
2006 JavaOneSM Conference | Session TS-1049 |

TS-1049

Techniques and Tips: Developing
Secure Payment Applications,
Using Java™ ME Technology
Angela Caicedo
Doris Chen Ph.D.
Technology Evangelists
Sun Microsystems

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-1049 2

Goal of This Talk

Learn how to develop Java™ Platform,
Micro Edition secure payment applications
using Secure And Trusted Services APIs
(SATSA) and Payment API (PAPI)

2006 JavaOneSM Conference | Session TS-1049 3

Agenda

Introduction to Mobile Payment
Java ME Security Model
Security and Trust Services API for J2ME™:
SATSA (JSR 177)
Payment API: PAPI (JSR 229)
Demo: Putting Everything Together

2006 JavaOneSM Conference | Session TS-1049 4

Agenda

Introduction to Mobile Payment
Java ME Security Model
Security and Trust Services API for J2ME™:
SATSA (JSR 177)
Payment API: PAPI (JSR 229)
Demo: Putting Everything Together

2006 JavaOneSM Conference | Session TS-1049 5

Mobile Payment Motivation
● Computers are generally vulnerable and

compromise security
● You can easily cancel an ATM transaction if the user

claims not to have authorized them
● Smart card connected to the PC does not ensure security:

Virus may send incorrect information to the smart card
● Mobile personal devices, with built-in display and

keyboard, provide technical solution for reducing fraud
● Some security is already part of the authentication mechanism

of existing cell phones as a way to prevent call theft
● Inexpensive to incorporate additional mechanisms to ensure

secure transaction authorization

● Convenience: Transactions anywhere

2006 JavaOneSM Conference | Session TS-1049 6

Major Mobile Payment Players

2006 JavaOneSM Conference | Session TS-1049 7

Transactions Categories

● Remote transactions
● Take place over the network of the user’s mobile

service provider
● Examples: Downloading ring tones or video,

online purchases
● Local transactions

● Take place when the mobile device communicates
with a nearby machine

● Bluetooth instead of the mobile network
● Examples: purchases at a store, withdrawals from

a bank or payment for public transportation

By User’s Location

2006 JavaOneSM Conference | Session TS-1049 8

Technologies to Handle
Local Transactions
● IrFM (infra-red) technology to allow Palm Pilots to

act as a digital wallet; Palm and HP
● IrFM payment procedures; Verizon, Visa and many

Asian companies
● “Wireless Wallet” technology, requires an always-on

connection to the user’s wireless network
● Radio Frequency Identification-(RFID-) based

payment procedures being developed
● Small chip built into the cover of the phone is scanned,
● Personal Identification Number (PIN) must be entered

to authorise the payment
● This was developed to be similar to existing credit card

2006 JavaOneSM Conference | Session TS-1049 9

Phone (%) PDA (%)

Inhibitors to the Growth
of M-Commerce

Source: Forrester Research

Credit Card Security

Fear of “Klunky” User Experience

Don't Understand How It Works

Never Heard of It Before

Other

Obstacle

52

35

16

10

11

10

47

31

16

12

13

2006 JavaOneSM Conference | Session TS-1049 10

Requirements for the Global
Adoption of Mobile Payments

● Security
● Minimizes fraud and hence reduces operating cost
● Increase in consumer and merchant confidence
● Increase in merchant and SP confidence
● Security elements to be addressed

● Authentication
● Confidentiality

● Interoperability: ensuring that any participating
payment product can be used at any
participating merchant location

● Usability: Simplicity is required

● Data integrity
● Non-repudiation

2006 JavaOneSM Conference | Session TS-1049 11

Agenda

Introduction to Mobile Payment
Java ME Security Model
Security and Trust Services API for J2ME:
SATSA (JSR 177)
Payment API: PAPI (JSR 229)
Demo: Putting Everything Together

2006 JavaOneSM Conference | Session TS-1049 12

Why Java ME for Secure Payment

● Java™ ME secure from the beginning
● Mobile-end-point-capability agnostic approach
● APIs under the JCP:

● Payment API (PAPI) (JSR-229)
● Secure And Trusted Services APIs (SATSA) (JSR-177)

● Netbeans Mobility Pack 5.0 +
● Sun Java Wireless Toolkit 2.5

2006 JavaOneSM Conference | Session TS-1049 13

Setting
Permissions

MIDlet-
Permis
sions

Signing

Protected
APIs

Protected APIs
Specified

MIDP 2.0 Security Model

Over the Air

Application
Management
Software (AMS)
Uses Security
Policy

Security
Policy

Installation

Certificate and
Digital Signature

2006 JavaOneSM Conference | Session TS-1049 14

● Defines a set of permissions (Allowed and User)
that may be granted to a MIDlet suite in that domain

● Defines a set of rules that describe how MIDlet
suites get into the domain
● A signed Midlet suite should be in trusted domain

● Permission: Allow, User (blanket, session, oneshot)
● Vendor implementation issues

● How many protection domains
● How each protection domain is defined

What Is a Protection Domain?

