
2006 JavaOneSM Conference | Session TS-3024 |

TS-3024

Developing Java™ Platform,
Micro Edition Graphical
Applications to Take Advantage
of Hardware Acceleration
Jerry Evans
Sun Microsystems

Nandini Ramani
Sun Microsystems

Ashmi Bhanushali
Nvidia Corporation

2006 JavaOneSM Conference | Session TS-3024 | 2

Goal of This Talk

Learn about hardware acceleration for
2D and 3D graphical APIs in the Java™
Platform, Micro Edition (Java ME) and
how your applications can take
advantage of it

2006 JavaOneSM Conference | Session TS-3024 | 3

Agenda
Java ME
Overview of Graphics APIs
Hardware Acceleration
Demos
Adding a GPU to the System
CPU Related Optimizations
System Bus Related Optimizations
Taking Advantage of the GPU
JSR 239 Demos
Q&A

2006 JavaOneSM Conference | Session TS-3024 | 4

Agenda
Java ME
Overview of Graphics APIs
Hardware Acceleration
Demos
Adding a GPU to the System
CPU Related Optimizations
System Bus Related Optimizations
Taking Advantage of the GPU
JSR 239 Demos
Q&A

2006 JavaOneSM Conference | Session TS-3024 | 5

Configuration and Profiles
Java ME Platform

● Volume phone
● CLDC—Connected Limited Device Configuration

Platform
● MIDP—Mobile Information Device Profile

● High-end device
● CDC—Connected Device Configuration Platform
● Personal Basis Profile and Personal Profile

● This talk focuses on MIDP/CLDC

2006 JavaOneSM Conference | Session TS-3024 | 6

Java Platform, Micro Edition

GPU CPU

Native Gfx Libraries
(e.g. OpenGL® ES/OpenVG) OS

CLDC Virtual Machine

MIDP
(LCDUI)

JSR 226
(SVG Tiny)

JSR 184
(M3G)

JSR 239
(OpenGL® ES)

Java Technology MIDlet

2006 JavaOneSM Conference | Session TS-3024 | 7

Agenda
Java ME
Overview of Graphics APIs
Hardware Acceleration
Demos
Adding a GPU to the System
CPU Related Optimizations
System Bus Related Optimizations
Taking Advantage of the GPU
JSR 239 Demos
Q&A

2006 JavaOneSM Conference | Session TS-3024 | 8

Overview of Graphics APIs

● LCDUI for MIDP
● JSR 226—Scalable 2D Vector Graphics

API for J2ME™

● JSR 184—Mobile 3D Graphics API for J2ME
● JSR 239—Java Bindings for OpenGL® ES

2006 JavaOneSM Conference | Session TS-3024 | 9

LCDUI for MIDP—Canvas

● Immediate mode API
● All drawing done within a paint() callback
● Can also draw to an off screen mutable image
● Suited for event based interaction
● High performance, low system overhead

2006 JavaOneSM Conference | Session TS-3024 | 10

LCDUI for MIDP—Game Canvas

● Immediate mode synchronous drawing
● Ideal for “platformer” games
● Sprite and tiled background
● Well suited for games
● Only on MIDP 2.0

2006 JavaOneSM Conference | Session TS-3024 | 11

JSR 226—Scalable 2D Vector
Graphics API for J2ME

● Based on W3C SVG Tiny 1.1
● XML Grammar for rich interactive 2D graphics
● Java technology API to manipulate, animate and

interact with SVG Tiny content
● No immediate mode rendering
● Display list model
● DOM can be edited using the JSR 226 API

2006 JavaOneSM Conference | Session TS-3024 | 12

JSR 226—Scalable 2D Vector
Graphics API for J2ME (Cont.)

● Key features
● Basic and complex shapes
● Rich paint styles (gradients*, patterns*)
● Rich text
● Opacity*
● Filter effects*
● Scripting* and animation of dynamic content
● Internationalization (i18n)

* SVG Tiny 1.2 features (JSR 287)

2006 JavaOneSM Conference | Session TS-3024 | 13

JSR 184—Mobile 3D
Graphics API for J2ME

● 3D retained mode and immediate mode API
● Focus is retained mode (display list, scene graph)
● Defines standard file format—m3g
● Tools available to export graphics models in

m3g format
● Easier to develop using 3D authoring tools
● Some animation support
● HW acceleration likely to be through

OpenGL® ES

2006 JavaOneSM Conference | Session TS-3024 | 14

JSR 239—Java Bindings
for OpenGL® ES

● OpenGL® ES is “embedded subset” of OpenGL®

● JSR 239 defines Java bindings to OpenGL® ES
1.0 and 1.1

● Immediate mode API
● Highly flexible control of rendering

● Low level hardware oriented 3D API
● Potentially higher performance

● Access to latest and greatest hardware features

2006 JavaOneSM Conference | Session TS-3024 | 15

JSR 239—Java Bindings
for OpenGL® ES (Cont.)

