

JavaOne

Java Card[™] Platform Evolution: Future Directions

Tanjore Ravishankar, Florian Tournier, Thierry Violleau

Java Card Team Sun Microsystems, Inc.

TS-3925

Goal

Preview future Java Card[™] technology and its role in connected security architectures

Agenda

Java Card Technology Today

Requirements and Uses Cases for the Next Generation

Preview of Next Generation Technology

- Evolution of Platform Features
- Infrastructure and Connectivity
- Use Case Analysis

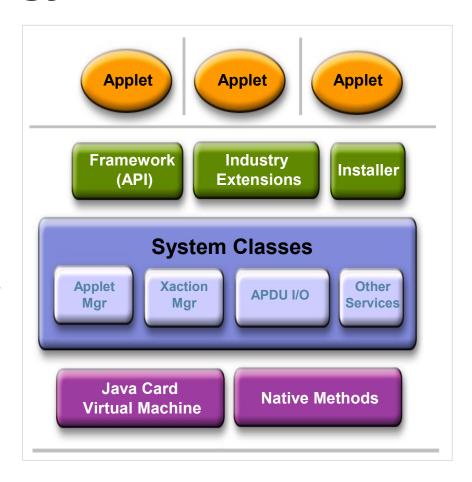
Agenda

Java Card Technology Today

Requirements and Uses Cases for the Next Generation

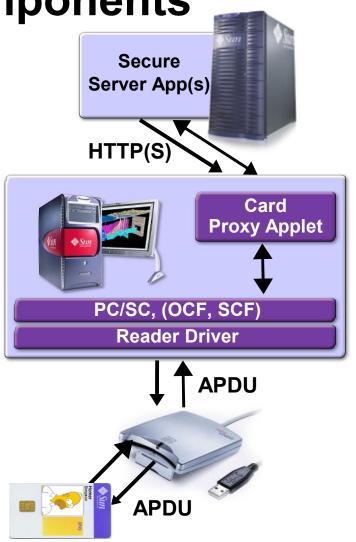
Preview of Next Generation Technology

- Evolution of Platform Features
- Infrastructure and Connectivity
- Use Case Analysis



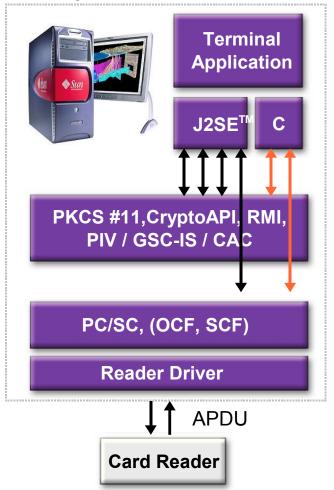
Java Card Technology

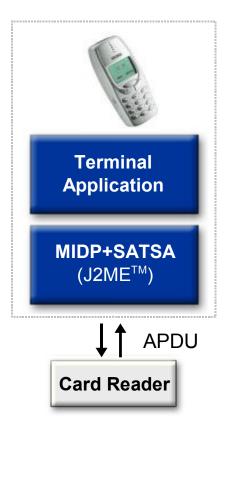
Smart Card Security


- Java Card 2.2.2 Specifications
- Subset of Java[™] SE platform and Java programming language
- Split-VM Architecture
- Persistent VM model
- Firewall model isolates contexts and applets
- ISO7816 Communication I/F and protocol
- Transaction management

Server and Client Components

Infrastructure Layers


- Server
 - Secure Server Application
 - Card Proxy Applet
- Client
 - Secure Client Application
 - PC/SC card access framework
 - Card reader driver layer
 - Card Reader



Client Components

Software Layers

Typical Applications

- Desktop Client
 - Login authentication
 - Email signing
- Handheld Client
 - Personal Information
 - Mobile Ticketing
- POS Terminal Client
 - Card Holder Authentication
 - Debit/Credit applications
 - Loyalty applications

- Web authentication
 - Single sign-on
- Wireless communication
 - Transmission Privacy
 - Billing Service
 - Phone book backup service

Agenda

Java Card Technology Today

Requirements and Uses Cases for the Next Generation

Preview of Next Generation Technology

- Evolution of Platform Features
- Infrastructure and Connectivity
- Use Case Analysis

Market Perspective

Java Card Technology Adoption

- Over 1.6 Billion cards deployed
- Java Card technology caters to most market needs
 - Telecom, Civic/Corporate ID, Finance, Pay TV, Transport
 - Interoperability and security
 - Availability of products, tools, infrastructure and content
- Java Card platform 2.2.2 available since March 06
 - Contactless, ID/E-passport
- 100's of products worldwide

Challenges Moving Forward

Why a New Java Card Platform?

- Hardware capabilities are increasing exponentially
- Utilization of card services can be improved
- Issuers are still struggling with the deployment of smart cards and applications
- Sun and Java Card platform licensees are developing next generation technology
 - Commercial Deployment: 2008 and beyond
 - Retain the key attributes of Java Card technology: Interoperability, Security, Compactness, Compatibility

Next Generation Smart Card Platform

Traditional vs. High-end Smart Card Hardware (2007+)

8/16 bit CPU	32 bit CPU
~ 2K RAM	16K RAM
48–64K ROM	>256K ROM
8–32K EEPROM	>128K EEPROM, or Several MB Flash
External Clock: 1–5 MHz	Internal Clock: 50 MHz
Serial I/O Interface 9.6–30K Baud Half Duplex	High Speed Interfaces 1.5 Mb/s-12 Mb/s Full Duplex