2006 JavaOneSM Conference | Session TS-1049 15

Protection Domain Config File in
J2ME Wireless Toolkit

alias: net_access
 javax.microedition.io.Connector.http,
 javax.microedition.io.Connector.socket,
 ...
alias: application_auto_invocation
 javax.microedition.io.PushRegistry
 ...
alias: local_connectivity
 javax.microedition.io.Connector.comm
domain: minimum
domain: maximum
allow: net_access
allow: application_auto_invocation
allow: local_connectivity
...

$WTK_HOME/appdb/_policy.txt

2006 JavaOneSM Conference | Session TS-1049 16

● Specified in Java Application Descriptor (JAD)
file indicating a MIDlet suite’s dependence on
certain permissions

● This MIDlet suite needs to make an HTTP connection
and may also make socket connections
● MIDlet-Permissions: javax.microedition.io.Connector.http
● MIDlet-Permissions-opt: javax.microedition.io.

Connector. socket
● Is a handy way to advise a device at installation

time that your MIDlet suite will be attempting
particular operations

Requesting Permission Types for
Midlet Suite (by MIDlet Developer)

2006 JavaOneSM Conference | Session TS-1049 17

Requesting Permission Types
in Wireless Toolkit

● Set the MIDlet-
Permissions
and MIDlet-
Permissions-Opt
attributes from
the permissions
panel of the
Project|Settings

2006 JavaOneSM Conference | Session TS-1049 18

Sign MIDletSuite
● Select Project|Sign
● Sign MIDletSuite

window opens
● Click New Key

Pair button and Create,
so A certificate is stored
in the MEKeystore

● Select a security domain
type to associate
with this certificate

● Click “Sign MIDlet Suite”

2006 JavaOneSM Conference | Session TS-1049 19

Agenda

Introduction to Mobile Payment
Java ME Security Model
Security and Trust Services API for J2ME:
SATSA (JSR 177)
Payment API: PAPI (JSR 229)
Demo: Putting Everything Together

2006 JavaOneSM Conference | Session TS-1049 20

Security and Trust Services
API for J2ME

● Provides security and trust services by integrating
a Security Element (SE)
● Secure storage to protect sensitive data: User’s private

keys, public key (root) certificates, service credentials,
personal information

● Cryptographic operations to support payment
protocols, data integrity, and data confidentiality

● A secure execution environment to deploy custom
security features: User identification and
authentication, banking, payment, loyalty applications

JSR 177

2006 JavaOneSM Conference | Session TS-1049 21

The Security and Trust Services API

● Smart Card Communication
● Smart cards provide a secure programmable

environment
● Deliver a broad range of security and trust services
● Continually upgraded with new or improved

applications that can be installed on a smart card
● Access methods based on the APDU protocol and

the Java Card RMI protocol (SATSA-APDU and
SATSA-Java Card RMI packages)

● Allow a Java ME application to communicate with
a smart card to leverage the security services
deployed on it

Capabilities

2006 JavaOneSM Conference | Session TS-1049 22

The Security and Trust Services API

● Digital Signature Service and Basic User
Credential Management(SATSA-PKI package)
● Digital signature service generates digital signatures
● Digital signatures used to authenticate end-users or to

authorize transactions using public key cryptography
● User’s identity bound to a public key through a public

key certificate
● User credential management manage user

credentials, such as certificates, on a user’s behalf
● Rely on a SE to provide secure storage of user credentials

and cryptographic keys
● Secure computation involving the cryptographic keys

Capabilities

2006 JavaOneSM Conference | Session TS-1049 23

JSR 177: Scope and Packaging
● SATSA-APDU Optional Package

● Support communication with smart card using low-level
protocol

● SATSA-JCRMI Optional Package
● Support remote method invocation of Java Card

based objects
● SATSA-PKI Optional Package

● Support digital signature and user credential management
● SATSA-CRYPTO Optional Package

