
2006 JavaOneSM Conference | Session TS-5397 |

The Top Ten Ways to Botch an
Enterprise Java™ Technology-Based
Application
Cameron Purdy
President
Tangosol
www.tangosol.com

TS-5397

2006 JavaOneSM Conference | Session TS-5397 | 2

In these slides, you will see why
That zillion dollar project failed;
You’ll likely laugh—you’ll want to cry!
To see these practices revealed

Overall Presentation Goal

2006 JavaOneSM Conference | Session TS-5397 | 3

Speaker’s Qualifications
• Cameron Purdy is President of Tangosol, and is a

contributor to Java™ technology and XML specifications
• Tangosol is the JCache (JSR 107) specification lead and

a member of the Work Manager (JSR 237)
expert group

• Tangosol Coherence is the leading clustered caching
and data grid product for Java and J2EE™ platform
environments; Coherence enables highly scalable
in-memory data management and caching for clustered
Java technology-based applications

2006 JavaOneSM Conference | Session TS-5397 | 4

Disclaimer

2006 JavaOneSM Conference | Session TS-5397 | 5

Common Sense Trumps Dogma

• There will be real-world situations in which the
principles from this presentation will be wrong;
Always use common sense

• Any similarity of material in this presentation
to disasters that you have witnessed,
either real or imagined, is purely coincidental

2006 JavaOneSM Conference | Session TS-5397 | 6

#10
Specifying the mechanism for data
access without understanding the
granularity of the data model

The Top Ten Ways to Botch an Enterprise
Java Technology-Based Application

2006 JavaOneSM Conference | Session TS-5397 | 7

Popular Methods for Data Access
• Java Database Connectivity (JDBC™)—

a CLI view of RDBMS data
• Apache iBATIS—simplifying common JDBC API usage

patterns
• Enterprise JavaBeans™ (EJB™) architecture

v1, v2—a “record oriented” approach
• Object Relational Mapping (ORM)

• Hibernate, Castor
• Java Data Objects (JDO) v2 Including KODO, OpenAccess)
• EJB v3 technology (Including Hibernate, Toplink, KODO)

2006 JavaOneSM Conference | Session TS-5397 | 8

Data Access: JDBC API
• The “assembly language” of RDBMS—you can do

anything, but you have to do everything
• Best choice when the form of the data being accessed

is unknown, such as in a reporting engine in which the
number and types of result columns are unknown

• Good choice for dealing with extremely large result sets
and accessing rarely-used driver functionality

• Worst choice for rapid application development
• Worst choice for large engineering teams and large code

bases
• Worst choice for building maintainable applications

2006 JavaOneSM Conference | Session TS-5397 | 9

Data Access: ORM
• The “object oriented” model for RDBMS—

you only deal with objects, but the ORM has to deal
with the RDBMS

• Best choice when the form of the data being accessed
is well known, and the widespread use of the data
throughout the application logic far exceeds the
investment in defining the object schema and its
mapping to the database

• Good choice for enabling data caching
• Definitely not a silver bullet

• Still requires good development processes and careful design
• Using ORM, some common application use cases are very

inefficient compared to hand-coded JDBC API

2006 JavaOneSM Conference | Session TS-5397 | 10

Why the Choice Is So Critical

• I have witnessed more applications fail to meet
their business goals due to poor choices around
data access than any other category

• Once a choice is made, it tends to be reflected
in every aspect of the application, making later
changes more difficult and incredibly costly

• The predictability and cost of scalability of a
large scale application is tightly bound to the
application’s data access model

2006 JavaOneSM Conference | Session TS-5397 | 11

Choosing a Data Access Model

• Understand the high-level requirements
• The “-ilities”: Scalability, Reliability, Availability,…

• Visualize the data flows in the running system
• For each page or service request, what actually goes

through to the database, and why?
• Understand the impact of concurrent users

• How will database contention be minimized?
• How will cache effectiveness be maximized?

• Understand the application’s data granularity
• Set-centric or identity-centric?

