
2006 JavaOneSM Conference | TS-3987 |

®

Crazy Talk: Examining
Why Agile Software
Development Works
Scott W. Ambler
Practice Leader, Agile Modelling
www.ambysoft.com/scottAmbler.html

TS-3987

2006 JavaOneSM Conference | TS-3987 | 2

Scott W. Ambler

• Methodologist, Author, Consultant
• Fellow, Int. Assoc. of Software Architects
• Services:

• Agile Model Driven Development (AMDD)
• RUP/EUP/AgileUP mentoring
• Agile software development

coaching/mentoring
• Training workshops
• Management SPI workshops
• Internal conference keynotes

2006 JavaOneSM Conference | TS-3987 | 3

Presentation Overview

• Warning!
• My Process Background
• Agile Software Development
• Adoption Rate
• Agile Techniques
• Why Agile Works
• The Eclipse Process Framework (EPF)
• Interesting Observations

2006 JavaOneSM Conference | TS-3987 | 4

Warning!

• I’m spectacularly blunt at times
• Many new ideas will be presented
• Some may not fit well into your existing

environment
• Some will challenge your existing notions about

software development
• Some will confirm your unvoiced suspicions
• Don’t make any “career-ending moves”
• Be skeptical, but open minded

2006 JavaOneSM Conference | TS-3987 | 5

My Process Background

• Thought leader behind:
• Pinball SDLC (1995)
• Object-Oriented Software Process (1997–1999)
• Enterprise Unified Process (1998+)
• Agile Modeling (2001+)
• Agile Data (2002+)
• Agile Unified Process (2001+)

• Actively developed software:
• Following processes from very agile to very traditional
• On small to very large projects (~ $100 million a year)
• On short to very long projects (multi-year)

2006 JavaOneSM Conference | TS-3987 | 6

Agile Software Development

• Agile software development is an approach to
software development that is:
1. People-oriented
2. That enables teams to respond effectively to change
3. Results in the creation of working systems that

meets the changing needs of its stakeholders

2006 JavaOneSM Conference | TS-3987 | 7

Adoption Rate of Agile Techniques

Innovators Early Adopters Early Majority Late Majority Laggards

The
“Chasm”

2006 JavaOneSM Conference | TS-3987 | 8

Common Agile Practices

• Regular deployment of
working software

• Pair programming
• Active stakeholder

participation
• Model with others
• Sandboxes
• Test First Design (TFD)
• Test Driven Design (TDD)

• Continuous regression
testing

• Tests as primary artifacts
• Continuous integration
• Follow guidance
• Scrum
• Agile Model Driven

Development (AMDD)
• Agile requirements

management

2006 JavaOneSM Conference | TS-3987 | 9

Regular Deployment
of Working Software

• How many projects have you seen that:
• Were “90% complete” for months?
• Delivered wonderful plans but no software?
• Delivered wonderful models, but no software?

• The only accurate measure of software
development is the delivery of software
• Deliver something at the end of each cycle/iteration
• Iterations should be short
• At all points in time stakeholders can see what

they’ve gotten for their investment to date

2006 JavaOneSM Conference | TS-3987 | 10

Pair Programming
• Two programmers work side-by-side, collaborating on the same

design, algorithm, code, or test
• The driver has control of the keyboard/mouse and actively

implements the program
• The observer continuously observes the work of the driver to

identify tactical (syntactic, spelling, etc.) defects and also thinks
strategically about the direction of the work

• They periodically switch roles, working together as equals
• On demand, the two programmers can brainstorm any

challenging problem
• Significant evidence exists which shows that pair programming

is more effective, overall, than solo programming for the vast
majority of developers

• pairprogramming.com

2006 JavaOneSM Conference | TS-3987 | 11

Active Stakeholder Participation

• Project stakeholders should:
• Provide information in a timely manner
• Make decisions in a timely manner
• Actively participate in business-oriented modeling

• www.agilemodeling.com/essays/activeStakeholderParticipation.htm
• www.agilemodeling.com/essays/inclusiveModels.htm

2006 JavaOneSM Conference | TS-3987 | 12

Model with Others

• The modeling equivalent of pair programming
• You are fundamentally at risk whenever

someone works on something by themselves

2006 JavaOneSM Conference | TS-3987 | 13

Refactoring

• A code refactoring is a small change to your
code to improve your design that retains the
behavioral semantics of your code; examples:
Rename Method, Move Method, and Remove
Setting Method

