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Goal of This Talk 

Learn how to develop Java™ Platform, 
Micro Edition secure payment applications 
using Secure And Trusted Services APIs 
(SATSA) and Payment API (PAPI) 



2006 JavaOneSM Conference   |   Session TS-1049 3

Agenda 

Introduction to Mobile Payment
Java ME Security Model 
Security and Trust Services API for J2ME™: 
SATSA (JSR 177)
Payment API: PAPI (JSR 229)
Demo: Putting Everything Together
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Security and Trust Services API for J2ME™: 
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Demo: Putting Everything Together
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Mobile Payment Motivation
● Computers are generally vulnerable and 

compromise security 
● You can easily cancel an ATM transaction if the user 

claims not to have authorized them
● Smart card connected to the PC does not ensure security: 

Virus may send incorrect information to the smart card
● Mobile personal devices, with built-in display and 

keyboard, provide technical solution for reducing fraud 
● Some security is already part of the authentication mechanism 

of existing cell phones as a way to prevent call theft 
● Inexpensive to incorporate additional mechanisms to ensure 

secure transaction authorization 

● Convenience: Transactions anywhere 
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Major Mobile Payment Players
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Transactions Categories

● Remote transactions
● Take place over the network of the user’s mobile 

service provider 
● Examples: Downloading ring tones or video, 

online purchases 
● Local transactions 

● Take place when the mobile device communicates 
with a nearby machine

● Bluetooth instead of the mobile network 
● Examples: purchases at a store, withdrawals from 

a bank or payment for public transportation

By User’s Location
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Technologies to Handle 
Local Transactions
● IrFM (infra-red) technology to allow Palm Pilots to 

act as a digital wallet; Palm and HP
● IrFM payment procedures; Verizon, Visa and many 

Asian companies 
● “Wireless Wallet” technology, requires an always-on 

connection to the user’s wireless network
● Radio Frequency Identification-(RFID-) based 

payment procedures being developed
● Small chip built into the cover of the phone is scanned, 
● Personal Identification Number (PIN) must be entered 

to authorise the payment 
● This was developed to be similar to existing credit card
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Requirements for the Global 
Adoption of Mobile Payments

● Security 
● Minimizes fraud and hence reduces operating cost 
● Increase in consumer and merchant confidence
● Increase in merchant and SP confidence
● Security elements to be addressed

● Authentication
● Confidentiality

● Interoperability: ensuring that any participating 
payment product can be used at any 
participating merchant location

● Usability: Simplicity is required

● Data integrity
● Non-repudiation
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Agenda 

Introduction to Mobile Payment
Java ME Security Model 
Security and Trust Services API for J2ME: 
SATSA (JSR 177)
Payment API: PAPI (JSR 229)
Demo: Putting Everything Together



2006 JavaOneSM Conference   |   Session TS-1049 12

Why Java ME for Secure Payment

● Java™ ME secure from the beginning
● Mobile-end-point-capability agnostic approach
● APIs under the JCP:

● Payment API (PAPI) (JSR-229)
● Secure And Trusted Services APIs (SATSA) (JSR-177)

● Netbeans Mobility Pack 5.0 +
● Sun Java Wireless Toolkit 2.5
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● Defines a set of permissions (Allowed and User) 
that may be granted to a MIDlet suite in that domain

● Defines a set of rules that describe how MIDlet 
suites get into the domain
● A signed Midlet suite should be in trusted domain 

● Permission: Allow, User (blanket, session, oneshot)
● Vendor implementation issues

● How many protection domains 
● How each protection domain is defined 

What Is a Protection Domain?
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Protection Domain Config File in
J2ME Wireless Toolkit

alias: net_access
  javax.microedition.io.Connector.http,
  javax.microedition.io.Connector.socket,
 ...
alias: application_auto_invocation
  javax.microedition.io.PushRegistry
  ...
alias: local_connectivity
  javax.microedition.io.Connector.comm
domain: minimum
domain: maximum
allow: net_access
allow: application_auto_invocation
allow: local_connectivity
...

$WTK_HOME/appdb/_policy.txt
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● Specified in Java Application Descriptor (JAD) 
file indicating a MIDlet suite’s dependence on 
certain permissions

● This MIDlet suite needs to make an HTTP connection 
and may also make socket connections
● MIDlet-Permissions: javax.microedition.io.Connector.http
● MIDlet-Permissions-opt: javax.microedition.io.