● Support low-level cryptography operations
● Recommended practice: Access control policy

2006 JavaOneSM Conference | Session TS-1049 24

Cryptography Goals
Addressed With SATSA

● Confidentiality: Only authorized recipients
can access information → Data encryption

● Data integrity: Detect if information has changed
→ Digital signatures

● Non-repudiation: Ensure that a transaction can’t
be denied → Non-repudiation type of signatures

● Authentication: Verify the source of information
→ Data encryption and digital signatures

2006 JavaOneSM Conference | Session TS-1049 25

Public Key Infrastructure (PKI)
Functional Elements

Certificate
Signing
Request

Certification
Revocation

List

End-Entities
(Users or

Computers)

Certificate
Repository

Certificate
Revocation
Repository

Certificate
Retrieval

CRL
Retrieval

Certificate Authority

Enrollment

X.509 Certificate Chain

Revocation Request

2

2a

2b 14

5

3

2006 JavaOneSM Conference | Session TS-1049 26

Public Key Certificate
Enrollment Process

Generated Private
Key Is Stored in

Local Store

CSR Is Generated
Based on the Private

Key, and the
Distinguished Name

The CA Verifies
the CSR and at Some

Point Returns a Signed
Digital Certificate

Signed Certificate
Path and/or Its URL
Are Stored Locally

Generate Private Key

Generate Certificate
Signing Request (CSR)

Send CSR to
Certificate Authority

CA Sends Signed
Certificate to Requestor,

Which Stores It

2006 JavaOneSM Conference | Session TS-1049 27

Generating a Private Key
and Certificate Signing Request

byte[] csr = null; // Buffer for generated CSR
String distinguishedName = "CN=eortiz@j2medeveloper.com,
O=J2MEDeveloper.com,UID=eortiz,C=USA"; // The DN
int rsaKeyLength = 1024;
String securityElementID = null; //Use default SE
String securityElementPrompt = null; // No prompt
boolean forceKeyGen = true; // Generate private key
try {
 csr = UserCredentialManager.generateCSR(
 distinguishedName,
 UserCredentialManager.ALGORITHM_RSA,
 rsaKeyLength,
 UserCredentialManager.KEY_USAGE_AUTHENTICATION,
 securityElementID,
 securityElementPrompt,
 forceKeyGen);
} catch (Exception e) {
 /* Handle IllegalArgumentException or UserCredential
 ManagerException or SecurityException or
 CMSMessageSignatureServiceException */...
}

mailto:CN%3Deortiz@j2medeveloper.com

2006 JavaOneSM Conference | Session TS-1049 28

Requesting the Signed Certificate
(Verifying the CSR)
/* Send the generated CSR to the CA enrollment server,
 possibly over a secure TCP (SecureConnection) or
 HTTPS (HttpsConnection). Wait for response (the
 signed X.509 certificate chain) */
String url = "www.j2medeveloper-ca.com:443";
byte[] response = secureSend(url, csr);
...

Storing the Certificate
/* Parse response, extracting the signed X.509
 certificate information. Store the received
 certificate on the security element. */
UserCredentialManager.addCredential(certDisplayName,
 pkiPath,
 Uri); // from the enrollment response

2006 JavaOneSM Conference | Session TS-1049 29

Managing Certificate’s Local Store
// The certificate friendly name
String certDisplayName = new String("MyCertificate");
// The certificate path and URI.
byte[] pkiPath = "..."; // from the enrollment response
String uri = "..."; // from the enrollment response
try {

// Store the received certificate on
 // the security element.The pkiPath and URI are
 // extracted from the message received from the CA.
 boolean added;
 added = UserCredentialManager.addCredential(
 certDisplayName,
 pkiPath,
 uri);
} catch (Exception e) {
 // Handle IllegalArgumentException or
 // UserCredentialManagerException or
 // SecurityException
 ...
}

2006 JavaOneSM Conference | Session TS-1049 30

Data Integrity with Message Digest

Digest

1-Way
Hash

Function

Message

Digest

Message

Compare: If Message Is Valid

1-Way
Hash

Function

Recalculated
Digest

Generate a
Message Digest

Message
With Fingerprint

Verifying a Message Digest

Message
With Digest
Is Generated

?

