@ Sun

Writing Optimized Applications

for High-Performance Java" ME
Runtime Environments

Kyle Buza Oleg Pliss, Ph.D.
Sun Microsystems Sun Microsystems
TS-1451

Copyright © 2006, Sun Microsystems Inc., All rights reserved.
2006 JavaOne®M Conference | Session TS-1451 jaua.sun.com)"ji':IUEIOI'IE!(Sf

>,

Speaker Qualification

Kyle Buza has been a software engineer at
Sun Microsystems for five years, implementing
numerous performance enhancements for

both the CLDC and CDC HotSpot
Implementation VMs

Oleg Pliss is a Senior Staff Engineer with the
Client Systems Group at Sun; he is working on
high performance Java ME virtual machines and
specializes in compilers and garbage collection

2006 JavaOnes Conference | Session TS-1451 | 2 java.sun.com/javaone/sf

Java

Goal of This Talk

Learn about features and capabilities of
high performance Java" Platform, Micro
Edition runtime environments and how your
applications can take advantage of them

¥Sun 2006 JavaOnes™ Conference | Session TS-1451 | 3 java.sun.com/javaone/sf

@ Sun

Agenda

The Evolution of Java ME Performance
Optimization Technigues
Summary

Q&A

2006 JavaOne®M Conference | Session TS-1451 | 4 iava .sun.com/iavaone/sf

The Evolution of Java ME Performance

CLDC HotSpot 1.1.3

CLDC HotSpot 1.0
Jazelle
-
KVM+asmloop .
KVM

—
1999 2000 2001 2002 2003 2004 2005 2006

@Sun 2006 JavaOne® Conference | Session TS-1451 | 5 iava .sun.com/iavaone/sf

sssssssssss

The Evolution of Java ME Performance (2)

ARM11, Xscale, 300+Mhz
]

ARM9, 200Mhz
J

ARMS. 50Mhz
ARM?7, 30Mhz J

ARM7.16Mhz =

-
e ———————————

1999 2000 2001 2002 2003 2004 2005 2006

@Sun 2006 JavaOne® Conference | Session TS-1451 | 6 iava .sun.com/iavaone/sf

sssssssssss

The Evolution of Java ME Performance (3)

OpenGL®/ES

-
JSR 184 M3G

J
MIDP 2.0, Sprite

animation, MMAPI

MIDP 1.0, Doda, U
simple animation

—
1999 2000 2001 2002 2003 2004 2005 2006

@Sun 2006 JavaOne® Conference | Session TS-1451 | 7 iava .sun.com/iavaone/sf

sssssssssss

Techniques for Java ME Runtime
Environments

Know what works well with Java ME software
dynamic compilers

Manage Garbage-collection pauses

Tune for a range of platforms (compilers,
hardware engines, interpreters)

Know your platforms

2006 JavaOnes Conference | Session TS-1451 | 8 java.sun.com/javaone/sf

A Developer’s Cookbook

15 guidelines for application design and coding

Focus on straightforward, most effective
Improvements

Guidelines are high-level and generic to make them
as universal as possible

Organized according to user experience impact
Initialization
Runtime optimizations
Execution
Memory Use

@Sun 2006 JavaOnes" Conference | Session TS-1451 | 9 java.sun.com/javaone/sf

Initialization
1) Static Array Initialization

* Problem
 Array initialization performed in static initializer

- Significant code bloat and slow down class loading

* Impact
» Application startup, memory footprint

» Guideline

* Move initialization out of static initializer and do
programmatic initialization or read data from /O

* Note: Time vs. space trade-off (I/O can be slow)

@f@SMﬂ 2006 JavaOnes™ Conference | Session TS-1451 | 10 java .sun.com/javaone/sf

>,

Runtime Optimizations
2) Locality of Hot Code

Problem
Hot code spread out over multiple individual methods

Optimization techniques typically operate on method
boundaries (for semantical reasons)

This multiplies overhead for hot spot detection,
optimization, and subsequent management

Impact
Liveliness, execution consistency

Guideline

Factor/concentrate hot code in a few methods
(as practical from design perspective)

2006 JavaOnes Conference | Session TS-1451 | 11 java.sun.com/javaone/sf

Example: Locality of Hot Code

gameLoop () {
while ('done)
advance () ;

advance () {

updateModel(); // update game state
updateScreen(); // refresh screen

// Check collision with different objects: Non-optimal!

checkCollisionObjectA() ;
checkCollisionObjectB() ;
checkCollisionObjectC() ;
checkCollisionObjectD () ;
checkCollisionObjectE() ;