Connector. socket
● Is a handy way to advise a device at installation 

time that your MIDlet suite will be attempting 
particular operations

Requesting Permission Types for 
Midlet Suite (by MIDlet Developer) 
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Requesting Permission Types 
in Wireless Toolkit

● Set the MIDlet-
Permissions 
and MIDlet-
Permissions-Opt 
attributes from 
the permissions 
panel of the 
Project|Settings
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Sign MIDletSuite
● Select Project|Sign
● Sign MIDletSuite 

window opens
● Click New Key 

Pair button and Create, 
so A certificate is stored 
in the MEKeystore

● Select a security domain 
type to associate 
with this certificate 

● Click “Sign MIDlet Suite”
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Agenda 

Introduction to Mobile Payment
Java ME Security Model 
Security and Trust Services API for J2ME: 
SATSA (JSR 177)
Payment API: PAPI (JSR 229)
Demo: Putting Everything Together



2006 JavaOneSM Conference   |   Session TS-1049 20

Security and Trust Services 
API for J2ME 

● Provides security and trust services by integrating 
a Security Element (SE)
● Secure storage to protect sensitive data: User’s private 

keys, public key (root) certificates, service credentials, 
personal information

● Cryptographic operations to support payment 
protocols, data integrity, and data confidentiality

● A secure execution environment to deploy custom 
security features: User identification and 
authentication, banking, payment, loyalty applications

JSR 177
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The Security and Trust Services API

● Smart Card Communication
● Smart cards provide a secure programmable 

environment 
● Deliver a broad range of security and trust services
● Continually upgraded with new or improved 

applications that can be installed on a smart card 
● Access methods based on the APDU protocol and 

the Java Card RMI protocol (SATSA-APDU and 
SATSA-Java Card RMI packages)

● Allow a Java ME application to communicate with 
a smart card to leverage the security services 
deployed on it

Capabilities
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The Security and Trust Services API

● Digital Signature Service and Basic User 
Credential Management(SATSA-PKI package)
● Digital signature service generates digital signatures
● Digital signatures used to authenticate end-users or to 

authorize transactions using public key cryptography 
● User’s identity bound to a public key through a public 

key certificate 
● User credential management manage user 

credentials, such as certificates, on a user’s behalf
● Rely on a SE to provide secure storage of user credentials 

and cryptographic keys
● Secure computation involving the cryptographic keys

Capabilities
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JSR 177: Scope and Packaging
● SATSA-APDU Optional Package

● Support communication with smart card using low-level 
protocol

● SATSA-JCRMI Optional Package
● Support remote method invocation of Java Card 

based objects
● SATSA-PKI Optional Package

● Support digital signature and user credential management
● SATSA-CRYPTO Optional Package

● Support low-level cryptography operations
● Recommended practice: Access control policy
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Cryptography Goals 
Addressed With SATSA

● Confidentiality: Only authorized recipients 
can access information → Data encryption

● Data integrity: Detect if information has changed 
→ Digital signatures

● Non-repudiation: Ensure that a transaction can’t 
be denied → Non-repudiation type of signatures

● Authentication: Verify the source of information 
→ Data encryption and digital signatures
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Public Key Certificate 
Enrollment Process

Generated Private 
Key Is Stored in 

Local Store
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Based on the Private 

Key, and the 
Distinguished Name

The CA Verifies 
the CSR and at Some 

Point Returns a Signed 
Digital Certificate

Signed Certificate 
Path and/or Its URL 
Are Stored Locally

Generate Private Key

Generate Certificate 
Signing Request (CSR)

