
2006 JavaOneSM Conference | Session TS-1281 |

Best Practices in UI Design and
Programming on Nokia Platforms
Srikanth Raju, Jarmo Lahtinen, Nitin Mittal
Forum Nokia
Nokia
http://www.forum.nokia.com
TS-1281

2006 JavaOneSM Conference | Session TS-1281 | 2

Learn the UI APIs and how to use them
to develop effective applications on Nokia
Series 40, S60, and Series 80 platforms

Presentation Goal

2006 JavaOneSM Conference | Session TS-1281 | 3

Agenda

Background

Overview of UI APIs

Series 40, S60, Series 80 Platform Notes

Best Practices in MIDP Programming

Summary

Demos

2006 JavaOneSM Conference | Session TS-1281 | 4

Agenda

Background
Overview of UI APIs

Series 40, S60, Series 80 Platform Notes

Best Practices in MIDP Programming

Summary

Demos

2006 JavaOneSM Conference | Session TS-1281 | 5

Platforms and Editions

E
di
tio

ns

MIDP 2.0/CLDC 1.1
Java Technology for the
Wireless Industry
Web Services API
SATSA API
Location API
SIP API
Mobile 3D Graphics API
WMA 2.0
FileConnection and PIM API
Bluetooth API (with OBEX API)

MIDP 2.0/CLDC 1.1
Java™ Technology for the
Wireless Industry
WMA 1.1
MMAPI
Bluetooth API (with
OBEX API)
Mobile 3D Graphics API
FileConnection and PIM API

Third
Edition

MIDP 2.0/CLDC 1.1
CDC with Personal Profile
WMA 1.0
MMAPI
BTAPI (No OBEX)
FC and PIM

MIDP 2.0
CLDC 1.0
WMA 1.0
MMAPI
BTAPI (No OBEX)

MIDP 2.0
CLDC 1.1
WMA 1.0
MMAPI 1.0
BTAPI (No OBEX)

Second
Edition

MIDP 1.0
CLDC 1.0
WMA 1.0
MMAPI 1.0

Series 40
PersonalJava™ technology
JavaPhone™ API

Series 80
MIDP 1.0/
CLDC 1.0
WMA 1.0
MMAPI 1.0

First
Edition

S60

2006 JavaOneSM Conference | Session TS-1281 | 6

Agenda With Section Highlights

Background

Overview of UI APIs
Series 40, S60, Series 80 Platform Notes

Best Practices in MIDP Programming

Summary

Demos

2006 JavaOneSM Conference | Session TS-1281 | 7

User Interface APIs—Today

CLDC 1.1 (JSR 139)

M
M

 A
PI

 1
.1

 (J
S

R
 1

35
)

S
VG

 (J
SR

 2
26

)

M
ID

P
2.

0
(J

S
R

 1
18

)

3D
 G

ra
ph

ic
s

(J
S

R
 1

84
)

C
o
n
t.
 H
a
n
d
le
r
(J
S
R
 2
1
1
)

A
d
v
M
M
 S
u
p
 (
J
S
R
 2
3
4
)

M
 I
1
8
N
 (
J
S
R
 2
3
8
)

JT
W

I (
JS

R
 1

85
)

Im plem ented in Nokia Devices Not Yet Im plem ented in Nokia Devices

Platform

2006 JavaOneSM Conference | Session TS-1281 | 8

Java Specification Requests (JSR)
With UI Relevance
• Mobile Information Device Profile 2.0 (JSR 118)

• Enhanced game package with Sprite, TiledLayer classes, etc.
• Enhanced javax.microedition.lcdui package

• Mobile Media API (JSR 135)
• Ability to play/record media files—Both audio/video
• Various codecs support

• Mobile 3D Graphics API for J2ME™ (JSR 184)
• Designed similar to Java 3D™ API
• OpenGL–ES-based

• Scalable 2D Vector Graphics API for J2ME™ (JSR 226)
• Scalable vector graphics for resource constrained devices
• Already implemented in Nokia series 40 device

• etc.