● Key features
● Full featured 3D API
● 3D viewing pipeline
● Lighting and shading
● Texture mapping, cube maps
● Fog
● 2D sprites
● Extensibility

2006 JavaOneSM Conference | Session TS-3024 | 16

Agenda
Java ME
Overview of Graphics APIs
Hardware Acceleration
Demos
Adding a GPU to the System
CPU Related Optimizations
System Bus Related Optimizations
Taking Advantage of the GPU
JSR 239 Demos
Q&A

2006 JavaOneSM Conference | Session TS-3024 | 17

Software vs. Hardware
API Implementation
● Until recently, most 2D/3D APIs were implemented

mostly in software
● 2D/3D hardware typically accessed through a

native API
● With underlying hardware acceleration, Java based

API performance improvement should be transparent
● However, this may be limited by:

● Poor platform usage of the native graphics API
● Application overhead exposed by higher graphics

performance
● Ultimate performance may require hardware-specific

tweaks

2006 JavaOneSM Conference | Session TS-3024 | 18

Software vs. Hardware
API Implementation (Cont.)

● Sun is working to enable Java technology APIs
to leverage standard native graphics APIs when
available
● Provide good application performance transparently
● Allow for hardware-specific tuning for ultimate

performance
● Khronos APIs are supported by a large number

of hardware vendors for mobile devices
● OpenVG (2D)
● OpenGL® ES (3D)

2006 JavaOneSM Conference | Session TS-3024 | 19

Performance Issues

● Floating point vs. fixed point
● API level vs. implementation level

● SVG—Only float at API level, may be fixed in
implementation

● OpenGL® ES—Both float and fixed in API
● Performance difference of float and fixed is highly

variable
● Depends on application, APIs, CPU, …
● Probably an overall win to use fixed at API level, but maybe

not enough to justify not using floats
● Can use transforms to define user coordinates in a

convenient fixed point space

2006 JavaOneSM Conference | Session TS-3024 | 20

Performance Issues (Cont.)

● Scene graph vs. immediate mode
● Convenience and simplicity vs. control and flexibility
● Scene graph API can preprocess graphical data

● Store in optimized, possibly device dependent, format
● Can provide features to off-load application,

● Scene graph can offer improved performance if
internal format is optimized for the device

● However, scene graph formats typically do not evolve
as quickly as graphics hardware and usually cannot
be extended by application developers

● Can combine immediate mode and scene graph
● e.g. JSR 184, or mixing calls from different APIs

2006 JavaOneSM Conference | Session TS-3024 | 21

Performance Issues (Cont.)

● Mixing calls to different APIs
● Unless the two API implementations have been

designed to work together and share parts of the
implementation, this involves two paths to the
framebuffer
● HW needs a private buffer (not in main memory)
● Switching is expensive

● Avoid mixing APIs as much as possible (for now)
● Pick one API as the main API and minimize dynamic

content from other API
● OpenGL® ES and OpenVG have been designed to

enable efficient hardware sharing
● Future devices

2006 JavaOneSM Conference | Session TS-3024 | 22

Demos

2006 JavaOneSM Conference | Session TS-3024 | 23

Agenda
Java ME
Overview of Graphics APIs
Hardware Acceleration
Demos
Adding a GPU to the System
CPU Related Optimizations
System Bus Related Optimizations
Taking Advantage of the GPU
JSR 239 Demos
Q&A

2006 JavaOneSM Conference | Session TS-3024 | 24

Why Add a GPU to
a Handheld Device?

● Graphics
● Games
● Snappy UI

● Video
● Audio
● Power

● Graphics quality and performance per watt

2006 JavaOneSM Conference | Session TS-3024 | 25

CPU vs. GPU

Software 3D
GoForce 4500

GoForce 5500

1 M

50 M

100 M

150 M

200 M

Fillrate

42004 2005 2006 2007

TBA

GoForce 4800

2006 JavaOneSM Conference | Session TS-3024 | 26

Holistic System

● Now you’ve got a GPU in there
● Challenge is to keep all of the hardware

resources busy
● Balancing act

● CPU
● GPU
● System bus

2006 JavaOneSM Conference | Session TS-3024 | 27

Agenda
Java ME
Overview of Graphics APIs
Hardware Acceleration
Demos
Adding a GPU to the System
CPU Related Optimizations
System Bus Related Optimizations
Taking Advantage of the GPU
JSR 239 Demos
Q&A

2006 JavaOneSM Conference | Session TS-3024 | 28

Optimize CPU Work

● Simplify CPU load
● Collision detection
● Physics
● Skinning/Animation

● Mind your memory
● Floating point emulation overhead

● JSR 239 supports fixed point math

2006 JavaOneSM Conference | Session TS-3024 | 29

Optimize CPU Work

● Cull geometry at object level
● Per triangle culling at app level means additional

CPU work and cache strain
● Will also benefit System Bus bandwidth

● Avoid multi-pass rendering
● Use multitexturing
● With JSR 239, you can use shader programs

2006 JavaOneSM Conference | Session TS-3024 | 30

Optimize CPU Work

● Batch geometry
● Into buckets of common states
● Reduce number of state changes