2006 JavaOneSM Conference | Session TS-1049 31

Generating a Message Digest

static String digestAlgo = "SHA-1";
static int shaDigestLen = 20;
byte[] message = "..."; // original message
byte[] newDigest = new byte[shaDigestLen];
try {
 MessageDigest md;
 md = MessageDigest.getInstance(digestAlgo);
 md.update(message, 0, message.length);
 md.digest(newDigest, 0, shaDigestLen);
} catch (Exception e) {
 // Handle NoSuchAlgorithmException or DigestException
 ...
}

2006 JavaOneSM Conference | Session TS-1049 32

The Signing Process

Sender’s
Private Key

Digital
Signature

Digital
Signature

Encrypt

Digest

1-Way
Hash

Function

Message

Signature Generation

Sender’s Public Key

1-Way
Hash

Function

Decrypt

Recalculated
Digest

Original
Digest

Compare: If Equal
Signature Is Valid
and Content Is
Authenticated

?

Signature Verification

Message

Digital
Signature

Signed
Message

Signed Message
Is Generated

2006 JavaOneSM Conference | Session TS-1049 33

Agenda

Introduction to Mobile Payment
Java ME Security Model
Security and Trust Services API for J2ME:
SATSA (JSR 177)
Payment API: PAPI (JSR 229)
Demo: Putting Everything Together

2006 JavaOneSM Conference | Session TS-1049 34

Payment API—JSR 229
● Initiate payment transactions in a secured manner

to transparently expedite the chargeable service
requests
● Requesting a payment transaction
● Requesting feature and service price management
● Payment service availability

● Provide a generic payment initiation mechanism
that hides the actual payment architecture and
complexity from the developers

● Does not define and imply any concrete payment
implementation and mechanism

What Does It Allow You to Do?

2006 JavaOneSM Conference | Session TS-1049 35

General Architecture

MIDP/IMP

CLDC

Native Platform

Payment Module

Payment API

Payment
Adapter

Payment
Adapter

Java Application

2006 JavaOneSM Conference | Session TS-1049 36

Functional Overview
End User Application

Developer
Application
Provider/
Merchant

Price
Manager

Payment
Service
Provider

Implementer
(JSR/module/

methods
Manufacturer

Payment Module
Payment
 Adapter

Pay API

Application

Interacts With Implements

Delivers
Application

Provisions
Application

Provisions
Application

Contracts

Provisions

Standard Payment
MethodsImplements

Provides

Provides

Notify and
Forward
Payload

Terminal

Requests
Payment

Commits
Payment

Provisions
Application

2006 JavaOneSM Conference | Session TS-1049 37

Payment Module Responsibilities

● Applications include provisioning data for the
different payment adapters

● Payment module load the payment provisioning
data from the JAR-Manifest Resource file

● Find possible syntax errors
● Map the provisioning data to the appropriate

payment adapter
● When to map? Up to the implementation

to decide

Provisioning Mapping

2006 JavaOneSM Conference | Session TS-1049 38

Payment Module Responsibilities

● Price information delivered with application
● How often or when price updates should be conducted?

Pricing Updates

Application

Payment Module

<Feather Title>

<This feature is described
here in more detail>
Are you sure your want
to buy this feature for
EUR 0.50 using
Premium Priced SMS?

Yes

No Update

Other Method

Retrieve Up-to-date
Provisioning Information

Processed() Process()

Payment API

2

4

5 1

3

Last Update Date: <date>
Last Update Stamp: <stamp>

2006 JavaOneSM Conference | Session TS-1049 39

Payment Module Responsibilities

● Method selection
● Payment API is payment adapter agnostic
● Show all operational payment methods available

to the user
● Transaction and update history

● Keep history of the latest provisioning update as
well as all missed transactions and a reasonable number
of past transactions

● Dynamic payment adapter management
(optional)
● Responsible for downloading, checking, installing

and registering that particular payment adapter plug-in

2006 JavaOneSM Conference | Session TS-1049 40

Payment Adapter Responsibilities

● Conducts payment transactions
● Focus on at least one particular payment method
● All payment methods MUST involve an interaction

between this adapter and servers in the network
● Payment authentication

● Should include non-repudiation mechanisms and
user authentication

● It’s up to the payment adapter implementation
● Use SATSA

2006 JavaOneSM Conference | Session TS-1049 41

javax.microedition.payment
Payment API Overview

TransactionModule
● Represents the communication interface between

the application and the payment module
● Support asynchronous payment handling
● process()