2006 JavaOneSM Conference | Session TS-1281 | 9

Agenda With Section Highlights

Background

Overview of UI APIs

Series 40, S60, Series 80 Platform Notes
Best Practices in MIDP Programming

Summary

Demos

2006 JavaOneSM Conference | Session TS-1281 | 10

Series 40 UI Style

240x320

128x128

128x160

208x208

2006 JavaOneSM Conference | Session TS-1281 | 11

Two Soft Keys
(Normal Pad and Foldout)

2006 JavaOneSM Conference | Session TS-1281 | 12

Three Soft Keys
(Normal Pad and Foldout)

2006 JavaOneSM Conference | Session TS-1281 | 13

Softkeys in Full Screen and Normal
Modes (GameCanvas in MIDP 2.0)

2006 JavaOneSM Conference | Session TS-1281 | 14

Series 40 Third Edition:
What’s New
• New APIs: Mobile 3D graphics API for J2ME

(JSR 184) and PDA optional packages for the
J2ME platform (JSR 75)

• Series 40 third edition devices
• N6136, N6165, N6265/N6265i, N6270, N6280, N7370, etc.

• Consistent UI with the latest Series 60 devices
(Nseries devices)

• Active standby buttons
• New screen size 240x320 pixels

• Earlier sizes 128x128, 128x160 and 208x208 pixels
• Canvas when FullScreenMode = false: 240x250 pixels

• MiniSD card support
• Maximum RecordStore size has been earlier 32k,

now it has been increased
• MIDlets supported on memory card
• Automatic clearing of Canvas, when not in

FullScreenMode

Series 40 Third Edition 320x 240 pix

S60 Second FP2 176 x 208 pix

2006 JavaOneSM Conference | Session TS-1281 | 15

S60 Platform Java Technology
Capabilities

• S60 platform, first edition
• Symbian OS 6.1
• Available resolution 176x208 pixels
• Java-based APIs

• CLDC 1.0 and MIDP 1.0
• Wireless messaging API (JSR 120)
• Mobile media API (JSR 135)

• S60 platform, second edition
• Symbian OS 7.0s
• Available resolution 176x208 pixels
• Java-based APIs:

• CLDC 1.0/1.1 and MIDP 2.0
• Wireless messaging API (JSR 120)
• Mobile media API (JSR 135)
• Java APIs for Bluetooth (JSR 82)

2006 JavaOneSM Conference | Session TS-1281 | 16

S60 Platform Java Technology
Capabilities (Cont.)
• S60 Second Edition Feature Pack 1 (2.1)

• New: Mobile Media API (MMA) 1.1

• S60 Second Edition Feature Pack 2 (2.6)
• Symbian OS v8.0a
• New: CLDC 1.1, FileConnection and PIM APIs,

Mobile 3D Graphics API

• S60 Second Edition Feature Pack 3 (2.8)
• Symbian 8.1a
• New: WMA 1.1, MMAPI enhancements, JTWI, Web

Services API, Bluetooth API with OBEX API

• Available resolutions: 176 x 208 and 352 x 416

2006 JavaOneSM Conference | Session TS-1281 | 17

S60 Platform Java Technology
Capabilities (Cont.)
• S60 platform, third edition

• Symbian OS 9.1
• Java APIs:

• CLDC 1.1
• MIDP 2.0
• Mobile Media API (JSR 135)
• Java APIs for Bluetooth (JSR 82)
• J2ME Web services specification (JSR 172)
• Location API for J2ME (JSR 179)
• Security and trust services API for J2ME (JSR 177)
• Wireless messaging API 2.0 (JSR 205)
• SIP API for J2ME (JSR 180)

• Scalable UI with landscape/portrait orientations
• Additional available resolution:

QVGA (320 x 240)

2006 JavaOneSM Conference | Session TS-1281 | 18

S60 3.0 UI Changes

• The latest S60 devices have several display
resolutions, therefore it is necessary to enable
scaling of MIDlets

• This is done by using Nokia-MIDlet-Original-
Display-Size and Nokia-MIDlet-Target-
Display-Size parameters

• All pixel coordinates and sizes in all classes function
as if the device’s display resolution were the
resolution defined in the scaling attribute Nokia-
MIDlet-Original-Display-Size

2006 JavaOneSM Conference | Session TS-1281 | 19

S60 3.0 UI Changes (Cont.)
Examples:

2006 JavaOneSM Conference | Session TS-1281 | 20

Scalable UI Example Application

2006 JavaOneSM Conference | Session TS-1281 | 21

DEMO
S60 3.0 Scalable UI Demo

2006 JavaOneSM Conference | Session TS-1281 | 22

Series 80 MIDP UI Differences

• LCDUI differences:
• TextBox is always shown as a dialog with the only

exception of a TextBox with a null title
• Up to four Commands can be mapped to the