2006 JavaOnesM Conference | Session TS-1451 | 12

java.sun.com/javaone/sf

Example: Locality of Hot Code (Cont.)

advance () {
updateModel () ;
updateScreen|() ;
// Better - Collapse multiple related hot methods:
// - Management overhead is reduced to 1/5th
// - Optimization occurs 5x sooner
// - Concentrates hot code

// - All related code is optimized as an entity
checkCollisions () ;

2006 JavaOne®M Conference | Session TS-1451 | 13 java .sun.com/iavaone/sf

Runtime Optimizations
3) Large Methods Containing Hot Code

* Problem

+ Hot code embedded in large methods (good for K Virtual
Machine)

* High cost for dynamic compilation.
» Failed compilation == fall back to interpretation

* Some dynamic compilers may show visible pauses (though
not a problem in CLDC-HotSpot implementation compiler)

> Impact
+ Liveliness, execution consistency
» Guideline

* Keep methods with hot code compact

”%:%S’M?’l 2006 JavaOnes" Conference | Session TS-1451 | 14 java .sun.com/javaone/sf

Example: Large Methods

// Initialization and cleanup plus main loop
// all in one method: Non-optimal
gameMain () {
// lots of code here, executed only once
while ('done) // only section of hot code
advance () ;
// more code here, executed only once

%‘“@Sun 2006 JavaOne®™ Conference | Session TS-1451 | 15 java.sun.com/javaone/sf

@ Sun

Example: Large Methods (Cont.)

// Better - Factor out code to reduce method size:
// - Less overhead to optimize
// - Reduced resource requirements
gameMain () {

initialize();

while ('done)

advance () ;
cleanup() ;

}
initialize () {

}
cleanup () {

2006 JavaOne®M Conference | Session TS-1451 | 16 iava .sun.com/iavaone/sf

Runtime Optimizations
4) Mixing Hot and Cold Code

* Problem

» A section of code is hot but contains a number of code
paths that don’t execute often

« This results in large methods (see previous slide) and
disrupts optimization and execution due to branches

* Impact
* Execution speed
» Guideline

= Avoid mixing hot and cold code—All code in a hot
method should really be hot

”%:%S’M?’l 2006 JavaOnes™ Conference | Session TS-1451 | 17 java .sun.com/javaone/sf

Example: Mixing Hot and Cold Code

// Testing of rare conditions: Non-optimal

advance () {
updateModel () ;
updateScreen ()

if (condition
// code

}

if (condition
// code

}

if (condition
// code

.
14

to

to

to

1) { // occurs in 1% of loops
add object A (cold code)

2) { // occurs in 5% of loops
add object B (cold code)

3) { // occurs in 2% of loops
add object C (cold code)

2006 JavaOne®M Conference | Session TS-1451 | 18 java .sun.com/javaone/sf

Example: Mixing Hot and Cold Code

advance () {
updateModel () ;
updateScreen|() ;
// Better - Factor out code to streamline execution
// - Reduced method size
// - Reduced number of branches
// - Reduced size of branches
// - Concentrated hot spot
if (condition > 0) {
addObject (condition) ;
}

2006 JavaOne®M Conference | Session TS-1451 | 19 iava .sun.com/iavaone/sf

Runtime Optimizations
5) Conditional Exceptions in Hot Code

* Problem

» Code conditionally throws exceptions in the hot path

« This precludes certain optimizations (code
reordering/rescheduling); exceptions are expensive

* Impact
« Execution speed
+ Guideline

* Never throw unconditional exceptions in hot code
* Avoid conditional exceptions if possible

+ Caveat: Might not always be practical due to implicit
exception points such as null checks, array bounds, etc.

”%:%S’M?’l 2006 JavaOnes™ Conference | Session TS-1451 | 20 java .sun.com/javaone/sf

Example: Conditional Exceptions

// Conditional exception - Not optimal!
void process (data) throws MyException {
// some processing of data

if (problem) throw new MyException() ;
}

for (int i = data.length-1; i >= 0; i--) {
try {
process (data[i]) ;
// additional operations

} catch MyException { // can happen at any time
// handle error

}

2006 JavaOne®M Conference | Session TS-1451 | 21 java .sun.com/javaone/sf

Example: Conditional Exceptions

// Better - Eliminate conditional exception:

// - Array bounds check can be eliminated by runtime
// - Code reordering/rescheduling in hot loop possible
int process(data) {

if (problem) return 1 else return 0O;

}

int errors = 0;
for (int i = data.length-1; i1 >= 0; i--) {
errors += process(data[i]) // no exceptions