● Avoid OpenGL® ES lighting
● With JSR 239, use per pixel lighting

2006 JavaOneSM Conference | Session TS-3024 | 31

Specular Lighting Screenshots

Per Vertex Per Pixel

2006 JavaOneSM Conference | Session TS-3024 | 32

Alternative Lighting Strategies

Stuntcar Extreme
(Images Courtesy of Fathammer)

● Fake Phong highlights using multi-texture
● Pre-computed vertex lighting

2006 JavaOneSM Conference | Session TS-3024 | 33

Agenda
Java ME
Overview of Graphics APIs
Hardware Acceleration
Demos
Adding a GPU to the System
CPU Related Optimizations
System Bus Related Optimizations
Taking Advantage of the GPU
JSR 239 Demos
Q&A

2006 JavaOneSM Conference | Session TS-3024 | 34

System Bus Related Optimizations

● Maximize the value of vertices rendered
● Use LOD (Level of Detail)
● Remodel objects for the small screen size

● Avoid multi-pass when possible
● With JSR 239, utilize VBO’s (Vertex Buffer

Objects)

2006 JavaOneSM Conference | Session TS-3024 | 35

System Bus Related Optimizations

● Batch the geometry by texture
● Don’t overflow GPU video memory

● Video memory contains frame buffer, pbuffers and
textures

● GoForce 4800: 1280K SRAM
● Avoid allocating alpha if unused
● With JSR 239, use compressed texture formats

2006 JavaOneSM Conference | Session TS-3024 | 36

Leveraging Multi-Texture

Four Full Res (256 x 256) 4-bit = 128kb
Full Res Base + four 1/4 res lightmaps = 40kb

● Store diffuse maps in lower resolution and use
multi-texture to save memory

2006 JavaOneSM Conference | Session TS-3024 | 37

Agenda
Java ME
Overview of Graphics APIs
Hardware Acceleration
Demos
Adding a GPU to the System
CPU Related Optimizations
System Bus Related Optimizations
Taking Advantage of the GPU
JSR 239 Demos
Q&A

2006 JavaOneSM Conference | Session TS-3024 | 38

Taking Advantage of the GPU

● Dedicated 3D HW allows you to add more
geometry, textures and shaders

● Freebies
● Bilinear filtering

● Perspective correction
● Per-pixel fog, alpha blending, alpha test

● Use trilinear filtering, full scene anti-aliasing

2006 JavaOneSM Conference | Session TS-3024 | 39

A Few JSR 184 Observations…

● From my experience…
● Do not mix 2D with 3D
● Do not use paint()/repaint() [MIDP 1.0]. Instead

use GameCanvas.flushGraphics() [MIDP 2.0]
● Object creation is expensive

● Try to allocate them outside the main rendering loop
and reuse

● Be careful with skinning, animation and lighting

2006 JavaOneSM Conference | Session TS-3024 | 40

JSR 239 Demo

2006 JavaOneSM Conference | Session TS-3024 | 41

Fragment Shading

● JSR 239 is extensible
● NVIDIA GoForce 4800/5500

● DOT3 bump/normal mapping
● Environment-mapped bump mapping
● Image processing

● Motion blur, edge detect, blooms

2006 JavaOneSM Conference | Session TS-3024 | 42

Fragment Program SDK Sample

Vertex Lighting DOT3 Bump
Mapping

Glow +
DOT3 Bump mapping

2006 JavaOneSM Conference | Session TS-3024 | 43

Environment-Mapped Bump Mapping
+ Bloom + reflection

GoForce 5500 Demos

2006 JavaOneSM Conference | Session TS-3024 | 44

Agenda
Java ME
Overview of Graphics APIs
Hardware Acceleration
Demos
Adding a GPU to the System
CPU Related Optimizations
System Bus Related Optimizations
Taking Advantage of the GPU
JSR 239 Demos
Q&A

2006 JavaOneSM Conference | Session TS-3024 | 45

JSR 239 Fragment
Shading Demos

2006 JavaOneSM Conference | Session TS-3024 | 46

Agenda
Java ME
Overview of Graphics APIs
Hardware Acceleration
Demos
Adding a GPU to the System
CPU Related Optimizations
System Bus Related Optimizations
Taking Advantage of the GPU
JSR 239 Demos
Q&A

2006 JavaOneSM Conference | Session TS-3024 | 47

For More Information

● http://www.w3.org/TR/SVGMobile/
● http://www.w3.org/TR/SVGMobile12/
● http://jcp.org
● Register for Nvidia Handheld

Developer Program
● http://developer.nvidia.com

● Email: handset-dev@nvidia.com

2006 JavaOneSM Conference | Session TS-3024 | 48

Q&A

2006 JavaOneSM Conference | Session TS-3024 |

TS-3024

Developing Java™ Platform,
Micro Edition Graphical
Applications to Take Advantage
of Hardware Acceleration
Jerry Evans
Sun Microsystems

Nandini Ramani
Sun Microsystems

Ashmi Bhanushali
Nvidia Corporation