Command Button Area’s buttons
• Button 1 = positive (OK, ITEM, SCREEN)
• Buttons 2 and 3 = neutral (ITEM, SCREEN)
• Button 4 is negative (STOP, CANCEL, BACK, EXIT)
• Note: some Displayables might have specific rules

• All MIDlet Commands available at one given moment
always appear in the “Actions” menu

2006 JavaOneSM Conference | Session TS-1281 | 23

Platform Porting Best Practices

• When porting from one platform to another,
consider
• Amount of heap memory
• Application download time
• Size of Java Archive (JAR) file
• Display resolution
• User interface
• Processing power
• Connectivity/Networking feature
• Other device-specific features like Funshell API for

game developers

2006 JavaOneSM Conference | Session TS-1281 | 24

Agenda With Section Highlights

Background

Overview of UI APIs

Series 40, S60, Series 80 Platform Notes

Best Practices in MIDP UI Programming
Summary

Demos

2006 JavaOneSM Conference | Session TS-1281 | 25

MIDP Application
Development Phases

• Design time
• Realize if the game is single- or multi-user
• If multi-user:

• Decide/Realize round-robin, turn-based, simultaneous
• Is a game server needed or can things happen peer-to-peer

• Development time
• Use the right tools and techniques

• Example: built-in classes in MIDP2.0 vs. hand coding as
discussed in this section

• Deployment time
• Optimize foot print (discussed later)

2006 JavaOneSM Conference | Session TS-1281 | 26

Sprites—MIDP 1.0 Style

• No Sprite object in MIDP 1.0
• You can create a Sprite by loading an image

from a resource—
Image.CreateImage(<.png>)

• Need multiple images for animation
• Need to calculate collision detection manually
• Need to calculate movement manually

2006 JavaOneSM Conference | Session TS-1281 | 27

Sprites in MIDP 2.0

• MIDP 2.0 introduces a Sprite class that can be
used as follows

 Sprite sObj = new Sprite(image, 10, 10);
 sObj.move(-1, 0); // Simulate movement
 sObj.paint(g); // draw the sprite
 sObj.collidesWith(otherObj, false);

2006 JavaOneSM Conference | Session TS-1281 | 28

Handling User Input

• In MIDP 1.0 user input is handled using
keyPressed(),getGameAction() methods

• In MIDP 2.0, GameCanvas.getKeyStates()
method returns an integer with each bit
representing if the key was up or down
• Latching behavior allows for catching rapid

key presses

2006 JavaOneSM Conference | Session TS-1281 | 29

// MIDP 1.0 or MIDP 2.0
class TetrisCanvas extends Canvas
{
 void init() {}

 protected void keyPressed(int keyCode)
{
 int action =
getGameAction(keyCode);

 switch (action) {
 case Canvas.LEFT:
 moveBlockLeft();
 break;
 case Canvas.RIGHT:
 moveBlockRight();
 break;
 }
 }
}

Game Keys Handling
// Another approach for MIDP 2.0
Class TetrisCanvas extends
GameCanvas
{
 void init() {}

 while(true) {
 int keyState = getKeyStates();
 if ((keyState & LEFT_PRESSED) !
= 0) {
 moveBlockLeft();
 }
 if ((keyState & RIGHT_PRESSED) !
= 0) {
 moveBlockRight();
}
//Draw sprite
sprite.paint(g);
//Flush off-screen buffer
flushGraphics();
}

2006 JavaOneSM Conference | Session TS-1281 | 30

Synchronizing Game Speeds
Across Different Devices

• MIDP devices exhibit different characteristics
including processor speeds, available memory,
and consequently different runtime performance

• Makes for running the game at the same speed
across these devices a challenge

• Need to maintain a constant frame rate by:
• Introducing a delay
• Keeping frame rate constant by using
System.currentTimeMillis()
Example: Thread.sleep(FRAME_TIME -
(System.currentTimeMillis() - prevTimeMillis))

2006 JavaOneSM Conference | Session TS-1281 | 31

Note: From S60 second edition FP3 onwards MIDlet close upon pressing the End Call (Red) key

Handling Game States

• Use hideNotify() in class Canvas to pause
application

• showNotify() to “continue” application
• For Screen subclasses like Form use
isShown() to test whether in foreground