// additional operations, always executed

}

if (errors > 0) {
// handle error

2006 JavaOne®M Conference | Session TS-1451 | 22 java .sun.com/iavaone/sf

Runtime Optimizations
6) Optimization Hints for the Target Device

* Problem
» Runtime optimizations must be dynamically detected
» This adds overhead and delays optimized execution

* Impact
* Execution speed and consistency
* Guideline

* Give hints to build system/runtime environment,
e.g. define known hot code for eager optimization

* Note: Expected to become more widely supported in
future platforms

”%:%S’M?’l 2006 JavaOnesM Conference | Session TS-1451 | 23 java .sun.com/javaone/sf

Code Execution
/) Code Reuse

* Problem

* Application has multiple variants of similar hot code
* This adds overhead for extra optimizations and
dilutes hot spots

» Code reuse is generally a good idea, but even more
important in optimizing platforms

* Impact
 Liveliness, execution speed and consistency
» Guideline

+ Design for code reuse as much as practical, in
particular with hot code

@%Sun 2006 JavaOnes™ Conference | Session TS-1451 | 24 java .sun.com/javaone/sf

Code Execution
8) Native Code

Problem

Frequent calls to native code for “optimization”
purposes (as opposed to functional reasons)

In optimized platforms the transitions between native
and Java code may incur significant overhead

Impact
Execution speed

Guideline

Avoid frequent calls to native code unless the work
performed is worth the transition overhead

Note: Determining the trade-off might be difficult

”%:”fSZﬂ’l 2006 JavaOnesM Conference | Session TS-1451 | 25 java .sun.com/javaone/sf

Example: Native Code

// System.arraycopy() is often implemented in native.
// In this example, srcArr and dstArr hold primitive
// values. Threshold is implementation dependent.
if (length <= threshold) {
for (1 = length-1; i >= 0; i--) {
dstArr[i] = srcArr[i]; // better off copying directly

}

else {
System.arraycopy (srcArr, 0, dstArr, 0, length);

}

// (smart VMs can optimized this ...)

2006 JavaOne®M Conference | Session TS-1451 | 26 java .sun.com/javaone/sf

Code Execution
9) Qualifiers

* Problem

» The Java language allows liberal use of features
such as polymorphism and a wide scope of visibility

 This lack of restrictions prevents certain
optimizations (fast access to members, fast calling,
simplified code transformation)

* |Impact
* Execution speed
» Guideline

- Useprivatelstatic/fi nal where possible

@%Sun 2006 JavaOnesM Conference | Session TS-1451 | 27 java .sun.com/javaone/sf

Code Execution
10) System.gc() (and Many VMs This Is No-op)

* Problem

» Application periodically calls System.gc()

» Sophisticated memory management systems already
dynamically adapt to a variety of conditions

» This means calls to System.gc() likely add overhead
without any benefit (or even cause disruption)

* Impact
* Execution speed
» Guideline

» Don’t call System.gc()

@%Sun 2006 JavaOnesM Conference | Session TS-1451 | 28 java .sun.com/javaone/sf

Code Execution
11) Complex Byte Codes

Problem
Use of complex Java byte codes (e.g. aast or e,
*new’, I nstanceof, ...)intightloops

Operation might be heavyweight or cause transition
to a different execution state (e.g. software emulation)
with lots of associated overhead

Impact
Execution speed

Guideline

If possible, avoid complex byte codes in hot code
Hint: Look at class file (byte stream of method) to verify

”%:”fSZﬂ’l 2006 JavaOnes™ Conference | Session TS-1451 | 29 java .sun.com/javaone/sf

Example: Complex Byte Codes

// Use instanceof to determine object type: Non-optimal!

class BaseObject { ... }
class Objectl extends BaseObject { ... }
class Object2 extends BaseObject { ... }

BaseObject[] objList;
for (int i = objlList.length-1; i >= 0; i--) {
if (objList[i] instanceof Object2) // complex byte code
// do something

2006 JavaOne®M Conference | Session TS-1451 | 30 java .sun.com/javaone/sf

Example: Complex Byte Codes (Cont.)

