
2006 JavaOneSM Conference | Session TS-1293 |

Best Practices for Building
Optimized Wireless Solutions
for Web Services
Michael Shenfield
Director, Standards
Architecture
RIM

TS-1293

Bryan Goring
Architect, Advanced
Technologies
RIM

2006 JavaOneSM Conference | Session TS-1293 | 2

Learn principles for building optimized
Java™ ME frameworks to host Web
Service client applications
Learn patterns for designing effective
device applications and wireless friendly
Web Services

Goals

2006 JavaOneSM Conference | Session TS-1293 | 3

Agenda

Challenges of Wireless Access to WS
Java ME Container + Services + Components
WS Client Applications: Selected Patterns
Designing Wireless Friendly WS
Demo

2006 JavaOneSM Conference | Session TS-1293 | 4

Agenda

Challenges of Wireless Access to WS
Java ME Container + Services + Components
WS Client Applications: Selected Patterns
Designing Wireless Friendly WS
Demo

2006 JavaOneSM Conference | Session TS-1293 | 5

What Is a Web Service?
• An application component that can be called

remotely using standard Internet Protocols
such as HTTP and XML

• A unit of code that can be activated using
HTTP requests

• Web Service is a programmable URL
• The purpose of Web Services is to deliver

distributed computing over the Internet
• Web Services architecture allows programs

written in different languages on different platforms
to communicate with each other in a standards-
based way

2006 JavaOneSM Conference | Session TS-1293 | 6

“Classic” Web Services
XML Web Service is a software service exposed on the
Web through SOAP protocol, described with a WSDL file
and registered in UDDI registry. UDDI, WSDL, and SOAP
are all XML-based protocols.

Find
Service

Analyze
Service

Send
Messages

XML Web Service

Discovery: UDDI

Schema: WSDL

Communications: SOAP

2006 JavaOneSM Conference | Session TS-1293 | 7

Challenges for Wireless
• Use of multiple levels of nesting for complex data types
• Auto-generation of WS from J2EE, DB, or .NET applications

results in late binding and loosely defined types:
• Endpoint redirect at execution time
• Complex type polymorphism
• Runtime type resolution (e.g., “xsd:any”, “xsd:union”, etc.)

• In wireless space, neither storage nor traffic are free;
Many WSs are designed to return large datasets
(e.g., “xsd:maxOccurs=unbounded”):
• Weaker processors implies slow message processing
• Limited storage space for large datasets
• Excessive garbage collection
• Waste of battery life

Typical WS is not designed/optimized for a wireless client

2006 JavaOneSM Conference | Session TS-1293 | 8

Challenges for Wireless (Cont.)
• Latency is the #1 killer for user experience. The

best wireless applications use wireless the least
(i.e., the data is present on a device when the user
needs it) and are based on a push paradigm. Very
few asynchronous Web Services are available due
to lack of common standard and tools.

• Coverage loss or intermittent coverage. Loss of
coverage could result in an inconsistent state of the
device application, Web Service, or both.

• The high complexity of implementing Web Service
security model in wireless (enterprise, banking,
insurance, payments, etc.)

2006 JavaOneSM Conference | Session TS-1293 | 9

Agenda

Challenges of Wireless Access to WS
Java ME Container + Services + Components
WS Client Applications: Selected Patterns
Designing Wireless Friendly WS
Demo

2006 JavaOneSM Conference | Session TS-1293 | 10

Path to Solution:
Container Framework

Critical Requirements for Wireless Applications:
• Small size and execution efficiency
• Security of data access on and off the device
• OTA manageability: Installation, upgrade, removal,

data preservation on upgrade, version management,
lifecycle management

Solution:
• Container framework—Controlled environment that

encapsulates the execution of wireless applications

2006 JavaOneSM Conference | Session TS-1293 | 11

50-50 Rule

~ 50% of the code is application-specific workflow
• Code complexity is not very high
• Code is unique for each application

~ 50% is the code for “common tasks” such as
data management, building screens, and message
processing

• More complex Java ME code
• Same patterns for most applications
• Could be reduced if high-level APIs were available

When building Java ME applications:

2006 JavaOneSM Conference | Session TS-1293 | 12

Path to Solution: Common Services
• Common services are shared between applications and represent

high-level, template-based APIs
• To display a screen, an application passes a screen template to

the UI service; to send a message, it passes a data template to
the messaging service, etc.