Return From
Phone Call

2006 JavaOneSM Conference | Session TS-1281 | 32

END Key Operation—Graceful Exit
• JAM calls MIDlet’s destroyApp() method

• Provides a perfect place to implement auto-save
• For accidental exit situations
• For quickly exiting the MIDlet on purpose

• Save any game-state-related data to RMS here
• Save player’s nerves as, depending on the model, the END

key can easily be pushed accidentally
• Player can later resume the game from the

same state
• If the application shutdown is not completed in

five seconds, JAM kills KVM immediately
• Storing data to server or fetching something from

server and storing to RMS could exceed this

2006 JavaOneSM Conference | Session TS-1281 | 33

END Key Operation—Auto-Save

Auto-save in MIDlet main class on exit:

Restore in myForm class on next start:

public void destroyApp(boolean unconditional) {
 myForm.saveData();
}

public void restoreData() {
 openRecordStore();
 try {
 if (rs.getNumRecords() > 0) {
 readData();
 }
 catch (Exception e) {
 }
 closeRecordStore();
}

2006 JavaOneSM Conference | Session TS-1281 | 34

Simultaneous Key Press Handling

Supported on Series 60 currently
// key1 = 1 only when KEY_NUM1 is pressed
static int key1 = 0;
// key2 = 1 only when KEY_NUM2 is pressed
static int key2 = 0;

//Key Repeated called when a key is held on for longer
protected void keyRepeated(int k){
 if (k ==KEY_NUM1){
 key1 = 1;
 }
 if (k == KEY_NUM2){
 key2 = 1;
 }
 if(key1 ==1 && key2 == 1){
 // Performs function when KEY_NUM1 and KEY_NUM2 are pressed at the same time
 processRepeatedEvent(KEY_PRESSED_EVENT, 30); // Function written in processRepeatedEvent
 }
}

2006 JavaOneSM Conference | Session TS-1281 | 35

Other UI/game Related Enhancements
to MIDP Low Level UI APIs

• Class Display has a new vibrate() method
• Phone’s backlight can be accessed with a
flashBackLight() method of the Display class

• Class Canvas has a new setFullScreen()
method

• In MIDP1.0 transparent image support was
optional
• It is mandatory in MIDP2.0—Used in Sprites and

TiledLayers

2006 JavaOneSM Conference | Session TS-1281 | 36

Optimized Graphics Programming

• Leveraging graphics primitives
• Effective use of clip regions
• Caching for performance
• Using PNG images efficiently
• Translation

2006 JavaOneSM Conference | Session TS-1281 | 37

Leveraging Graphics Primitives

• Graphics primitives are typically native
• Execute very quickly compared to Java

• Use them to simplify Java code
• Use drawRect instead four drawLines
• Use fillRect instead of numerous drawLines

2006 JavaOneSM Conference | Session TS-1281 | 38

Effective Use of Clip Regions

• A clip region is always defined
• Limits the area that can be painted
• Indicates the area that needs to be painted

• Avoid executing complex rendering code that
will be ignored

• Confine repaint requests to the area(s) that
need to be updated

2006 JavaOneSM Conference | Session TS-1281 | 39

Effective Use of Clip Regions

public void paint (Graphics g) {
 int colStart = g.getClipX() / gridSize;

int colEnd = (g.getClipX() + g.getClipWidth()
+ gridSize) / gridSize;

int rowStart = g.getClipY() / gridSize;
int rowEnd = (g.getClipY() + g.getClipHeight()

 + gridSize) / gridSize;
for(int row=rowStart;row<= rowEnd;row++){
for(int col=colStart;col<=colEnd; col++){

// Paint square for this row & col} }
}

2006 JavaOneSM Conference | Session TS-1281 | 40

Caching for Performance

• Complex rendering operations may be cached
in buffer images

• Ideal for graphical elements that change
infrequently but are repainted often

• Also ideal for incremental updates of complex
user interfaces

2006 JavaOneSM Conference | Session TS-1281 | 41

Using PNG Images Efficiently

• Combine small images into one large image
• Use clipping to render the desired portion of the

larger image

Four PNG Images
1.6k

One PNG Image
0.7k

2006 JavaOneSM Conference | Session TS-1281 | 42

Translation

• Translation redefines the origin of the
coordinate system

• Simplifies groups of rendering operations
performed at an arbitrary location on
the screen