Send CSR to 
Certificate Authority

CA Sends Signed 
Certificate to Requestor, 

Which Stores It



2006 JavaOneSM Conference   |   Session TS-1049 27

Generating a Private Key 
and Certificate Signing Request

byte[] csr = null; // Buffer for generated CSR
String distinguishedName = "CN=eortiz@j2medeveloper.com,         
O=J2MEDeveloper.com,UID=eortiz,C=USA"; // The DN
int rsaKeyLength = 1024;
String securityElementID = null; //Use default SE
String securityElementPrompt = null; // No prompt
boolean forceKeyGen = true; // Generate private key
try {
    csr = UserCredentialManager.generateCSR(
            distinguishedName,
            UserCredentialManager.ALGORITHM_RSA,
            rsaKeyLength,
            UserCredentialManager.KEY_USAGE_AUTHENTICATION,
            securityElementID, 
            securityElementPrompt,
            forceKeyGen);
} catch (Exception e) {
    /* Handle IllegalArgumentException or UserCredential 
       ManagerException or SecurityException or 
       CMSMessageSignatureServiceException  */...
}

mailto:CN%3Deortiz@j2medeveloper.com
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Requesting the Signed Certificate
(Verifying the CSR)
/* Send the generated CSR to the CA enrollment server,
   possibly over a secure TCP (SecureConnection) or 
   HTTPS (HttpsConnection). Wait for response (the 
   signed X.509 certificate chain)  */
String url = "www.j2medeveloper-ca.com:443";
byte[] response = secureSend(url, csr);
...

Storing the Certificate
/* Parse response, extracting the signed X.509 
   certificate information. Store the received 
   certificate on the security element. */
UserCredentialManager.addCredential(certDisplayName, 
        pkiPath, 
        Uri);   // from the enrollment response
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Managing Certificate’s Local Store
// The certificate friendly name
String certDisplayName = new String("MyCertificate");
// The certificate path and URI.
byte[] pkiPath = "..."; // from the enrollment response
String uri = "..."; // from the enrollment response
try {

// Store the received certificate on 
     // the security element.The pkiPath and URI are 
    // extracted from the message received from the CA.
    boolean added;
    added = UserCredentialManager.addCredential(
        certDisplayName, 
        pkiPath, 
        uri);
} catch (Exception e) {
    // Handle IllegalArgumentException or 
    // UserCredentialManagerException or 
    // SecurityException
    ...
}
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Data Integrity with Message Digest
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Generating a Message Digest

static String digestAlgo = "SHA-1";
static int shaDigestLen = 20;
byte[] message = "..."; // original message
byte[] newDigest = new byte[shaDigestLen]; 
try {
    MessageDigest md;  
    md = MessageDigest.getInstance(digestAlgo); 
    md.update(message, 0, message.length); 
    md.digest(newDigest, 0, shaDigestLen);
} catch (Exception e) {
    // Handle NoSuchAlgorithmException or DigestException
    ...
}
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The Signing Process
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Agenda 

Introduction to Mobile Payment
Java ME Security Model 
Security and Trust Services API for J2ME: 
SATSA (JSR 177)
Payment API: PAPI (JSR 229)
Demo: Putting Everything Together
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Payment API—JSR 229
● Initiate payment transactions in a secured manner 

to transparently expedite the chargeable service 
requests
● Requesting a payment transaction
● Requesting feature and service price management
● Payment service availability

● Provide a generic payment initiation mechanism 
that hides the actual payment architecture and 
complexity from the developers 

● Does not define and imply any concrete payment 
implementation and mechanism

What Does It Allow You to Do?
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General Architecture

MIDP/IMP

CLDC

Native Platform

Payment Module

Payment API

Payment 
Adapter

Payment 
Adapter

Java Application
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Functional Overview
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Payment Module Responsibilities

● Applications include provisioning data for the 
different payment adapters 

● Payment module load the payment provisioning 
data from the JAR-Manifest Resource file

● Find possible syntax errors
● Map the provisioning data to the appropriate 

payment adapter 
● When to map? Up to the implementation 

to decide

Provisioning Mapping
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Payment Module Responsibilities

● Price information delivered with application
● How often or when price updates should be conducted?

Pricing Updates

Application

Payment Module

<Feather Title>

<This feature is described 
here in more detail>
Are you sure your want 
to buy this feature for 
EUR 0.50 using
Premium Priced SMS?