• Access to services is mediated by an application container

UI Service

Data Service

Messaging Service

Provisioning Service

Access Service

…

App 1

App 2

App 3

Container

2006 JavaOneSM Conference | Session TS-1293 | 13

Path to Solution: Forget Synchronous

Correlated In-out Messages Oneway Out Message Uncorrelated Notification
 (Sync WS Operation) (Async Request) (Async Response)

out

out

in

in
correlator

Focus on WS messages instead of operations

2006 JavaOneSM Conference | Session TS-1293 | 14

Path to Solution:
Application as a Set of Component
• Messages, data, and screens are modular entities with

predefined sets of interactions such as events, actions,
data bindings, etc.

• Message and data components can be derived from
WS messages

• Component structure can be expressed using meta-data
• Components and interactions can be expressed in the

Java programming language, XML, etc.
• Component application can be provisioned as data and

executed using templates within a container (“executable
metadata” model)

• Component templates can be exchanged between the
application container and common services to execute
an application’s workflow

Why components?

2006 JavaOneSM Conference | Session TS-1293 | 15

Container + Services + Components
UI Service

Data Service

Messaging Service

Provisioning

Access Service

Security Service

Container

Backup/Restore

…

XML/SOAP ParsingApplication

Data

Messages

Screens

Interactions

2006 JavaOneSM Conference | Session TS-1293 | 16

Component Applications (Java Based)

Bean
get/setField(.)
get/setDefn(.)
…

DataBean
…

ScreenBean
get/setParam(.)
get/setControl(.)
…

MsgBean
…

BeanDef
get/setProperty(.)
get/setFieldDef(.)
…

DataDef
…

ScreenDef
get/setCtrlDef(.)
get/setMenu(.)
get/setRegion(.)
…

MsgDef
…

PropDef
…

templates template definitions

FieldDef
…

CtrlDef
get/setDataMapping(.)
get/setDisplayMask(.)
setDisplayCondition(.)
get/setAction(.)
…

2006 JavaOneSM Conference | Session TS-1293 | 17

Common Services (Java Based)

templates template definitions

DataService
store (dataBean)
resolve (type, key)
findWhere (where, order)
… MessageService

sendSync (msgBean)
sendAsync (msgBean)
addListener (msgListener)
getSendQ (msgType)
… UIService

display (scrBean)
refresh (region)
getCurrentScreen ()
resolveDataMapping ()
…

2006 JavaOneSM Conference | Session TS-1293 | 18

Component Applications (XML)
<!ENTITY % commonFieldAttribs 'name CDATA #REQUIRED

type (string | integer | long | decimal | boolean | date | data | enumeration) "string"
component IDREF #IMPLIED
array (true | false) "false“’>

...
<!ELEMENT app (desc?, resource*, global*, enum*, data*, msg*, screen*, script*)>
…
<!ELEMENT data (field*)>
<!ATTLIST data

name ID #REQUIRED
prototype CDATA #IMPLIED
persist (true | false) #IMPLIED
key CDATA #IMPLIED

>
<!ELEMENT field EMPTY>
<!ATTLIST field

%commonFieldAttribs;
default CDATA #IMPLIED

>
…

2006 JavaOneSM Conference | Session TS-1293 | 19

JSRs 279, 280

JWSF
(JSR 279)

XML FW
(JSR 280)

 JAXP DOM 2+

 SAX 2 StAX

 Service Frameworks
 XML Filtering

 W
S

I-B
asic FW

Liberty ID
W

S
F FW

O
ther Fram

ew
orks

…
Communication Layer

send-receive

use

Java WSF Application
use

use

 wireless network

2006 JavaOneSM Conference | Session TS-1293 | 20

JSR 279, 280—
Sample Flow for a Sync Call
…
// use XML API for Java ME (JSR 280) API to prepare WS request (StAX

approach shown)
XMLOutputFactory outFactory = XMLOutputFactory.newInstance();
XMLStreamWriter sw = outFactory.createXMLStreamWriter (osRequest);
sw.writeStartDocument();
…
// use Service Connection API for Java ME (JSR 279) to obtain a connection and

call the web service
ServiceDescriptor sd = new ServiceDescriptor (fwID, contract, endpoint);
ServiceConnection con = ServiceManager.getServiceConnection (sd);
InputStream isResponse = con.sendRcv (osRequest);
// use XML API for Java ME to parse WS response (DOM approach shown)
DocumentBuilder db = dbFactory.newDocumentBuilder();
Document docResponse = db.parse (isResponse);
…

2006 JavaOneSM Conference | Session TS-1293 | 21

JSR 279 API Used by
Messaging Service
public MsgBean sendSync (MsgBean msg) {

String contract = msg.getBeanDef().getContract();
String endpoint = msg.getBeanDef().getEndpoint();
OutputStream os = toSOAPStream(msg);
// use Service Connection API for Java ME to obtain a connection and call the
web service
ServiceDescriptor sd = new ServiceDescriptor (WSI_B, contract, endpoint);
ServiceConnection con = ServiceManager.getServiceConnection (sd);
InputStream isResponse = con.sendRcv (osRequest);
return fromSOAPStream(isResponse);