● Return immediately after passing the values to the
payment adapter

● An event is generated as a result of the payment
transaction, and the corresponding record is passed
through the processed() method of the
TransactionListener

2006 JavaOneSM Conference | Session TS-1049 42

Payment API Overview

TransactionListener
● Receives notifications of transaction records that have been

generated by the payment module once a transaction has been
processed

● processed() indicate that a transaction-related event has
occurred: TRANSACTION_SUCCESSFUL,
TRANSACTION_FAILED, TRANSACTION_REJECTED

TransactionRecord
● Represents an atomic payment transactions
● GetFeatureID(), getTransactionID(), getState(),
getFinishedTimestamp(), wasMissed()

javax.microedition.payment

2006 JavaOneSM Conference | Session TS-1049 43

Payment Example (1 of 2)
import javax.microedition.payment.*;
...
public class MyGame extends MIDlet implements

TransactionListener, CommandListener {
private TransactionModule myTransactionModule;
 public MyGame(){
 ...
 try {
 myTransactionModule = new TransactionModule(this);
 } catch(TransactionModuleException e) {
 // print error messages
 }
 try {
 myTransactionModule.setListener(this);
 }catch(Exception e) {...}
 }

2006 JavaOneSM Conference | Session TS-1049 44

Payment Example (2 of 2)
public void startApp(){
 ...
 try {
 myTransactionModule.process(featureID, “Feature Title",
 "Feature description");
 synchronized(this) {
 try {
 wait(); // wait until callback is called
 }catch (InterruptedException ie) {// Handle exception}
 }
 }catch (Exception e) { // Handle exception}...
}
public void processed(TransactionRecord myRecord){
 switch(myRecord.getState()) {
 case TransactionRecord.TRANSACTION_SUCCESSFUL:
 // Payment transaction successful
 break;
 case TransactionRecord.TRANSACTION_REJECTED:
 // Payment rejected
 break;
 case TransactionRecord.TRANSACTION_FAILED:
 default:
 // Technical problem - try again!
 break;
 }...
}

2006 JavaOneSM Conference | Session TS-1049 45

Payment Example
JAD
Pay-Version: 1.0
Pay-Adapters: PPSMS, X-TEST
MIDlet-Permissions: javax.microedition.payment.process.jpp
MIDlet-Certificate-<n>-<m>: <base64 encoding of a certificate>
MIDlet-Jar-RSA-SHA1: <base64 encoded Jar signature>
JAR-Manifest
Pay-Version: 1.0
Pay-Update-Stamp: 2004-11-15 02:00+01:00
Pay-Providers: SMS1, Test1Card
Pay-Update-URL: http://<update-site>/thisgame.manifest.jpp
Pay-Cache: no
Pay-Feature-0: 0
Pay-Feature-1: 0
Pay-Feature-2: 1
Pay-SMS1-Info: PPSMS, EUR, 928, 99
Pay-SMS1-Tag-0: 1.20, 9990000, 0x0cba98765400
Pay-SMS1-Tag-1: 2.50, 9990000, 0x0cba98765401, 2
Pay-Test1Card-Info: X-TEST8, EUR, c4d21, soap://<soap-site-1>/
Pay-Test1Card-Tag-0: 1.21
Pay-Test1Card-Tag-1: 2.46

2006 JavaOneSM Conference | Session TS-1049 46

Agenda

Introduction to Mobile Payment
Java ME Security Model
Security and Trust Services API for J2ME:
SATSA (JSR 177)
Payment API: PAPI (JSR 229)
Demo: Putting Everything Together

2006 JavaOneSM Conference | Session TS-1049 47

Designing Your Application

Method
Selection

Pricing
Updates

Transaction and
Update History

Do You Want
to Buy Levels

or Lifes?

Review History?