2006 JavaOneSM Conference | Session TS-5397 | 12

#9
Assuming the container will take care
of transactions

The Top Ten Ways to Botch an Enterprise
Java Technology-Based Application

2006 JavaOneSM Conference | Session TS-5397 | 13

The Container Can Take Care of It
• Java Platform, Enterprise Edition (Java EE) containers

are designed to manage transactions
• Database transactions (JDBC API)
• Messaging transactions (Java Message Service)
• Other EIS (Java Cryptography Architecture)
• Coordination over multiple transactional systems (XA)

• The problem is in the assumption
• Ignorance will cost you zillions
• XA 2PC can have a staggering latency and throughput cost
• Misapplication of transactions could result in a failure to achieve

business requirements such as reliability
• Goal: Understand transactional requirements

2006 JavaOneSM Conference | Session TS-5397 | 14

Leveraging the Container
• Declarative transactions

• To ensure “normal” transactional behavior, use “Required”
• Advanced: To explicitly guarantee a separate transaction within

another transaction, use “RequiresNew”
• For RDBMS-based applications, all other options are verboten
• Trying to avoid the cost of a transaction by using “Supports”,

“NotSupported” and “Never” will almost certainly back-fire
• XA: If multiple transactional resources are required

within a transaction, Java technology can do it
• Unfortunately, in relative terms XA is not very well-known
• Don’t assume that your container actually supports it—test!
• Documentation, examples and FAQs are hard to find

2006 JavaOneSM Conference | Session TS-5397 | 15

Alternatives to Traditional 2PC

• Combine multiple resources
• Put the JMS store on the same database server

• Compensating transactions
• Useful for resources that are not truly transactional

• Idempotency
• Allows blind retries of any request without knowing

for certain the outcome of previous attempts to
process that request

• When it is applicable, idempotency is a silver bullet

2006 JavaOneSM Conference | Session TS-5397 | 16

#8
Using a stateless architecture

The Top Ten Ways to Botch an Enterprise
Java Technology-Based Application

2006 JavaOneSM Conference | Session TS-5397 | 17

“Stateless”: The Intention

• The stateless concept was originally intended
as a server-side optimization for conversational
(stateful) interfaces and protocols

• To accomplish statelessness, the conversational
state must be included in every request,
and often in every response

• Particularly useful for “connectionless”
network protocols, e.g., HTTP
• For example, “cookies” are used in the HTTP

request/response headers to encapsulate
conversational state

2006 JavaOneSM Conference | Session TS-5397 | 18

When to Use “Stateless”

• You are writing an HTTP server
• Your application has no security requirements
• The only data that your application needs for its

operation will be passed to it
• For example, the mythical “number addition service”

• Scalability is not a requirement
• Your budget is infinite

2006 JavaOneSM Conference | Session TS-5397 | 19

“Stateless”: The Reality

• If scalability is a requirement, then a stateless
architecture will only work well for a truly
stateless application

• When the term stateless is used to describe a
Java EE platform-based application, it usually
indicates a “stateless middle tier”

• If an application has a database or an EIS, then
there is state to be managed

• If there is state to be managed, then stateless
applications are simply “passing the buck” to a
more expensive tier

2006 JavaOneSM Conference | Session TS-5397 | 20

“Stateful”: The Solution
• There are degrees of statefulness

• Goal is to avoid increasing load on underlying services while
avoiding unnecessary application complexity

• Simple
• Caching read-only data
• HTTP Sessions

• Intermediate
• Caching read/write data
• Client state managed server-side using Stateful Session

EJB bean
• Advanced

• Transactional caching
• Stateful application-level services

2006 JavaOneSM Conference | Session TS-5397 | 21

The Top Ten Ways to Botch an Enterprise
Java Technology-Based Application

#7
Designing the application for
deployment on a single server
and leave scalability and reliability
up to the container

2006 JavaOneSM Conference | Session TS-5397 | 22

Scale-Out Limitations

• In large scale systems servicing concurrent
requests, scalable performance is limited by the
number of operations which must utilize any
shared resource that does not exhibit linear
scalability
• Databases, EIS, mainframe services

• A stateful application without an explicit
requirement for a scale-out architecture will not
scale out, or will scale out very poorly
• Scaling out quickly highlights bottlenecks in shared

resources, particularly related to state management

2006 JavaOneSM Conference | Session TS-5397 | 23

Scale-Out Gotchas

• Common architectural patterns fail
• The singleton pattern (isn’t!)