Yes

No Update

Other Method

Retrieve Up-to-date 
Provisioning Information

Processed() Process()

Payment API

2

4

5 1

3

Last Update Date: <date>
Last Update Stamp: <stamp>
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Payment Module Responsibilities

● Method selection
● Payment API is payment adapter agnostic
● Show all operational payment methods available 

to the user
● Transaction and update history

● Keep history of the latest provisioning update as 
well as all missed transactions and a reasonable number 
of past transactions

● Dynamic payment adapter management 
(optional)
● Responsible for downloading, checking, installing 

and registering that particular payment adapter plug-in
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Payment Adapter Responsibilities

● Conducts payment transactions
● Focus on at least one particular payment method
● All payment methods MUST involve an interaction 

between this adapter and servers in the network
● Payment authentication

● Should include non-repudiation mechanisms and 
user authentication

● It’s up to the payment adapter implementation
● Use SATSA
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javax.microedition.payment
Payment API Overview

TransactionModule
● Represents the communication interface between 

the application and the payment module 
● Support asynchronous payment handling
● process() 

● Return immediately after passing the values to the 
payment adapter  

● An event is generated as a result of the payment 
transaction,  and the corresponding record is passed 
through the processed() method of the 
TransactionListener
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Payment API Overview

TransactionListener
● Receives notifications of transaction records that have been 

generated by the payment module once a transaction has been 
processed

● processed() indicate that a transaction-related event has 
occurred: TRANSACTION_SUCCESSFUL, 
TRANSACTION_FAILED, TRANSACTION_REJECTED

TransactionRecord
● Represents an atomic payment transactions
● GetFeatureID(), getTransactionID(),  getState(), 
getFinishedTimestamp(), wasMissed()

javax.microedition.payment
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Payment Example (1 of 2)
import javax.microedition.payment.*;
...
public class MyGame extends MIDlet implements 

TransactionListener, CommandListener {
private TransactionModule myTransactionModule;
  public MyGame(){
    ...
    try {
      myTransactionModule = new TransactionModule(this);
    } catch(TransactionModuleException e) {
    // print error messages
    }
    try {
      myTransactionModule.setListener(this);
    }catch(Exception e) {...}
  }
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Payment Example (2 of 2)
public void startApp(){
  ...
  try {
    myTransactionModule.process(featureID, “Feature Title",
                                "Feature description");
    synchronized(this) {
    try {
      wait(); // wait until callback is called
    }catch (InterruptedException ie) {// Handle exception}
    }
  }catch (Exception e) { // Handle exception}...
}
public void processed(TransactionRecord myRecord){
  switch(myRecord.getState()) {
    case TransactionRecord.TRANSACTION_SUCCESSFUL:
      // Payment transaction successful
      break;
    case TransactionRecord.TRANSACTION_REJECTED:
      // Payment rejected
      break;
    case TransactionRecord.TRANSACTION_FAILED:
    default:
      // Technical problem - try again!
    break;
   }...
}



2006 JavaOneSM Conference   |   Session TS-1049 45

Payment Example
JAD
Pay-Version: 1.0
Pay-Adapters: PPSMS, X-TEST
MIDlet-Permissions: javax.microedition.payment.process.jpp
MIDlet-Certificate-<n>-<m>: <base64 encoding of a certificate>
MIDlet-Jar-RSA-SHA1: <base64 encoded Jar signature>
JAR-Manifest
Pay-Version: 1.0
Pay-Update-Stamp: 2004-11-15 02:00+01:00
Pay-Providers: SMS1, Test1Card
Pay-Update-URL: http://<update-site>/thisgame.manifest.jpp
Pay-Cache: no
Pay-Feature-0: 0
Pay-Feature-1: 0
Pay-Feature-2: 1
Pay-SMS1-Info: PPSMS, EUR, 928, 99
Pay-SMS1-Tag-0: 1.20, 9990000, 0x0cba98765400
Pay-SMS1-Tag-1: 2.50, 9990000, 0x0cba98765401, 2
Pay-Test1Card-Info: X-TEST8, EUR, c4d21, soap://<soap-site-1>/
Pay-Test1Card-Tag-0: 1.21
Pay-Test1Card-Tag-1: 2.46
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Agenda 

Introduction to Mobile Payment
Java ME Security Model 
Security and Trust Services API for J2ME: 
SATSA (JSR 177)
Payment API: PAPI (JSR 229)
Demo: Putting Everything Together
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Designing Your Application

Method 
Selection

Pricing
Updates

Transaction and 
Update History

Do You Want 
to Buy Levels 

or Lifes?