Show History Screen

Update Environment with
New Lifes and/or Levels

Merchant

Payment
Service Provider

Buying Lifes and Levels for Your Game

2006 JavaOneSM Conference | Session TS-1049 48

Designing Your Application
Buying Lifes and Levels for Your Game

2006 JavaOneSM Conference | Session TS-1049 49

Getting Ready for the Game
 public Main() {
 screen = new Screen(this);
 engine = new Engine(screen);

 screen.setCommandListener(this);

 try {
 txModule = new TransactionModule(this);
 txModule.setListener(this);
 txModule.deliverMissedTransactions();
 restoreBoughtFeatures();
 } catch (TransactionListenerException tle) {
 tle.printStackTrace();
 } catch (TransactionModuleException tme) {
 tme.printStackTrace();
 }
 }

2006 JavaOneSM Conference | Session TS-1049 50

Restoring Previously Bought Features
 private void restoreBoughtFeatures() {
 TransactionRecord[] record =
 txModule.getPastTransactions(10);

 if (record != null) {
 for (int i = 0; i < record.length; i++){
 processed(record[i]);
 }
 }
 }

2006 JavaOneSM Conference | Session TS-1049 51

Processing Transaction Records
 public void processed(TransactionRecord record) {
 switch (record.getState()) {
 cas e TransactionRecord.TRANSACTION_SUCCESSFUL:
 switch (record.getFeatureID()) {
 case FEATURE_1_LIFE:
 engine.increaseNumOfLives(1);
 break;
 case FEATURE_3_LIVES:
 engine.increaseNumOfLives(3);
 break;
 case FEATURE_1_LEVEL:
 engine.increaseNumOfLevels(1);
 break;
 case FEATURE_3_LEVELS:
 engine.increaseNumOfLevels(3);
 break;
 }
 break;
 default:
 }
 }

2006 JavaOneSM Conference | Session TS-1049 52

Processing Transactions
 public void run() { try {
 txModule.setListener(this);
 txModule.process(feature, title, description);
 if (enableTranListenerNull) {
 txModule.setListener(null); }
 } catch (TransactionListenerException tle) {
 System.err.println("Transaction Listener not
 set");
 } catch (Exception e) {
 e.printStackTrace(); } }

 title = "Buy Life"; feature = FEATURE_1_LIFE;
 description = "You are able to increase number of your lives by 1 life.";

2006 JavaOneSM Conference | Session TS-1049 53

Getting Transaction History
 TransactionRecord[] record = txModule.getPastTransactions(6); String[] stringRecord = null;
 ... stringRecord = new String[record.length]; for (int i = 0; i < record.length; i++) { switch (record[i].getState()) { case TransactionRecord.TRANSACTION_FAILED: feature = "Failed "; break; case TransactionRecord.TRANSACTION_REJECTED: feature = "Rejected "; break; } switch (record[i].getFeatureID()) { case FEATURE_1_LIFE: feature += "1 life"; break;
 ...} date.setTime(record[i].getFinishedTimestamp()); when = date.toString(); stringRecord[i] = feature + " on " + when.substring(0, when.lastIndexOf(':'));

2006 JavaOneSM Conference | Session TS-1049 54

Provisioning (1 of 2)
Pay-Version: 1.0
Pay-Adapters: PPSMS,X-CCARD
MIDlet-Permissions: javax.microedition.payment.process,
 javax.wireless.messaging.sms.send,
 javax.microedition.io.Connector.http,
 javax.microedition.io.Connector.https,
 javax.microedition.io.Connector.sms
MIDlet-Certificate-<n>-<m>: <base64 encoding of a certificate>
MIDlet-Jar-RSA-SHA1: <base64 encoded Jar signature>
Pay-Version: 1.0
Pay-Update-Stamp: 2004-08-12T13:30:00Z
Pay-Update-URL: http://localhost/jbricks/bin/jbricks.jpp
Pay-Providers: SONERA, VISA, RADIOG, DNSDNA, MASTERCARD, AMEX
Pay-Cache: no
Pay-Feature-0: 0
Pay-Feature-1: 1
Pay-Feature-2: 2
Pay-SONERA-Info: PPSMS, EUR, 928, 99
Pay-SONERA-Tag-0: 1.40, 5550000, 1_LIFE
Pay-SONERA-Tag-1: 2.80, 5550000, 3_LIVES, 2
Pay-SONERA-Tag-2: 2.10, 5550000, 1_LEVEL
Pay-SONERA-Tag-3: 4.20, 5550000, 3_LEVELS, 2
...