• Stateful applications have additional
considerations in a scale-out environment
• Clustered caching
• Distributed state management

• Reliability of data requires concurrency
management and transactions
• Yet relying on a central store will create a bottleneck
• Data Grids and Information Fabrics

2006 JavaOneSM Conference | Session TS-5397 | 24

Designing for Scale-Out

• Cookie Cutter: Every server has identical
responsibilities
• Benefit: The same application works on one server or

one hundred servers
• Conceptually, there are only two things that can

move in a distributed environment
• State—application data
• Behavior—application processing

• Locality of information is the critical enabler
• Move as little as possible, as rarely as possible
• Always avoid “going to the committee”

2006 JavaOneSM Conference | Session TS-5397 | 25

#6
Utilizing popular technologies such as
Web Services for component
integration and remoting

The Top Ten Ways to Botch an Enterprise
Java Technology-Based Application

2006 JavaOneSM Conference | Session TS-5397 | 26

XML Services: A Brief Synopsis

• XML documents: Rendering a request or
response as an XML document tends to be both
CPU and memory intensive

• Networking: Passing textually-encoded XML
documents is a poor use of bandwidth

• Connection Management: Connectionless HTTP
is far more expensive than a socket

• Parsing: Validation and parsing of XML
documents is extremely CPU intensive

• Summary: Big money, high latency

2006 JavaOneSM Conference | Session TS-5397 | 27

Appropriate Uses
• Exposing Platform-Independent Services

• XML-based services are the one thing that Java technology
and Microsoft .NET can agree on

• Loose Coupling
• The service provider and the service consumer can be

completely unknown to each other
• Public Network Capable

• Securable at the low level (e.g., HTTPS) and the high level
(document signing, encryption, etc.)

• Defensible Uses
• Among separate applications
• Among different organizations

2006 JavaOneSM Conference | Session TS-5397 | 28

Yes, SOA Is Still a Good Thing
• XML-based SOA has appropriate uses
• SOA and its underlying principles do not require SOAP,

XML, HTTP, etc.
• Java technology has a rich set of built-in capabilities for

supporting SOA within an application, such as
• JMS API—Message bus-based SOA
• RMI—Synchronous Java-centric remote invocation

• When the internal (Java technology) and external (XML)
service interfaces are identical, then layer the XML-
based interfaces on top of the higher-performing and
more efficient Java API, and use the Java API within
the app

2006 JavaOneSM Conference | Session TS-5397 | 29

#5
Rolling your own frameworks

The Top Ten Ways to Botch an Enterprise
Java Technology-Based Application

2006 JavaOneSM Conference | Session TS-5397 | 30

What Business Are You In?

• Whenever you realize that you are rolling your
own framework, ask yourself if you are in the
framework business

• Be prepared: It is almost always provable that
no existing framework is a perfect fit to your
specific problems
• Ignore the temptation to write your own
• If others have been able to use existing frameworks,

then so can you!
• Existing frameworks benefit from cumulative

experience, testing and refinement

2006 JavaOneSM Conference | Session TS-5397 | 31

Solution: Don’t Roll Your Own

• Look at frameworks—even free ones—the same
way you would look at any build versus buy
decision

• Adopt a “best of breed” approach to selection
• Technical excellence
• Strong market presence
• Ongoing commitment to support

• When requirements differ substantially
from what is already available, consider starting
from an existing framework and customizing it

2006 JavaOneSM Conference | Session TS-5397 | 32

#4
Distributing synchronous object graphs
across servers

The Top Ten Ways to Botch an Enterprise
Java Technology-Based Application

2006 JavaOneSM Conference | Session TS-5397 | 33

First Law of Distributed Objects

• “Don’t distribute your objects!”
– Martin Fowler

• Co-location of state and behavior is the
lynch-pin of scalable performance
• Move as little as possible, as rarely as possible

• “Transparency is valuable, but while many
things can be made transparent in distributed
objects, performance isn’t usually one of them.”

– Martin Fowler, in Errant Architectures

2006 JavaOneSM Conference | Session TS-5397 | 34

Synchronous Distribution

• Synchronous execution in a distributed
environment can turn a collection of servers into
a single thread—and an inefficient one at that!

• When distribution is necessary, minimize it
• Use replication to “push” data, events to “push” data

invalidations, and pinned services for “pull”
• Use JMS API for asynchronous distribution

• Removes the distribution from the synchronous
application flow

• Warning! Durable JMS API has huge implications
(XA, synchronous logging)

2006 JavaOneSM Conference | Session TS-5397 | 35

#3
Designing logic and data flows assuming
the application is a single-user system

The Top Ten Ways to Botch an Enterprise
Java Technology-Based Application

2006 JavaOneSM Conference | Session TS-5397 | 36

Single-User Systems

• No need to worry about transaction isolation
or concurrency strategies
• Transactions never deadlock
• Optimistic transactions always commit.
• Transactions are always Serializable…because they

are serial!