Review History?

Show History Screen

Update Environment with 
New Lifes and/or Levels

Merchant

Payment
Service Provider

Buying Lifes and Levels for Your Game
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Designing Your Application
Buying Lifes and Levels for Your Game
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Getting Ready for the Game
    public Main() {
        screen = new Screen(this);        
        engine = new Engine(screen);
        
        screen.setCommandListener(this);
        
        try {
            txModule = new TransactionModule(this);
           txModule.setListener(this);
           txModule.deliverMissedTransactions();
            restoreBoughtFeatures();
        } catch (TransactionListenerException tle) {
            tle.printStackTrace();
        } catch (TransactionModuleException tme) {
            tme.printStackTrace();
        }
    }
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Restoring Previously Bought Features
 private void restoreBoughtFeatures() {
    TransactionRecord[] record = 
           txModule.getPastTransactions(10);
        
    if (record != null) {
     for (int i = 0; i < record.length; i++){
        processed(record[i]);
     }
    }
 }    
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Processing Transaction Records
    public void processed(TransactionRecord record) {
        switch (record.getState()) {
         cas e TransactionRecord.TRANSACTION_SUCCESSFUL:
                switch (record.getFeatureID()) {
                    case FEATURE_1_LIFE:
                        engine.increaseNumOfLives(1);
                        break;
                    case FEATURE_3_LIVES:
                        engine.increaseNumOfLives(3);
                        break;
                    case FEATURE_1_LEVEL:
                        engine.increaseNumOfLevels(1);
                        break;
                    case FEATURE_3_LEVELS:
                        engine.increaseNumOfLevels(3);
                        break;
                }
                break;
            default:
        }
    }  
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Processing Transactions
     public void run() {        try {
            txModule.setListener(this);
           txModule.process(feature, title, description);
            if (enableTranListenerNull) {
                txModule.setListener(null);            }
        } catch (TransactionListenerException tle) {
           System.err.println("Transaction Listener not 
                               set");
        } catch (Exception e) {
            e.printStackTrace();        }    }
        
    title = "Buy Life";    feature = FEATURE_1_LIFE;
    description = "You are able to increase number of your                    lives by 1 life.";
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Getting Transaction History
   TransactionRecord[] record =                             txModule.getPastTransactions(6);   String[] stringRecord = null;
   ...   stringRecord = new String[record.length];   for (int i = 0; i < record.length; i++) {      switch (record[i].getState()) {          case TransactionRecord.TRANSACTION_FAILED:              feature = "Failed ";              break;          case TransactionRecord.TRANSACTION_REJECTED:              feature = "Rejected ";              break;      }      switch (record[i].getFeatureID()) {          case FEATURE_1_LIFE:              feature += "1 life";              break;
      ...}   date.setTime(record[i].getFinishedTimestamp());   when = date.toString();   stringRecord[i] = feature + " on " + when.substring(0,                      when.lastIndexOf(':'));
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Provisioning (1 of 2)
Pay-Version: 1.0
Pay-Adapters: PPSMS,X-CCARD
MIDlet-Permissions: javax.microedition.payment.process, 
                    javax.wireless.messaging.sms.send, 
                    javax.microedition.io.Connector.http,
                    javax.microedition.io.Connector.https,
                    javax.microedition.io.Connector.sms
MIDlet-Certificate-<n>-<m>: <base64 encoding of a certificate>
MIDlet-Jar-RSA-SHA1: <base64 encoded Jar signature>
Pay-Version: 1.0
Pay-Update-Stamp: 2004-08-12T13:30:00Z
Pay-Update-URL: http://localhost/jbricks/bin/jbricks.jpp
Pay-Providers: SONERA, VISA, RADIOG, DNSDNA, MASTERCARD, AMEX
Pay-Cache: no
Pay-Feature-0: 0
Pay-Feature-1: 1
Pay-Feature-2: 2
Pay-SONERA-Info: PPSMS, EUR, 928, 99
Pay-SONERA-Tag-0: 1.40, 5550000, 1_LIFE
Pay-SONERA-Tag-1: 2.80, 5550000, 3_LIVES, 2
Pay-SONERA-Tag-2: 2.10, 5550000, 1_LEVEL
Pay-SONERA-Tag-3: 4.20, 5550000, 3_LEVELS, 2
...