JAD

JAR

2006 JavaOneSM Conference | Session TS-1049 55

Provisioning (1 of 2)
Pay-Adapters: X-CCARD,PPSMSPay-Cache: yesPay-Feature-0: 0Pay-Feature-1: 1Pay-Feature-2: 2Pay-Feature-3: 3Pay-Providers: SONERA, VISAPay-SONERA-Info: PPSMS, EUR, 928, 99Pay-SONERA-Tag-0: 1.45, 5550000, Lives-1Pay-SONERA-Tag-1: 2.85, 5550000, Lives-3, 2Pay-SONERA-Tag-2: 2.15, 5550000, Levels-1Pay-SONERA-Tag-3: 4.25, 5550000, Levels-3, 2Pay-Update-Stamp: 2005-07-15T13:30:00ZPay-Update-URL: http://localhost/jbricks/bin/jbricks.jppPay-VISA-Info: X-CCARD, EUR, VISA, https://localhostPay-VISA-Tag-0: 1.55, LIVES-1Pay-VISA-Tag-1: 3.05, LIVES-3Pay-VISA-Tag-2: 2.25, LEVELS-1Pay-VISA-Tag-3: 4.45, LEVELS-3Pay-Version: 1.0Pay-Certificate-1-1: MIICEDCCAXkCBEI4DdswDQY...a4vfSg==Pay-Signature-RSA-SHA1: EnJZ8oBsQTxLjVvOd..KP2Fv9eJP1s=

Country Code
Network Code

Currency
Premium Priced SMS

jBricks.jpp

2006 JavaOneSM Conference | Session TS-1049 56

Provisioning (1 of 2)
Pay-Adapters: X-CCARD,PPSMSPay-Cache: yesPay-Feature-0: 0Pay-Feature-1: 1Pay-Feature-2: 2Pay-Feature-3: 3Pay-Providers: SONERA, VISAPay-SONERA-Info: PPSMS, EUR, 928, 99Pay-SONERA-Tag-0: 1.45, 5550000, Lives-1Pay-SONERA-Tag-1: 2.85, 5550000, Lives-3, 2Pay-SONERA-Tag-2: 2.15, 5550000, Levels-1Pay-SONERA-Tag-3: 4.25, 5550000, Levels-3, 2Pay-Update-Stamp: 2005-07-15T13:30:00ZPay-Update-URL: http://localhost/jbricks/bin/jbricks.jppPay-VISA-Info: X-CCARD, EUR, VISA, https://localhostPay-VISA-Tag-0: 1.55, LIVES-1Pay-VISA-Tag-1: 3.05, LIVES-3Pay-VISA-Tag-2: 2.25, LEVELS-1Pay-VISA-Tag-3: 4.45, LEVELS-3Pay-Version: 1.0Pay-Certificate-1-1: MIICEDCCAXkCBEI4DdswDQY...a4vfSg==Pay-Signature-RSA-SHA1: EnJZ8oBsQTxLjVvOd..KP2Fv9eJP1s=

jBricks.jpp
Phone number to which the
payment SMS will be sent

Prefix prepended to any
payment SMS

Number of payment SMS
that MUST be sent

2006 JavaOneSM Conference | Session TS-1049 57

How Is Security Involved?

● PAPI 1.0 takes advantage of security features
and control mechanisms provided by MIDP2.0

● The MIDlet MUST be protected through the
signature of the JAR application by an authority
recognized by the platform certificate authority

● “debug mode” does not required signature nor
certification

● “debug mode” only for development platforms
such as the Java Wireless Toolkit

Security for Deployment

2006 JavaOneSM Conference | Session TS-1049 58

How Is Security Involved?

● Particular payment adapters involve non-
repudiation mechanisms, user authentication and
other security features

● This task is outside this payment specification
● SATSA great solution!
● Scenarios:

● Credit-cardbased adapter may ask the user for the
card number and expiration date every time it is used

● It may also need an X.509 certificate or access to a
smartcard to authenticate itself to the credit card
operator in the network

Security Used in the Adapters Implementation

2006 JavaOneSM Conference | Session TS-1049 59

How Is Security Involved?

● RMS API alone:
● The simplest to use
● Potential security holes if RMS records are located on

a file in the file system
● Not recommended alone

● FileConnection API of JSR 75 “PDA Optional
Packages for the Java ME Platform”

● JSR 177 “Security and Trust Services API
(SATSA)”
● Mechanisms to store information securely (i.e. RMS

with encryption and Security Element)

Security Storage

2006 JavaOneSM Conference | Session TS-1049 | 60

DEMO
See Everything in Action

2006 JavaOneSM Conference | Session TS-1049 61

Summary

● Mobile payments are simply the next step in
the evolution of how transactions are made

● Java ME and it’s optional APIs are a great
solution

● Payment API provides you with a payment
agnostic API

● Secure And Trusted Services API give you all
the security you required for developing a great
Secure Payment Applications