• Scalability never suffers from contention
• Data sharing is never needed
• Shared resources are always completely free!

2006 JavaOneSM Conference | Session TS-5397 | 37

Designing for Concurrent Load

• Biggest cause of failure in large-scale
application development: The fast PC!
• Developers feel that the application is plenty fast

• Developing for concurrent load is a conscious
decision
• Developers usually test using a single user approach
• Developers do not see the throughput impact of

multiple users
• Developers do not witness the issues related to

concurrency control, such as transaction roll-backs

2006 JavaOneSM Conference | Session TS-5397 | 38

Designing for Concurrent Load

• Applications developed for high levels
of concurrent load have different priorities
• Code profiling and other forms of micro-optimization

are much less important than system profiling
• Maximizing the performance of each request takes

a back seat to maximizing the Scaling Factor (SF)
• Linear scalability (SF=1.0) is a lot more important—

and a lot harder to achieve—than the fastest
single-user response time!

• Use of shared resources, such as databases,
is considered to be extremely expensive

2006 JavaOneSM Conference | Session TS-5397 | 39

#2
Compensating for a lack of knowledge
of the application domain by building
in systemic flexibility

The Top Ten Ways to Botch an Enterprise
Java Technology-Based Application

2006 JavaOneSM Conference | Session TS-5397 | 40

Unnecessary Flexibility

• Maintaining flexibility often means giving up
scalability and/or reliability
• Over-normalizing the data schemas
• Using distributed transactions when local will suffice
• Using transactionally consistent data when it's not

required
• Flexibility tends to oppose efficient execution

• Bulk pass-through operations get turned into iterators
• Flexibility is good—when it is necessary

• You can only say “YAGNI” if you have a good
understanding of the problem domain!

2006 JavaOneSM Conference | Session TS-5397 | 41

#1
Putting off system testing until the
application is ready to deploy

The Top Ten Ways to Botch an Enterprise
Java Technology-Based Application

2006 JavaOneSM Conference | Session TS-5397 | 42

Test Early, Test Often

• Obviously you don’t want to design in the
problems in the first place

• But if you do, the earlier you realize it’s a
disaster, the better

• Make the tests reflect real world use cases
• Closely simulate the production environment
• Load test with multiple users, testing latency

and throughput
• Simulate failure scenarios, failover and failback—

under load!

2006 JavaOneSM Conference | Session TS-5397 | 43

Eliminating SPOFs

2006 JavaOneSM Conference | Session TS-5397 | 44

Eliminating SPOFs:
The Java EE Platform Tier

• Java technology-based application tiers
(“Java tier”) can be stateless
• Stateless tiers (e.g., web servers) are HA using

simple redundancy
• Only problem is that statelessness in one tier usually

just passes the buck to the next tier, which is almost
always more expensive

2006 JavaOneSM Conference | Session TS-5397 | 45

Eliminating SPOFs:
The Java EE Platform Tier

• Java tiers are almost always stateful
• Only two things can be lost: State and inflight

requests
• To achieve HA, the Java tier must either manage its

state resiliently (e.g., in a clustered coherent cache)
or back it up to a central store

• Idempotent actions can be replayed by the web tier
when a server fails

2006 JavaOneSM Conference | Session TS-5397 | 46

Eliminating SPOFs:
HA Java EE Platform

• Normal flow through a multi-tier enterprise app…

2006 JavaOneSM Conference | Session TS-5397 | 47

Eliminating SPOFs:
HA Java EE Platform

• …if a server dies, its current requests can be lost

2006 JavaOneSM Conference | Session TS-5397 | 48

Web Tier to App Tier Interconnects

• The previous pictures may look like a mess…
• …but load balancers have to do far more work to

support sticky load balancing
• Best approach is for the load balancer to round-robin

or randomize its load-balancing across all available
web servers

2006 JavaOneSM Conference | Session TS-5397 | 49

Web Tier to App Tier Interconnects

• …but there’s a good reason
• Web servers (e.g., Apache, IIS, Java Enterprise

System) can handle lots of concurrent connections,
serve static content, and route requests to
app servers

• The web server plug-in for routing to the app server
can do the sticky load balancing, guaranteeing that
HTTP Sessions “stick”!