JAD

JAR
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Provisioning (1 of 2)
Pay-Adapters: X-CCARD,PPSMSPay-Cache: yesPay-Feature-0: 0Pay-Feature-1: 1Pay-Feature-2: 2Pay-Feature-3: 3Pay-Providers: SONERA, VISAPay-SONERA-Info: PPSMS, EUR, 928, 99Pay-SONERA-Tag-0: 1.45, 5550000, Lives-1Pay-SONERA-Tag-1: 2.85, 5550000, Lives-3, 2Pay-SONERA-Tag-2: 2.15, 5550000, Levels-1Pay-SONERA-Tag-3: 4.25, 5550000, Levels-3, 2Pay-Update-Stamp: 2005-07-15T13:30:00ZPay-Update-URL: http://localhost/jbricks/bin/jbricks.jppPay-VISA-Info: X-CCARD, EUR, VISA, https://localhostPay-VISA-Tag-0: 1.55, LIVES-1Pay-VISA-Tag-1: 3.05, LIVES-3Pay-VISA-Tag-2: 2.25, LEVELS-1Pay-VISA-Tag-3: 4.45, LEVELS-3Pay-Version: 1.0Pay-Certificate-1-1: MIICEDCCAXkCBEI4DdswDQY...a4vfSg==Pay-Signature-RSA-SHA1: EnJZ8oBsQTxLjVvOd..KP2Fv9eJP1s=

Country Code
Network Code

Currency
Premium Priced SMS

jBricks.jpp
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Provisioning (1 of 2)
Pay-Adapters: X-CCARD,PPSMSPay-Cache: yesPay-Feature-0: 0Pay-Feature-1: 1Pay-Feature-2: 2Pay-Feature-3: 3Pay-Providers: SONERA, VISAPay-SONERA-Info: PPSMS, EUR, 928, 99Pay-SONERA-Tag-0: 1.45, 5550000, Lives-1Pay-SONERA-Tag-1: 2.85, 5550000, Lives-3, 2Pay-SONERA-Tag-2: 2.15, 5550000, Levels-1Pay-SONERA-Tag-3: 4.25, 5550000, Levels-3, 2Pay-Update-Stamp: 2005-07-15T13:30:00ZPay-Update-URL: http://localhost/jbricks/bin/jbricks.jppPay-VISA-Info: X-CCARD, EUR, VISA, https://localhostPay-VISA-Tag-0: 1.55, LIVES-1Pay-VISA-Tag-1: 3.05, LIVES-3Pay-VISA-Tag-2: 2.25, LEVELS-1Pay-VISA-Tag-3: 4.45, LEVELS-3Pay-Version: 1.0Pay-Certificate-1-1: MIICEDCCAXkCBEI4DdswDQY...a4vfSg==Pay-Signature-RSA-SHA1: EnJZ8oBsQTxLjVvOd..KP2Fv9eJP1s=

jBricks.jpp
Phone number to which the 
payment SMS will be sent

Prefix prepended to any 
payment SMS

Number of payment SMS 
that MUST be sent
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How Is Security Involved?

● PAPI 1.0 takes advantage of security features 
and control mechanisms provided by MIDP2.0

● The MIDlet MUST be protected through the 
signature of the JAR application by an authority 
recognized by the platform certificate authority

● “debug mode” does not required signature nor 
certification

● “debug mode” only for development platforms 
such as the Java Wireless Toolkit

Security for Deployment
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How Is Security Involved?

● Particular payment adapters involve non-
repudiation mechanisms, user authentication and 
other security features 

● This task is outside this payment specification
● SATSA great solution!
● Scenarios:

● Credit-cardbased adapter may ask the user for the 
card number and expiration date every time it is used

● It may also need an X.509 certificate or access to a 
smartcard to authenticate itself to the credit card 
operator in the network 

Security Used in the Adapters Implementation
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How Is Security Involved?