// Better - Add tag, allow easy runtime type determination
// Not the best OOP, but an acceptable tweak for specific
// situations
class BaseObject {

bool isObject2; // tag
}
class Object2 extends BaseObject {

Object2 () {

isObject2 = true; // constructor sets tag

}

for (int i = objlList.length-1; i >= 0; i--) {
if (objList[i] .isObject2) // simple member access

2006 JavaOne®M Conference | Session TS-1451 | 31 java .sun.com/iavaone/sf

When Compilers

and Interpreters Disagree
12) Write Platform-Specific Hot Code

» Some new JSRs are designed to work with an
optimizing compiler; for example, to manipulate
vertex data with JSR 239, Java Bindings for
OpenGL ES

intBuffer.put(value1); — strrO, [r1], #1
intBuffer.put(value2); — strr0, [r2], #1

» Techniques good for interpretation actually hurts
compiled performance

javaArray[n++] = value1; javaArray[n++] = valueZ2;
intBuffer.put(javaArray);

@f@SMﬂ 2006 JavaOnes™ Conference | Session TS-1451 | 32 java .sun.com/javaone/sf

JIT Warmup
13) Avoid FPS Ramp-up

* Problem

» The game reaches optimal frame rate only after
dynamic compilation is complete

» User may see a “ramp up” of FPS

* Impact
* Execution speed and consistency
» Guideline

* Run the game loop in an invisible “warm up” loop
before starting the game

2006 JavaOne®M Conference | Session TS-1451 | 33 java .sun.com/javaone/sf

Memory Use
14) Allocation Rate and Overhead

* Problem

= Application tries to avoid memory allocation and gc, and
recycle memory itself

« This likely imposes much more overhead (and bugs) than
the VM-level memory management

* Impact
* Execution speed and consistency
» Guideline

+ Leave most (or all) memory management to the Java VM

« But avoid high allocation rates and spikes (often a sign of poor
application design)

@f@SMﬂ 2006 JavaOnes™ Conference | Session TS-1451 | 34 java .sun.com/javaone/sf

Memory Use
15) Spikes in Memory Usage

Problem

Allocation of large objects or periodic increases in
allocation activity cause large spikes in memory usage

This may cause low memory conditions and/or undo
existing optimizations (e.g. trash code and information)

Impact
Liveliness, execution speed and consistency

Guideline

Maintain consistent and low to medium allocation rate,
cleanup and free objects in timely manner

Pool/reuse objects with large or heavyweight allocations

”%:”fSZﬂ’l 2006 JavaOnesM Conference | Session TS-1451 | 35 java .sun.com/javaone/sf

Y g

Example: Memory Use

// Creates garbage on every collision: Non-optimal
class Fragment {
... // graphics and/or image data
init() {
// simple initialization to initial wvalues
}

}
initFragments () {

for (int i = fragments.length-1; i >= 0; i--)
fragments[i] .init() ;
}
handleCollision () {

// Throw away and allocate 30 objects on every collision
Fragment[] fragments = new Fragment[30];

initFragments () ; // must initialize before using
animateFragments(); // animate collision

2006 JavaOnes Conference | Session TS-1451 | 36 java.sun.com/javaone/sf

Example: Memory Use (Cont.)

// Better - Reuse objects and do eager initialization
// - Low init. overhead compared to allocation and gc
// makes reuse worthwhile
// - Removes allocation and gc spikes
// - Improves visuals with eager initialization
initApp () {
Fragment[] fragments = new Fragment[30];
initFragments(); // init. for first use

handleCollision () {
// Fragments already initalized, no delay
animateFragments () ;
initFragments () ; // reset for next collision

2006 JavaOne®M Conference | Session TS-1451 | 37 java .sun.com/iavaone/sf

Know Your Platforms

www.eembc.com
* Good source of Java VM performance; fairly reliable

www.jbenchmark.com

+ Good source of graphics and game performance,
including 3D

- Simple benchmarks, beware of cheating!

‘%%SM?} 2006 JavaOnes" Conference | Session TS-1451 | 38 java.sun.com/javaone/sf

>,

Summary

Be aware of the properties and techniques of
advanced Java ME platforms

Make your application “Java VM-friendly” and
maximize your chances for a substantial
performance boost

This is only a snapshot in time

Java ME platforms will become more capable and
push the envelope on optimization techniques

Application design must continue to adapt in order
to deliver the best user experience

2006 JavaOnes Conference | Session TS-1451 | 39 java.sun.com/javaone/sf

For More Information

URLSs

www.eembc.org (click on Java subsection)
www.jbenchmark.com

Books

Effective Java,
http://java.sun.com/docs/books/effective/

@Sun 2006 JavaOne® Conference | Session TS-1451 | 40 iava .sun.com/iavaone/sf

sssssssssss

2006 JavaOne®™ Conference | Session TS-1451 | 41 jaua.sun.comfjauaone{sf

@ Sun

Writing Optimized Applications

for High-Performance Java" ME
Runtime Environments

Kyle Buza Oleg Pliss, Ph.D.
Sun Microsystems Sun Microsystems
TS-1451

Copyright © 2006, Sun Microsystems Inc., All rights reserved.
2006 JavaOne®M Conference | Session TS-1451 jaua.sun.com)"ji':IUEIOI'IE!(Sf

