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Scott W. Ambler

• Methodologist, Author, Consultant
• Fellow, Int. Assoc. of Software Architects
• Services: 

• Agile Model Driven Development (AMDD)
• RUP/EUP/AgileUP mentoring
• Agile software development 

coaching/mentoring
• Training workshops
• Management SPI workshops
• Internal conference keynotes
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Presentation Overview

• Warning!
• My Process Background
• Agile Software Development
• Adoption Rate
• Agile Techniques
• Why Agile Works
• The Eclipse Process Framework (EPF)
• Interesting Observations
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Warning!

• I’m spectacularly blunt at times
• Many new ideas will be presented
• Some may not fit well into your existing 

environment
• Some will challenge your existing notions about 

software development
• Some will confirm your unvoiced suspicions
• Don’t make any “career-ending moves”
• Be skeptical, but open minded
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My Process Background

• Thought leader behind:
• Pinball SDLC (1995)
• Object-Oriented Software Process (1997–1999)
• Enterprise Unified Process (1998+)
• Agile Modeling (2001+)
• Agile Data (2002+)
• Agile Unified Process (2001+)

• Actively developed software:
• Following processes from very agile to very traditional
• On small to very large projects (~ $100 million a year)
• On short to very long projects (multi-year)
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Agile Software Development

• Agile software development is an approach to 
software development that is:
1. People-oriented
2. That enables teams to respond effectively to change
3. Results in the creation of working systems that 

meets the changing needs of its stakeholders
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Adoption Rate of Agile Techniques

Innovators Early Adopters Early Majority Late Majority Laggards

The
“Chasm”
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Common Agile Practices

• Regular deployment of 
working software

• Pair programming
• Active stakeholder 

participation
• Model with others
• Sandboxes
• Test First Design (TFD)
• Test Driven Design (TDD)

• Continuous regression 
testing

• Tests as primary artifacts
• Continuous integration
• Follow guidance
• Scrum
• Agile Model Driven 

Development (AMDD)
• Agile requirements 

management
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Regular Deployment 
of Working Software

• How many projects have you seen that:
• Were “90% complete” for months?
• Delivered wonderful plans but no software?
• Delivered wonderful models, but no software?

• The only accurate measure of software 
development is the delivery of software
• Deliver something at the end of each cycle/iteration
• Iterations should be short
• At all points in time stakeholders can see what 

they’ve gotten for their investment to date
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Pair Programming
• Two programmers work side-by-side, collaborating on the same 

design, algorithm, code, or test 
• The driver has control of the keyboard/mouse and actively 

implements the program 
• The observer continuously observes the work of the driver to 

identify tactical (syntactic, spelling, etc.) defects and also thinks 
strategically about the direction of the work

• They periodically switch roles, working together as equals 
• On demand, the two programmers can brainstorm any 

challenging problem
• Significant evidence exists which shows that pair programming 

is more effective, overall, than solo programming for the vast 
majority of developers

• pairprogramming.com
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Active Stakeholder Participation

• Project stakeholders should:
• Provide information in a timely manner
• Make decisions in a timely manner
• Actively participate in business-oriented modeling

• www.agilemodeling.com/essays/activeStakeholderParticipation.htm
• www.agilemodeling.com/essays/inclusiveModels.htm
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Model with Others

• The modeling equivalent of pair programming
• You are fundamentally at risk whenever 

someone works on something by themselves
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Refactoring

• A code refactoring is a small change to your 
code to improve your design that retains the 
behavioral semantics of your code; examples: 
Rename Method, Move Method, and Remove 
Setting Method

• Refactoring enables you to evolve your 
development assets in a controlled manner, 
enabling your design to remain high quality

• www.refactoring.com
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Database Refactoring
• A database refactoring is a simple change to a database 

schema that improves its design while retaining both its 
behavioral and informational semantics; examples: Move 
Column, Rename Table, and Replace Blob With Table

• A database schema includes both structural aspects such as 
table and view definitions as well as functional aspects such 
as stored procedures and triggers 

• Important: Database refactorings are a subset 
of schema transformations, but they do not 
add functionality

• www.agiledata.org/essays/databaseRefactoring.html
• www.databaserefactoring.com
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Database Testing
www.agiledata.org/essays/databaseTesting.html 

Copyright 2006
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Sandboxes
www.agiledata.org/essays/sandboxes.html
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Test First Design (TFD)
www.agiledata.org/essays/tdd.html
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Test Driven Design (TDD)

• TDD = Refactoring + TFD
• Steps:

1. Before implementing a requirement, ask yourself if 
the existing design is the simplest one to implement 
the requirement