● RMS API alone:
● The simplest to use
● Potential security holes if RMS records are located on 

a file in the file system 
● Not recommended alone

● FileConnection API of JSR 75 “PDA Optional 
Packages for the Java ME Platform” 

● JSR 177 “Security and Trust Services API 
(SATSA)”
● Mechanisms to store information securely (i.e. RMS 

with encryption and Security Element) 

Security Storage
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DEMO
See Everything in Action
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Summary

● Mobile payments are simply the next step in 
the evolution of how transactions are made

● Java ME and it’s optional APIs are a great 
solution

● Payment API provides you with a payment 
agnostic API

● Secure And Trusted Services API give you all 
the security you required for developing a great 
Secure Payment Applications
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Q&A
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Techniques and Tips: Developing 
Secure Payment Applications, 
Using Java™ ME Technology
Angela Caicedo
Doris Chen Ph.D.
Technology Evangelists
Sun Microsystems
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Payment Lifecycle

Set-up Payment
Initiation Authentication Payment

Completion

Platform—STK, Browser, J2ME, BREW

Enabling Technologies—WPKI/WIM, SIM Device OS

Interactive Technology—Voice, WAP, SMS, USSD, i-mode

Transport—GSM, CDMA, TDMA, GPRS, Bluetooth, Infrared, 
Contactless chip, RFID

Secure User Experience

Mobile
Infrastructure

Building Blocks
for Payment
(Remote, Micro,
 Proximity)
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Payment Transaction
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A Certificate Path or PkiPath

CA Self-Signed
Certificate 

(Trust Anchor)

Zero, One or More
Intermediate CA 

Certificates

End-Entity Certificate
(Target Certificate)

Certificate #1             

Certificate #2             

Certificate #n             

...
Issuer =CAo

...
Issuer =CAo

...
Issuer =CA1

...
Subject = CAo

...
Subject = CA1

...
Subject = User 1

...

...

...
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Signing a String for 
Authentication Purposes
String stringToSign = "...";
String securityElementPrompt = null; // Don't prompt
byte[] signature;
String myCaDN = "..."; // The CA DN, from the certificate
String[] caNames = new String[] { myCaDN };
try {
    // Sign the specified string. Include the certificate 
    // and content as well.
    signature = CMSMessageSignatureService.authenticate(
        stringToSign,
        CMSMessageSignatureService.SIG_INCLUDE_CERTIFICATE
        |CMSMessageSignatureService.SIG_INCLUDE_CONTENT,
        CaNames, securityElementPrompt);
} catch (Exception e) {...
}

NOTE: Signing for Non-Repudiation Purposes:
   CMSMessageSignatureService.sign(...)
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Verifying a Digital Signature 
byte[] signedMessage = "..."; // sent by sender
byte[] messageSignature = "..."; // sent by sender
String sendersPublicKeyAlgo = "RSA";
byte[] sendersEncodedPublicKey = "..."; // sent by sender
// Create X.509 encoded Key from encoded public key.
X509EncodedKeySpec pks = new 
             X509EncodedKeySpec(sendersEncodedPublicKey);
try {
  KeyFactory kf;   
  kf = KeyFactory.getInstance(sendersPublicKeyAlgo); 
  PublicKey sendersPublicKey = kf.generatePublic(pks); 
  Signature signature; 
  signature = Signature.getInstance
                      (sendersPublicKey.getAlgorithm()); 
  signature.initVerify(sendersPublicKey); 
  signature.update(signedMessage, 0, signedMessage.length); 
  boolean signatureValid;
  signatureValid = signature.verify(messageSignature);
  if (signatureValid = false){/*Signature didn't verify*/}
} catch (Exception e) {...}
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Signed Messaging Using Public Key 
Cryptography (Asymmetric)

Encrypting 

Sender’s 
Private Key

Encrypt
(Sign)

1-Way
Hash 

Function

Encrypted
MessageEncrypt

Message Digest

Recipient’s
Public Key

Digital
Signature

Digest

Digest1-Way
Hash 

Function
Decrypt

Decrypt

Encrypted
Message

Decrypted
Message

Digital
Signature

Digital
Signature

Encrypted
Message    

 ?

Digital
Signature

Encrypted
Message

Decrypting 

Compare: If Equal 
Signature Is Valid 
and Content Is 
Authenticated

Encrypted, Signed Message

Encrypted, 
Signed Message

Sender’s 
Private Key
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Project 
Setting 
for  
Payment 
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Utilities
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Payment Transactions