2006 JavaOneSM Conference | Session TS-1049 | 62

Q&A

2006 JavaOneSM Conference | Session TS-1049 |

TS-1049

Techniques and Tips: Developing
Secure Payment Applications,
Using Java™ ME Technology
Angela Caicedo
Doris Chen Ph.D.
Technology Evangelists
Sun Microsystems

2006 JavaOneSM Conference | Session TS-1049 64

Payment Lifecycle

Set-up Payment
Initiation Authentication Payment

Completion

Platform—STK, Browser, J2ME, BREW

Enabling Technologies—WPKI/WIM, SIM Device OS

Interactive Technology—Voice, WAP, SMS, USSD, i-mode

Transport—GSM, CDMA, TDMA, GPRS, Bluetooth, Infrared,
Contactless chip, RFID

Secure User Experience

Mobile
Infrastructure

Building Blocks
for Payment
(Remote, Micro,
 Proximity)

2006 JavaOneSM Conference | Session TS-1049 65

Payment Transaction

2006 JavaOneSM Conference | Session TS-1049 66

A Certificate Path or PkiPath

CA Self-Signed
Certificate

(Trust Anchor)

Zero, One or More
Intermediate CA

Certificates

End-Entity Certificate
(Target Certificate)

Certificate #1

Certificate #2

Certificate #n

...
Issuer =CAo

...
Issuer =CAo

...
Issuer =CA1

...
Subject = CAo

...
Subject = CA1

...
Subject = User 1

...

...

...

2006 JavaOneSM Conference | Session TS-1049 67

Signing a String for
Authentication Purposes
String stringToSign = "...";
String securityElementPrompt = null; // Don't prompt
byte[] signature;
String myCaDN = "..."; // The CA DN, from the certificate
String[] caNames = new String[] { myCaDN };
try {
 // Sign the specified string. Include the certificate
 // and content as well.
 signature = CMSMessageSignatureService.authenticate(
 stringToSign,
 CMSMessageSignatureService.SIG_INCLUDE_CERTIFICATE
 |CMSMessageSignatureService.SIG_INCLUDE_CONTENT,
 CaNames, securityElementPrompt);
} catch (Exception e) {...
}

NOTE: Signing for Non-Repudiation Purposes:
 CMSMessageSignatureService.sign(...)

2006 JavaOneSM Conference | Session TS-1049 68

Verifying a Digital Signature
byte[] signedMessage = "..."; // sent by sender
byte[] messageSignature = "..."; // sent by sender
String sendersPublicKeyAlgo = "RSA";
byte[] sendersEncodedPublicKey = "..."; // sent by sender
// Create X.509 encoded Key from encoded public key.
X509EncodedKeySpec pks = new
 X509EncodedKeySpec(sendersEncodedPublicKey);
try {
 KeyFactory kf;
 kf = KeyFactory.getInstance(sendersPublicKeyAlgo);
 PublicKey sendersPublicKey = kf.generatePublic(pks);
 Signature signature;
 signature = Signature.getInstance
 (sendersPublicKey.getAlgorithm());
 signature.initVerify(sendersPublicKey);
 signature.update(signedMessage, 0, signedMessage.length);
 boolean signatureValid;
 signatureValid = signature.verify(messageSignature);
 if (signatureValid = false){/*Signature didn't verify*/}
} catch (Exception e) {...}

2006 JavaOneSM Conference | Session TS-1049 69

Signed Messaging Using Public Key
Cryptography (Asymmetric)

Encrypting

Sender’s
Private Key

Encrypt
(Sign)

1-Way
Hash

Function

Encrypted
MessageEncrypt

Message Digest

Recipient’s
Public Key

Digital
Signature

Digest

Digest1-Way
Hash

Function
Decrypt

Decrypt

Encrypted
Message

Decrypted
Message

Digital
Signature

Digital
Signature

Encrypted
Message

 ?

Digital
Signature

Encrypted
Message

Decrypting

Compare: If Equal
Signature Is Valid
and Content Is
Authenticated

Encrypted, Signed Message

Encrypted,
Signed Message

Sender’s
Private Key

2006 JavaOneSM Conference | Session TS-1049 70

Project
Setting
for
Payment

2006 JavaOneSM Conference | Session TS-1049 71

Utilities

2006 JavaOneSM Conference | Session TS-1049 72

Payment Transactions