}

2006 JavaOneSM Conference | Session TS-1293 | 22

JSR 279, 280 FWs as
Common Services

UI Service

Data Service

Messaging Service

Provisioning

Access Service

Security Service

Container

Application

Data

Messages

Screens

Interactions
Backup/Restore

…

Parsers

279 FW 280 FW

2006 JavaOneSM Conference | Session TS-1293 | 23

Agenda

Challenges of Wireless Access to WS
Java ME Container + Services + Components
WS Client Applications: Selected Patterns
Designing Wireless Friendly WS
Demo

2006 JavaOneSM Conference | Session TS-1293 | 24

Form Set Pattern
• Used for synchronous Web Services
• The main screen lists supported operations
• One screen/form per request, one per response

2006 JavaOneSM Conference | Session TS-1293 | 25

<complexType name="Music">
 <sequence>
 <element name="title" type="xsd:string"/>
 <element name="link" type="xsd:string"/>
 …
 </sequence>
</complexType>
 <complexType name="ArrayOfMusic">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item" type="impl:Music"/>
 </sequence>
</complexType>
<complexType name="MusicSearchResponse">
 <sequence>
 <element name="music" type="impl:ArrayOfMusic"/>
 …
 </sequence>
</complexType>

Drill Down Screens
• Could be used for nested complex types in requests and responses
• Could be used for arrays of complex types or arrays of elements of “any” type
• The level of nesting could be reduced by “flattening” the complex type

This complex type could be flattened

2006 JavaOneSM Conference | Session TS-1293 | 26

Notification Monitor Pattern
• Used for asynchronous Web Services
• Notification messages update application data on the background
• Monitor screen displays selected data for notification channels
• The latest data is available when the user opens a monitor screen

Background
Update

Data-bound
Monitor Screen Notification DetailsMain Screen

Notification
Message

Application
Data

2006 JavaOneSM Conference | Session TS-1293 | 27

Agenda

Challenges of Wireless Access to WS
Java ME Container + Services + Components
WS Client Applications: Selected Patterns
Designing Wireless Friendly WS
Demo

2006 JavaOneSM Conference | Session TS-1293 | 28

Recommended WSDL Types
• Use XMLSchema anySimpleType and common

derivations
• Avoid use of soap encoded types

• Date types are commonly supported
• xs:Date, xs:time, xs:dateTime

• Integer-based types
• xs:boolean, xs:float, xs:double, xs:integer, xs:long and

derivatives
• Beware large xs:decimal results
• Handhelds may have restrictions on storing large integers

• xs:string

Derived Types Can Be Easily Mapped to These Base Types

2006 JavaOneSM Conference | Session TS-1293 | 29

Efficient Complex Types: Structure
Flatten unnecessary containments

• Deep nesting or unnecessary nesting is discouraged
• Weigh tradeoffs of reusability against processing efficiencies

Name complex type fields judiciously
• Element names are carried in the SOAP
• Binary encoding mitigates this effect

Flatten

CT Employee
 integer employeeId
 string name
 string department
 int costCenter

CT Employee
 integer employeeId
 CT PersonDetail
 string name
 string department
 int costCenter

2006 JavaOneSM Conference | Session TS-1293 | 30

Efficient Complex Types:
Recursive Declarations

• Resource intensive processing
• Recursive algorithms incur memory and execution

time overhead
• Neither template nor XML parsing approach

make treatment of recursion straight-forward
• Try to avoid using recursive types where possible

• Recognize forms of recursion
• Containment reference
• Indirect reference by extension

A

B C A

A B C A

2006 JavaOneSM Conference | Session TS-1293 | 31

Loosely Defined Types

• Types are not known at design time!
• Has an impact on how the mobile client is designed

• xs:any can be used to pass arbitrary XML
• Useful for making an interface very extensible
• Extensibility comes at the cost of logical complexity

on the client end
• xs:anyType also falls into this category
• xs:extension to deliver super type is preferable

• Sub types are at least declared in the service
• xs:choice is another alternative

2006 JavaOneSM Conference | Session TS-1293 | 32

Loosely Defined Types:
Raw XML and Declared Types

• Types transmitted are defined elsewhere in the
schema or WSDL

• Easier to handle since the client application has
the type definitions available

Port A
 Op_A
 IN
 OUT
 type=“xs:any”