• Refactoring enables you to evolve your
development assets in a controlled manner,
enabling your design to remain high quality

• www.refactoring.com

2006 JavaOneSM Conference | TS-3987 | 14

Database Refactoring
• A database refactoring is a simple change to a database

schema that improves its design while retaining both its
behavioral and informational semantics; examples: Move
Column, Rename Table, and Replace Blob With Table

• A database schema includes both structural aspects such as
table and view definitions as well as functional aspects such
as stored procedures and triggers

• Important: Database refactorings are a subset
of schema transformations, but they do not
add functionality

• www.agiledata.org/essays/databaseRefactoring.html
• www.databaserefactoring.com

2006 JavaOneSM Conference | TS-3987 | 15

Database Testing
www.agiledata.org/essays/databaseTesting.html

Copyright 2006
Scott W. Ambler

OLTP
Access

Data
Load

Application

Batch
Data

Data
Extract

Batch
Data

Test Data
Generator

Test Data

Stored procedures/functions
Triggers
Views
Constraints
Existing data quality
Referential integrity/data consistency

2006 JavaOneSM Conference | TS-3987 | 16

Sandboxes
www.agiledata.org/essays/sandboxes.html

2006 JavaOneSM Conference | TS-3987 | 17

Test First Design (TFD)
www.agiledata.org/essays/tdd.html

2006 JavaOneSM Conference | TS-3987 | 18

Test Driven Design (TDD)

• TDD = Refactoring + TFD
• Steps:

1. Before implementing a requirement, ask yourself if
the existing design is the simplest one to implement
the requirement

2. If not, refactor the code before continuing
3. Take a TFD approach to implement the requirement

2006 JavaOneSM Conference | TS-3987 | 19

Continuous Regression Testing

• Regression testing is critical to the success
of evolutionary (iterative and incremental)
development

• It’s such a good idea, agilists prefer to do it all
the time

2006 JavaOneSM Conference | TS-3987 | 20

Tests as Primary Artifacts

• Acceptance tests are considered to be primary
requirements artifacts

• Unit tests are considered to be detailed design
artifacts

2006 JavaOneSM Conference | TS-3987 | 21

Continuous Integration

• Daily builds are a good start
• We update and test our code constantly
• Therefore we need to build the system constantly
• Some tools:

• Cruise Control
• Maven/Continuum
• Ant/AntHill
• Tinderbox

• damagecontrol.codehaus.org/Continuous+Integr
ation+Server+Feature+Matrix?print=1

2006 JavaOneSM Conference | TS-3987 | 22

Follow Guidance

• Guidance = Standards and guidelines
• Agile developers prefer to develop high-quality

artifacts, and that includes ensuring that they
are developed in a consistent manner

• XP practice Coding Standards
• AM practice Apply Modeling Standards
• www.agilemodeling.com/style/

2006 JavaOneSM Conference | TS-3987 | 23

Scrum
www.controlchaos.com

Product
Backlog

Sprint
Backlog

Sprint Planning
Meeting

Standards,
Guidelines,
Techniques,
Processes,

Development
Tools

30-Day
Sprint

Daily
Cycle

Sprint Goal,
Features

Post-Sprint
Demonstration
and Follow-Up

Meeting

2006 JavaOneSM Conference | TS-3987 | 24

The Cost of BRUF:
Feature Usage Within Deployed Applications
www.agilemodeling.com/essays/examiningBRUF.html

Never
45%

Rarely
19%

Sometimes
16%

Often
13%

Always
7%

Source: Jim Johnson of the Standish Group, Keynote Speech XP 2002

2006 JavaOneSM Conference | TS-3987 | 25

Agile Model Driven Development (AMDD)

Cycle n: Development

Cycle 2: Development

Cycle 1: Development

Cycle 0: Initial Modeling

Initial Requirements
Modeling

(days)

Initial Architectural
Modeling

(days)

Model
Storming
(minutes)

Implementation
(Ideally Test Driven)

(hours)

Reviews
(optional)

All Cycles
(hours)

Goals: Gain an initial
understanding of the
scope, the business
domain, and your overall
approach.

Goal: Quickly explore in
detail a specific issue
before you implement it.