2006 JavaOneSM Conference | Session TS-5397 | 50

Eliminating SPOFs:
Idempotency in Java EE Platform

• Idempotency is potent!
• Under normal conditions, requests are processed

exactly once
• Idempotency allows the same request to be

processed more than once, with the possibility that
those requests were partially processed, and without
any side-effects from being run more than once

2006 JavaOneSM Conference | Session TS-5397 | 51

Eliminating SPOFs:
Idempotency in Java EE Platform

• Idempotency is potent!
• Allows blind retries of any request without knowing for

certain the outcome of previous attempts to process
that request

• Requires great forethought: every potentially
state-mutating request must have a plan for how it
can be run 1 time, 1.5 times, 2 times or 200 times
without corrupting the application state

2006 JavaOneSM Conference | Session TS-5397 | 52

Eliminating SPOFs:
HA Java EE Platform

• Normal request/response before a server dies…

2006 JavaOneSM Conference | Session TS-5397 | 53

Eliminating SPOFs:
HA Java EE Platform

• …and with idempotency, requests can re-route!

2006 JavaOneSM Conference | Session TS-5397 | 54

Eliminating SPOFs:
Idempotency in Java EE Platform

• Idempotency by predicate
• All actions must have one-way non-destructive state

transitions
• Conceptually similar to optimistic concurrency

with a database
• e.g., “Perform this account transfer of $100 from

account 123 to account 456, but only if account 123
contains exactly $1000 and account 456 contains
exactly $500”

2006 JavaOneSM Conference | Session TS-5397 | 55

Eliminating SPOFs:
Idempotency in Java EE Platform

• Idempotency by identity
• Easy pattern: Uniquely identify each possible action

before it occurs
• It’s like the command pattern, but every command

instance has an UID
• e.g., “Place this order for these goods, but only if

order UID 1234567890 has not previously been
submitted.”

• Bonus: Allows the user to click submit twice without
their credit card getting charged twice!

2006 JavaOneSM Conference | Session TS-5397 | 56

Evil Rules

2006 JavaOneSM Conference | Session TS-5397 | 57

Designing Non-Scalable Applications

• Evil Rule 1: Create SPOBs
• A Single Points Of Bottleneck (SPOB) is any server,

service, etc. that all (or many) requests have to go
through, and that has any load-associated latency

• The simplest way to create a SPOB is to read data
from a shared database as part of request processing

• Web services, mainframes, enterprise applications
such as PeopleSoft and SAP, singleton distributed
services, etc. all provide great opportunities for
introducing SPOBs

2006 JavaOneSM Conference | Session TS-5397 | 58

Designing Non-Scalable Applications

• Evil Rule 2: Introduce concurrency control
bottlenecks
• Default to pessimistic concurrency, and hold locks

on the database whenever possible
• Default to serializable transactions
• In a multi-threaded application, make sure to

synchronize on some shared object before making
a database call or a web service invocation

• Use synchronous logging

2006 JavaOneSM Conference | Session TS-5397 | 59

Designing Non-Scalable Applications

• Evil Rule 3: Build in extra tiers and remote
invocations whenever possible
• Never miss an opportunity to split something out

as a remote web service
• Make sure that the JavaServer Pages™ (JSP™)

specification-based pages and Servlets make remote
calls to the EJB technology tier

• Treat remote objects as if they were local
• Never do in a single SQL statement what you could

spread across a whole bunch of individual statements

2006 JavaOneSM Conference | Session TS-5397 | 60

Designing Non-Scalable Applications

• Evil Rule 4: Push more work onto the expensive
parts of the infrastructure
• Make sure that the database is a SPOB, since it has

a typical SF between 0.70 and 0.90 and an
exponentially increasing cost factor for CPU scaling

• Mainframes are big and fast, so don’t worry about
calling the same service more than once with the
same request parameters

2006 JavaOneSM Conference | Session TS-5397 | 61

Q&A
Cameron Purdy

2006 JavaOneSM Conference | Session TS-5397 |

The Top Ten Ways to Botch an
Enterprise Java™ Technology-based
Application
Cameron Purdy
President
Tangosol
www.tangosol.com

TS-5397