Schema
CT1
CT2
CT3

urlX

Definition Execution Time

to service (IN)

from service (OUT)

SOAP
Envelope
Body

<CT1 xmlns urlX>

<CT2 xmlns urlX>

WSDL

2006 JavaOneSM Conference | Session TS-1293 | 33

Loosely Defined Types:
Raw XML and Schema

• Requires custom processing and parsing
• Types and content/structure is not known

until message delivery

WSDL
Port A
 Op_A
 IN
 OUT
 type=“xs:schema”
 type=“xs:any”

Definition Execution Time

SOAP
Envelope
Body

<CT1 ref Schema>

<CT3 ref Schema>

Schema
CT1
CT2
CT3

to service (IN)

from service (OUT)

2006 JavaOneSM Conference | Session TS-1293 | 34

Choice of Binding

• When using SOAP bindings there are several
choices of style/use
• rpc/literal (WSI-compliant)
• document/literal (WSI-compliant with wrapping)
• rpc/encoded (not WSI-compliant)
• document/encoded (not WSI-compliant)

• doc/literal and rpc/literal are encouraged
• rpc/encoded is, however, commonly encountered

2006 JavaOneSM Conference | Session TS-1293 | 35

Other Advanced Features to Avoid

• Operation overloading
• Depending on choice of binding style and use

operations may be indistinguishable
• Multi-dimensional arrays
• Soap encoded types

• Stick to schema xsd types

2006 JavaOneSM Conference | Session TS-1293 | 36

Service Aggregation:
Handling Large Datasets

• Some datasets are easily separated: Arrays
• Others are less intuitive to separate: Binary data
• Large datasets are difficult to transmit

• Consider using aggregator to partition large datasets
into chunks and maintain a dataset cursor

• Large datasets may pose storage and
processing issues when received by device
• Consider describing the data and allowing the client

to selectively obtain records, e.g., key information

2006 JavaOneSM Conference | Session TS-1293 | 37

Service Aggregation:
Endpoint Redirection

• Often used by WS for registration handoff
• Initial request comes to endpoint predefined by WSDL
• The response supplies redirected service endpoint
• Subsequent requests are redirected by the client

• Aggregator service can negotiate handoff on
behalf of the device client

• Session must be maintained by aggregator to
associate client instance to dynamic endpoint

Aggregator Maintains Single Endpoint, Redirects
Web Service Interactions as Required

2006 JavaOneSM Conference | Session TS-1293 | 38

Service Aggregation:
Dynamic Binding

xs:any type handling
• Aggregator Web Service processes XML data

and constructs appropriate complex type
• Aggregator exposes structural information of the

XML data for early binding

Aggregator Provides Essential Design Time
Information and Performs Runtime Transformation

2006 JavaOneSM Conference | Session TS-1293 | 39

Mobile Proxy: Transforming SOAP

• Message definitions are well known at the
client and mobile proxy: WSDL

• Mobile proxy can extend optimized protocols
down to the device
• The proxy executes protocol transformation

between optimized mobile format and SOAP
• The proxy constructs SOAP requests and parses

SOAP responses
• While data payload of the messages is transmitted,

structural/tag information is withheld

2006 JavaOneSM Conference | Session TS-1293 | 40

Mobile Proxy: Shift to
Asynchronous Messaging

• Requests from device are queued at proxy and
dispatched separately

• Mobile client receives immediate acknowledgment;
fire-and-forget model

• Mobile proxy unites asynchronous device
messaging with synchronous WS interaction

• Handles service unavailability through resubmission
• Mobile proxy issues a push to deliver the

response data
• Out-of-coverage scenarios are covered inherently

2006 JavaOneSM Conference | Session TS-1293 | 41

Mobile Proxy: Challenges

• Correlation of request/response data
• Cracking the synchronous programming

mindset (browser form-based approach)
• Handling advanced WSDL features during

transformations
• Extending security protocols to the device

• Avoiding the security gap at proxy
• NTLM, Basic authentication over https are popular

solutions
• Mobile proxy must hold connections, mediate

secure connection

2006 JavaOneSM Conference | Session TS-1293 | 42

Notifications:
Where Are Async Web Services?