Goal: Develop working
software in an evolutionary
manner.

www.agilemodeling.com/essays/amdd.htm

2006 JavaOneSM Conference | TS-3987 | 26

Agile Change Management
www.agilemodeling.com/essays/changeManagement.htm

2006 JavaOneSM Conference | TS-3987 | 27

Why Agile Software
Development Works

Comparing the Cost Benefit Curves
BRUF vs. Agile Change Mgmt

Cost of Change Curves

2006 JavaOneSM Conference | TS-3987 | 28

Comparing the Cost-Benefit Curves

Value

Time

Release
T= 16

months

Break Even Point
T= 26 months

2006 JavaOneSM Conference | TS-3987 | 29

BRUF vs. Agile Change Mgmt

Never
45%

Rarely
19%

Sometimes
16%

Often
13%

Always
7%

2006 JavaOneSM Conference | TS-3987 | 30

Comparing the Costs

2006 JavaOneSM Conference | TS-3987 | 31

The Eclipse Process Framework (EPF)
• EPF is a knowledge management system for project-

centric development processes
• Potential for several base processes (e.g. Open UP, XP, …)
• Many process plug ins (e.g., DB Refactoring, Scrum, …)

• Support a variety of different processes and process
models
• Agile, yet still compatible to senior management
• Endorsed by many organizations

• The tool and process material is open source
• If you don’t like it, change it

• www.eclipse.org/epf
• www.openup.org (coming soon)

2006 JavaOneSM Conference | TS-3987 | 32

Interesting Observations
• You need to become a generalizing specialist:

• www.agilemodeling.com/essays/generalizingSpecialist.htm

• Agile software development is real and not a fad
• Agile software development is supported by a wide

range of industry luminaries
• Research evidence support agile techniques is

beginning to emerge
• Significant evidence exists showing that traditional

techniques suffer from significant challenges
• Why is that the people saying agile doesn’t work rarely

seem to have tried it or even read a book about it?

2006 JavaOneSM Conference | TS-3987 | 33

Q&A
Scott W. Ambler
www.ambysoft.com/scottAmbler.html

2006 JavaOneSM Conference | TS-3987 | 34

References and Recommended Reading
• www.agilealliance.com
• www.agilemodeling.com
• www.agiledata.org
• www.ambysoft.com
• www.databaserefactoring.com
• www.enterpriseunifiedprocess.com
• Ambler, S.W. (2002). Agile Modeling: Effective Practices for XP and the UP.

New York: John Wiley & Sons.
• Ambler, S.W. (2003). Agile Database Techniques. New York: John Wiley &

Sons.
• Ambler, S.W. (2004). The Object Primer 3rd Edition: AMDD with UML 2. New

York: Cambridge University Press.
• Ambler, S.W. and Sadalage, P.J. (2006). Refactoring Databases:

Evolutionary Database Design. Reading, MA: Addison Wesley Longman, Inc.
• Larman, C. (2004). Agile and Iterative Development: A Manager’s Guide.

Reading, MA: Addison Wesley
• McGovern, J., Ambler, S.W., Stevens, M., Linn, J., Sharan, V., & Jo, E.

(2003). The Practical Guide to Enterprise Architecture. Prentice Hall PTR.

2006 JavaOneSM Conference | TS-3987 |

®

Crazy Talk: Examining
Why Agile Software
Development Works
Scott W. Ambler
Practice Leader, Agile Modelling
www.ambysoft.com/scottAmbler.html

TS-3987

	Crazy Talk: Examining Why Agile Software Development Works
	Scott W. Ambler
	Presentation Overview
	Warning!
	My Process Background
	Agile Software Development
	Adoption Rate of Agile Techniques
	Common Agile Practices
	Regular Deployment of Working Software
	Pair Programming
	Active Stakeholder Participation
	Model with Others
	Refactoring
	Database Refactoring
	Database Testingwww.agiledata.org/essays/databaseTesting.html
	Sandboxeswww.agiledata.org/essays/sandboxes.html
	Test First Design (TFD)www.agiledata.org/essays/tdd.html
	Test Driven Design (TDD)
	Continuous Regression Testing
	Tests as Primary Artifacts
	Continuous Integration
	Follow Guidance
	Scrumwww.controlchaos.com
	The Cost of BRUF:Feature Usage Within Deployed Applications
	Agile Model Driven Development (AMDD)
	Agile Change Management
	Why Agile Software Development Works
	Comparing the Cost-Benefit Curves
	BRUF vs. Agile Change Mgmt
	Comparing the Costs
	The Eclipse Process Framework (EPF)
	Interesting Observations
	Q&A
	References and Recommended Reading
	Crazy Talk: Examining Why Agile Software Development Works