2. If not, refactor the code before continuing
3. Take a TFD approach to implement the requirement
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Continuous Regression Testing

• Regression testing is critical to the success 
of evolutionary (iterative and incremental) 
development

• It’s such a good idea, agilists prefer to do it all 
the time
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Tests as Primary Artifacts

• Acceptance tests are considered to be primary 
requirements artifacts

• Unit tests are considered to be detailed design 
artifacts
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Continuous Integration

• Daily builds are a good start
• We update and test our code constantly
• Therefore we need to build the system constantly
• Some tools:

• Cruise Control
• Maven/Continuum 
• Ant/AntHill
• Tinderbox

• damagecontrol.codehaus.org/Continuous+Integr
ation+Server+Feature+Matrix?print=1
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Follow Guidance

• Guidance = Standards and guidelines
• Agile developers prefer to develop high-quality 

artifacts, and that includes ensuring that they 
are developed in a consistent manner

• XP practice Coding Standards
• AM practice Apply Modeling Standards
• www.agilemodeling.com/style/
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Scrum
www.controlchaos.com
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The Cost of BRUF:
Feature Usage Within Deployed Applications
www.agilemodeling.com/essays/examiningBRUF.html

Never
45%

Rarely
19%

Sometimes
16%

Often
13%

Always
7%

Source: Jim Johnson of the Standish Group, Keynote Speech XP 2002
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Agile Model Driven Development (AMDD)

Cycle n: Development

Cycle 2: Development

Cycle 1: Development

Cycle 0: Initial Modeling

Initial Requirements
Modeling

(days)

Initial Architectural
Modeling

(days)

Model
Storming
(minutes)

Implementation
(Ideally Test Driven)

(hours)

Reviews
(optional)

All Cycles
(hours)

Goals: Gain an initial 
understanding of the 
scope, the business 
domain,  and your overall 
approach.

Goal: Quickly explore in 
detail a specific issue 
before you implement it.

Goal: Develop working 
software in an evolutionary 
manner.

www.agilemodeling.com/essays/amdd.htm
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Agile Change Management
www.agilemodeling.com/essays/changeManagement.htm
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Why Agile Software 
Development Works

Comparing the Cost Benefit Curves
BRUF vs. Agile Change Mgmt

Cost of Change Curves
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Comparing the Cost-Benefit Curves

Value

Time

Release
T= 16 

months

Break Even Point
T= 26 months
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BRUF vs. Agile Change Mgmt

Never
45%

Rarely
19%

Sometimes
16%

Often
13%

Always
7%
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Comparing the Costs
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The Eclipse Process Framework (EPF)
• EPF is a knowledge management system for project-

centric development processes
• Potential for several base processes (e.g. Open UP, XP, …)
• Many process plug ins (e.g., DB Refactoring, Scrum, …)

• Support a variety of different processes and process 
models
• Agile, yet still compatible to senior management
• Endorsed by many organizations

• The tool and process material is open source
• If you don’t like it, change it

• www.eclipse.org/epf
• www.openup.org (coming soon)
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Interesting Observations
• You need to become a generalizing specialist:

• www.agilemodeling.com/essays/generalizingSpecialist.htm

• Agile software development is real and not a fad
• Agile software development is supported by a wide 

range of industry luminaries
• Research evidence support agile techniques is 

beginning to emerge
• Significant evidence exists showing that traditional 

techniques suffer from significant challenges
• Why is that the people saying agile doesn’t work rarely 

seem to have tried it or even read a book about it?
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Q&A
Scott W. Ambler
www.ambysoft.com/scottAmbler.html
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References and Recommended Reading
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• www.agiledata.org
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• www.databaserefactoring.com
• www.enterpriseunifiedprocess.com
• Ambler, S.W. (2002). Agile Modeling: Effective Practices for XP and the UP. 

New York: John Wiley & Sons.
• Ambler, S.W. (2003). Agile Database Techniques. New York: John Wiley & 

Sons.
• Ambler, S.W. (2004). The Object Primer 3rd Edition: AMDD with UML 2. New 

York: Cambridge University Press.
• Ambler, S.W. and Sadalage, P.J. (2006). Refactoring Databases: 

Evolutionary Database Design. Reading, MA: Addison Wesley Longman, Inc.
• Larman, C. (2004). Agile and Iterative Development: A Manager’s Guide. 

Reading, MA: Addison Wesley 
• McGovern, J., Ambler, S.W., Stevens, M., Linn, J., Sharan, V., & Jo, E. 

(2003).  The Practical Guide to Enterprise Architecture.  Prentice Hall PTR.
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