behind @AspectJ model

• Gains ability to have type-safe advice
• Benefits from input from leading AOP thinkers

• “Father of AOP” Gregor Kiczales is giving a keynote
at SpringOne in June

2006 JavaOneSM Conference | Session TS-3744 | 45

Benefits for AspectJ

• AspectJ is a language, not a framework
• Benefits from a framework offering DI and service

abstractions

• DI is as compelling for aspects as for objects

• AspectJ gains an incremental adoption path

2006 JavaOneSM Conference | Session TS-3744 | 46

Benefits for You

• You can use the same knowledge in Spring
and AspectJ

• Exciting possibilities around rich domain models

2006 JavaOneSM Conference | Session TS-3744 | 47

Pointcut Expressions

• Spring can use AspectJ pointcut expressions
• In Spring XML
• In @AspectJ aspects
• In Java code (with Spring ProxyFactory)

• New AspectJExpressionPointcut will
become the most used Spring AOP Pointcut
implementation

2006 JavaOneSM Conference | Session TS-3744 | 48

What’s So Good About AspectJ
Pointcut Expressions?

• Go far beyond simple wildcarding

• AspectJ views pointcuts as first-class
language constructs
• Can compose pointcuts into expressions

• Can reference named pointcuts, enabling reuse

• Can perform argument binding

• Can express complex matching logic concisely

2006 JavaOneSM Conference | Session TS-3744 | 49

AspectJ Is Well Documented…

2006 JavaOneSM Conference | Session TS-3744 | 50

AOP Is About Pointcuts

• Pointcuts give us the tool to think about program
structure in a different way to OOP

• Without a true pointcut model we have only
trivial interception
• Does not achieve aim of modularizing

crosscutting logic
• DRY (Don’t repeat yourself) Principle

• Spring AOP has always had true pointcuts
• But now they are dramatically improved

2006 JavaOneSM Conference | Session TS-3744 | 51

POJO Methods as Advice
public class JavaBeanPropertyMonitor {

private int getterCount = 0;
private int setterCount = 0;

public void beforeGetter() {
this.getterCount++;

}

public void afterSetter() {
this.setterCount++;

}

…

2006 JavaOneSM Conference | Session TS-3744 | 52

Applying Pointcuts
<aop:config>

<aop:aspect bean="javaBeanMonitor">
<aop:before

pointcut=
"execution(public !void get*())"
method="beforeGetter"

/>
<aop:afterReturning

pointcut=
"execution(public void set*(*))"
method="afterSetter"

/>
</aop:aspect>

</aop:config>

2006 JavaOneSM Conference | Session TS-3744 | 53

@AspectJ-style Aspects
@Aspect

public class AjLoggingAspect {

@Pointcut("execution(* *..Account.*(..))")

public void callsToAccount(){}

@Before("callsToAccount()")

public void before(JoinPoint jp) {

System.out.println("Before [" +

jp.toShortString() + "].");

}

@AfterReturning("callsToAccount()")

public void after() {

System.out.println("After.");

}

}

2006 JavaOneSM Conference | Session TS-3744 | 54

@AspectJ-style Aspects

<aop:aspectj-autoproxy/>

<bean id="account" class="demo.Account"/>

<bean id="aspect" class="demo.ataspectj.AjLoggingAspect"/>

2006 JavaOneSM Conference | Session TS-3744 | 55

AOP Is More Than Interception

• Interception is merely one implementation
strategy for AOP

• It is not a complete conceptual model of AOP

• Spring 2.0 aligns on AspectJ semantics
• But is still wholly backward compatible

• Allows far more sophisticated constructs
• Pointcuts are a first-class construct

2006 JavaOneSM Conference | Session TS-3744 | 56

Why Not Just Interception?
• EJB 3.0 specification interception is an improvement compared to

EJB 2 specification, but is essentially 2003-vintage, “AOP lite”
technology
• No real pointcut model
• Every method or class (via annotation or corresponding XML

deployment descriptor) needs to be changed to define new crosscutting
behaviour

• Fails to deliver a new structural way of thinking
• Fails to achieve core goal of AOP of preventing crosscutting

• Still need to change in many places to make one logical change (such as
introduce auditing)

• Concerns pile up as you have more and more annotations or
interceptor definitions, reducing maintainability

• Classes know about the interceptors that apply to them
● Wrong way around

2006 JavaOneSM Conference | Session TS-3744 | 57

Spring 2.0: AOP Unification

• Brings same programming model
(based on AspectJ) to proxy-based and class
weaving based AOP
• Choice of implementation strategies
• Consistent programming model
• Based on AspectJ, proven de facto standard for AOP

• Can compile aspects or use AspectJ
load-time weaving, preserving the same
programming model

• Again, no conflict between simplicity and power
• Less powerful, less general mechanisms are simplistic,

rather than simple

2006 JavaOneSM Conference | Session TS-3744 | 58

Spring 2.0: What Breaks?