• Standardized async web services are still very much
in their infancy

• Widespread adoption of standards by toolkits is yet
to materialize
• It’s difficult to create these types of web services as a result

• Most existing public web services define their interface
as request/response

• On the other hand some push-based wireless solutions
are extremely mature (e.g., email)

Strong Motivation to Combine Advantages of Web Services, Push
Capabilities of Wireless Networks, to Produce Compelling Mobile

Apps

2006 JavaOneSM Conference | Session TS-1293 | 43

Notifications: Benefits

• Better use of wireless network/device resources
• Notification pattern (single subscribe and multiple

push) results in less network traffic
• Less message processing results in less demand

on battery
• A better model where unpredictable connectivity

is concerned
• New data is queued and sent when possible

• Better usability model
• User doesn’t wait for responses (zero latency)
• Device view of data is always up to date

2006 JavaOneSM Conference | Session TS-1293 | 44

Notifications: Common Models

• Prevalent standards
• WS-EVENTING (WSE)
• WS-NOTIFICATION (WSN)

• WSE:EventSource or WSN:NotificationProducer expose
the notification object
• WS-NOTIFICATION has far more rigor around this matter

through Topics
• Application passes a Filter on the subscribe action

• Indicates the parameters to decide a notification
• Must evaluate to a true/false condition to trigger a notification

• Web service monitors changing service state
• Calculates changing criteria across known filters or “Situations”
• Delivers a notification when criteria matches

2006 JavaOneSM Conference | Session TS-1293 | 45

Notifications: Firewall Impedes Push
• WS-NOTIFICATION defines a pullpoint

• Can be useful when there are firewalls to overcome
• Pullpoint is created by the client through a factory, becomes consumer
• Asynchronous notification to the pullpoint by producer
• Synchronous Subscribe and GetMessages pass through firewall

Firewall

Producer
(NotificationProducer)

Consumer
(PullPoint,
NotificationConsumer)

Subscribe(pullpoint ref)

notification

GetMessages

notifications

1

Wired Client
Web Service

Factory
(CreatePullPoint)

CreatePullPoint

2

3

4

2006 JavaOneSM Conference | Session TS-1293 | 46

Notifications:
Wireless Solution Impedes Push
• Pullpoint concept could be extended to wireless solutions without

push capability
• Service Enabler can manage subscription, aggregate consumer

and pullpoint
• Mediator tracks subscription and periodically prods pullpoint for

related notifications

Client

Client

Producer
(NotificationProducer)

Generic Consumer
(PullPoint,
NotificationConsumer)

notification

Factory
(CreatePullPoint)1

Mobile Proxy

Wireless Network

Filter
Create Subscribe

(pullpoint ref)

Web Service

GetMyMessages

notifications
4

5
6

Service Enabler

2

3

2006 JavaOneSM Conference | Session TS-1293 | 47

Notifications:
Push-Based Wireless Solutions
• Promotes push data directly to the device
• Mobile proxy is useful to simplify wireless messaging

• Proxy assumes the knowledge of the WS notification approach
• Device view is just a conventional request (subscribe) and push (notifications)

responses

Client

Client

EventSource

notification

Service Enabler

1

Mobile Proxy

Wireless Network

Filter, device id

startSession
Subscribe
(notifyTo)

Web Service

notification

2 3

6

Subscription Manager
(EventSink)

4
mapSubscribeId5

2006 JavaOneSM Conference | Session TS-1293 | 48

Notifications:
Proxy for Synchronous WS
• Simplicity of synchronous web services

• Can be created with standard approach, existing toolkits
• Proxy service nearly stateless, acts like a simple “pass-through”

for eventing
• Implies better scalability
• New push event triggered by return of non-nil data set

Proxy

Managed
Subscriptions

1

check(filter)
Sync

Web Service

subscribe(filter, [period])
3

5
4

period

2

Presents Eventing

subscribe(filter)
Filter
State

Keys the state

Return data +

6

Empty result
-

notification

Satisfies
and New for

Client

2006 JavaOneSM Conference | Session TS-1293 | 49

DEMO
Tying It All Together…

2006 JavaOneSM Conference | Session TS-1293 | 50

More Information:
• BlackBerry solutions for Web Services:

http://www.blackberry.com/developers/downloads/studio/index.shtml

• Wireless Component Architecture (WCA):
http://developers.sun.com/learning/javaoneonline/2005/mobility/TS-7888.pdf

• Service Connection API for Java ME (JSR 279)/XML API for
Java ME (JSR 280):

http://www.jcp.org/en/jsr/detail?id=279 (…?id=280)

• WS-Eventing:
http://schemas.xmlsoap.org/ws/2004/08/eventing/

• WS-Notification:
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

2006 JavaOneSM Conference | Session TS-1293 | 51

Q&A

2006 JavaOneSM Conference | Session TS-1293 |

Best Practices for Building
Optimized Wireless Solutions
for Web Services
Michael Shenfield
Director, Standards
Architecture
RIM

TS-1293

Bryan Goring
Architect, Advanced
Technologies
RIM