2006 JavaOneSM Conference | Session TS-1281 | 43

Translation

• Without translation, the x and y location must be
added to numerous coordinates

g.fillRectangle(5+x,0+y,5,5);
g.drawline(2+x,6+y,12+x,6+y);
g.drawline(8+x,5+y,8+x,10+y);
g.drawline(8+x,10+y,2+x,15+y);
g.drawline(8+x,10+y,12+x,15+y);

x,y

2006 JavaOneSM Conference | Session TS-1281 | 44

Translation

• Using translation, the coordinate computations
are not needed

x,y (0,0)g.translate(x,y);
g.fillRectangle(5,0,5,5);
g.drawline(2,6,12,6);
g.drawline(8,5,8,10);
g.drawline(8,10,2,15);
g.drawline(8,10,12,15);

2006 JavaOneSM Conference | Session TS-1281 | 45

Double Buffering

• Do not double buffer if device already double
buffered
• Note: All current Nokia platform devices support

double buffering

• Use isDoubleBuffered() to keep applications
portable

if(isDoubleBuffered()) {
 // paint on screen
}
else {
 //paint on offscreen buffer flush buffer on the screen
}

2006 JavaOneSM Conference | Session TS-1281 | 46

UI handling and Network Connections

• Use a different thread for Connections
(Ex: HTTP)
• Keeps UI responsive

• Close connections and streams in finally block
• Do not “wait” on connection thread

2006 JavaOneSM Conference | Session TS-1281 | 47

DEMO
Bluetooth Easy Connect

2006 JavaOneSM Conference | Session TS-1281 | 48

Java-Based Bluetooth
Multiplayer Games

• Bluetooth multiplayer games are getting
popular but…
• Bluetooth multiplayer games are not end-user friendly

due to the following
• Bluetooth search
• Bluetooth Connection strategy

• Bluetooth multiplayer games don’t use the operator
network except during download or game or
additional levels

• Bluetooth Easy Connect aims to target all of the
issues mentioned above

2006 JavaOneSM Conference | Session TS-1281 | 49

Bluetooth Easy Connect @ Play

A B

D C

SMS[BT_Addr_A]

SMS[BT_Addr_C]SMS[BT_Addr_D]

SMS[BT_Addr_D]

Game Server,
BT Master
Game Client,
BT Slave

SMS

BT Connection

2006 JavaOneSM Conference | Session TS-1281 | 50

Agenda With Section Highlights

Background

Overview of UI APIs

Series 40, S60, Series 80 Platform Notes

Best Practices in MIDP Programming

Summary
Demos

2006 JavaOneSM Conference | Session TS-1281 | 51

MIDP Performance Encompasses…
• Application startup speed
• Programming callbacks
• Java language programming optimizations
• Graphics optimization
• Execution speed
• Use of resources
• User interface responsiveness
• Footprint reduction
• Implementation specific optimization

2006 JavaOneSM Conference | Session TS-1281 | 52

Final Words

• Code first, optimize later
• Profile, profile, profile

• Remember the 80/20 rule

• Benchmark…
(Irrespective of Heisenberg’s uncertainty
principle!)

• Yes, you can reduce footprint!

2006 JavaOneSM Conference | Session TS-1281 | 53

Summary
• Nokia provides comprehensive support for Java technology

on the following platforms:
• Series 40 platform

• All Java, mass market, Nokia OS-based
• Many latest JSRs

• S60 platform
• The smartphone platform, C++ and Java development platforms
• Uptodate JSR implementation
• Scalable UI

• Series 80 platform
• For enterprises; C++, Java (both CDC and CLDC)-based platforms

• Understanding Java-based implementation yields effective user
experience

• Best practices help in designing applications with best UI that
perform the best

2006 JavaOneSM Conference | Session TS-1281 | 54

For More Information

Nokia Resources
• Developer information: http://www.forum.nokia.com
• Nokia Java tools: http://www.forum.nokia.com/tools

Industry Resources
• JCP page: http://jcp.org
• Eclipse tools: http://eclipse.org
• Netbeans tools: http://netbeans.org

2006 JavaOneSM Conference | Session TS-1281 | 55

Q&A
Srikanth Raju, Nitin Mittal, Jarmo Lahtinen

2006 JavaOneSM Conference | Session TS-1281 |

Best Practices in UI Design and
Programming on Nokia Platforms
Srikanth Raju, Jarmo Lahtinen, Nitin Mittal
Forum Nokia
Nokia
http://www.forum.nokia.com
TS-1281