Middle tier definitions

DAO Implementations

Spring web-tier context

Presentation
Tier

DAO Interfaces

Service Objects / Business Facades
(Analogous to SLSBs)

RDBMS

Domain Objects

Transactional
Boundaries

Remote
Exporters

JDBC™ software/ ORM

Endpoints for
remote clients:
SOAP, RMI, …

Spring DAO

Spring
AOP

Views: JSP, Velocity,…

Java: MVC controllers

2006 JavaOneSM Conference | Session TS-3744 | 59

Spring 2.0: What Breaks?

• Spring 2.0 is fully backward compatible

• Enterprise-class technologies can’t remain
credible if they break existing application code

• POJO-based technology offers the stability
in programming model J2EE technology
has lacked
• Spring offers the mature, proven realisation

• Across J2EE and J2SE platforms

2006 JavaOneSM Conference | Session TS-3744 | 60

Do I Need Java EE 5 with Spring 2.0?

• No, but you’ll get an increasing amount of cool
stuff if you are able to use Java EE 5
• Spring 1.2 already introduced value adds on Java EE

5, such as @Transactional
• AspectJ integration requires Java EE 5 for full range

of pointcut expressions
• Spring 2.x series will run on Java platform

1.3 and above
• Continues to run on all leading application

servers, web containers
• Or without any other container

2006 JavaOneSM Conference | Session TS-3744 | 61

Summary (1)

• Spring 2.0 Aims
• Build on core Spring aim of offering a POJO

programming model
• Make Spring both simpler to use and more powerful

• Spring 2.0 introduces simplified, extensible XML
configuration
• Custom tags for Java Naming and Directory Interface

API, AOP, transactions and more
• Significant improvements in Spring AOP

• Pointcut expression support
• AspectJ-style aspect support
• @AspectJ aspect support

2006 JavaOneSM Conference | Session TS-3744 | 62

Summary (2)

• Many other enhancements, including…
• TaskExecutor abstraction
• Adds asynchronous JMS API to complement existing

synchronous JMS API support
• Message-driven POJOs

● Message reception within XA transaction
• Ease-of-use improvements for Spring MVC
• Portlet MVC framework

2006 JavaOneSM Conference | Session TS-3744 | 63

For More Information

• Home of the Spring Framework
• http://www.springframework.org/

• Interface21 Web Site
• http://www.interface21.com/

• SpringOne conference in June 2006
• http://www.springone.com

2006 JavaOneSM Conference | Session TS-3744 | 64

Other Spring Framework Sessions

• Keith Donald
• Spring Web Flow

• Powerful next generation web technology based on the
Spring Framework

• Rod Johnson
• BOF on testing with Spring (8:30 pm tonight)
• Will cover new Spring JPA integration
• Hands on, code-centric
• Come along and ask questions!

2006 JavaOneSM Conference | Session TS-3744 | 65

Q&A
Rod Johnson

2006 JavaOneSM Conference | Session TS-3744 |

Spring Framework Update:
Introducing Spring 2.0
Rod Johnson
CEO
Interface21
www.interface21.com

TS-3744

	Spring Framework Update:Introducing Spring 2.0
	Goals of This Talk
	Agenda
	Aims of Spring
	Technical Aims of Spring
	POJO Development
	Applying Services to POJOs Declaratively
	Enabling Technologies: The Spring Triangle
	Spring in Practice
	Who Uses Spring?
	Who Uses Spring?
	Focus: Banking
	A User’s Perspective
	A User’s Perspective
	The Story So Far
	Spring 2.0
	Spring 2.0 Goals
	Spring 2.0
	Agenda
	Spring 2.0: New Features
	Spring 2.0: New Features
	Spring 2.0: New Features
	Spring 2.0: New Features
	Spring 2.0: Ease of Use
	Spring and Java Persistence API
	Spring 2.0 Enhancements
	Agenda
	XML Configuration in Spring 2.0
	XML Configuration in Spring 2.0
	XML Configuration in Spring 2.0
	Transaction Simplification
	Extended Configuration Options
	XML Configuration Best Practices
	Agenda
	Recap: Why AOP Matters
	Information Hiding Makes It Possible to Build Large Systems
	Separation of Concerns
	DI as Information Hiding
	Dependency Injection and Aspects
	AOP in Spring 2.0
	Spring AOP (1.2.x): Pros and Cons
	Spring 2.0 Aims for Spring AOP
	Spring 2.0 Aims for Spring AOP
	Benefits for Spring AOP
	Benefits for AspectJ
	Benefits for You
	Pointcut Expressions
	What’s So Good About AspectJ Pointcut Expressions?
	AspectJ Is Well Documented…
	AOP Is About Pointcuts
	POJO Methods as Advice
	Applying Pointcuts
	@AspectJ-style Aspects
	@AspectJ-style Aspects
	AOP Is More Than Interception
	Why Not Just Interception?
	Spring 2.0: AOP Unification
	Spring 2.0: What Breaks?
	Spring 2.0: What Breaks?
	Do I Need Java EE 5 with Spring 2.0?
	Summary (1)
	Summary (2)
	For More Information
	Other Spring Framework Sessions
	Q&A
	Spring Framework Update:Introducing Spring 2.0