Give Control to the User Over Card Services

The Case for a Next Generation Java Card Technology

- Simplify end-user interactions with the card
 - Bring a web look-and-feel to card applications
- Leverage latest hardware to create new usage patterns
 - Manage and manipulate large data objects
 - Enable parallel execution over multiple comm channels
- Free developers from the constraints of card protocols
 - Serve content via IT-accepted internet protocols
 - Facilitate smart card integration in webservices infrastructure based on http/xml

Reduce Deployment Complexity

The Case for a Next Generation Java Card Technology

- Facilitate the management of cards and applications
 - Manage cards as any entity on a TCP/IP network
- Use standard IDEs for the development of Java Card technology-based applications
- Simplify the roll-out of terminal infrastructures
 - Eliminate card-specific software on the terminal
 - Remove the complexity of syncing terminal and card applications

Sample Use Cases

Give Control to the User Over Card Services

- Securely manage private data from a web browser
 - Browse content like phone book entries in a SIM card
 - Remote browsing of card content ("home-page on SIM")
- Stream DRM content from a SIM card to a phone
- Perform online network authentication and contactless payment simultaneously
- Enable card-initiated connections to back-end services
 - Perform a complete end-to-end financial transaction
 - Cryptographically authenticate a card holder to the back-end

Sample Use Cases

Reduce Deployment Complexity

- Manage securely and remotely a fleet of card through the network using standard network protocols
 - Using standard back-end applications, integrating with device management infrastructures
- Program/debug applications on a standard IDE, then load unmodified on the card
- Use cards on a PC without specific installed software
- Provide automatic data backup/sync services
 - The card securely, pro-actively connect to off-card backup services or applications

Next Generation Requirements

Retain the Characteristics of Java Card Technology

- Backward compatibility
- Scalability
 - Address variability in different market segments
- Security
 - Enhanced Crypto
 - Specific support for smart card hardware

Enable Advanced Smart Card Features

- Network-oriented communication
 - High speed Interface
 - TCP/IP integration
- Client and Server communication models
- "More main-stream"
 language features

Agenda

Java Card Technology Today
Requirements and Uses Cases for

the Next Generation

Preview of Next Generation Technology

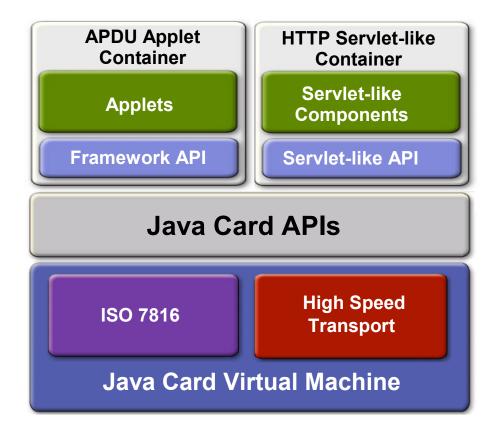
- Evolution of Platform Features
- Infrastructure and Connectivity
- Use Case Analysis

Proposed Enhancements

- VM technology
 - 32 bit VM
 - .class file loading
 - Concurrent execution of apps/multithreading
 - On-card byte-code verification
 - Automatic GC
- Security
 - Enhanced context-isolation
 - Policy-based security

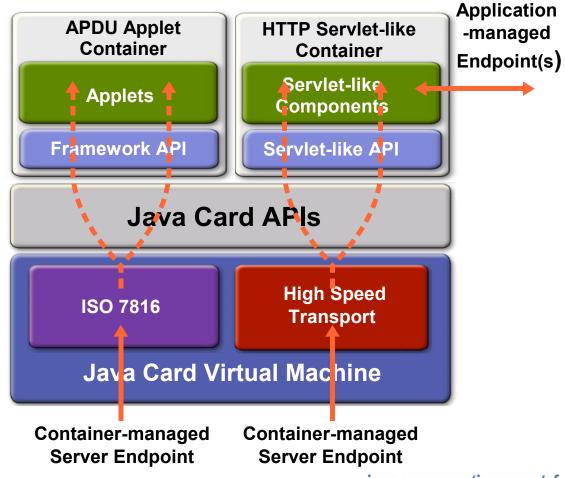
Proposed Enhancements

- Network-oriented communication
 - ISO 7816 and TCP/IP communication support
 - Communication over USB, MMC
 - Concurrent contact/contact-less card access
 - Embedded web server
 - Service static and dynamic content through HTTP(s)
 - Client and server communication mode
 - Generic communication API


Proposed Enhancements

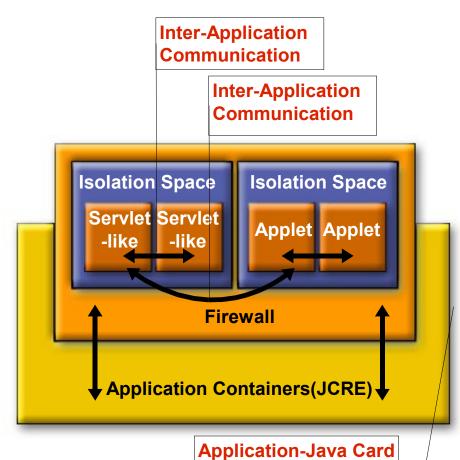
- Programming model
 - Fully backward compatible
 - Support additional Java language types: char, long
 - String support
 - Multi-dimensional arrays
 - Support for large data structures—Multimedia content
 - Application models
 - Classic APDU-based applet model
 - HTTP servlet-like model
 - Enhanced inter-application communication framework
 - Generic event framework
 - Evolutive cryptography framework

Proposed Software Stack



Communication Model

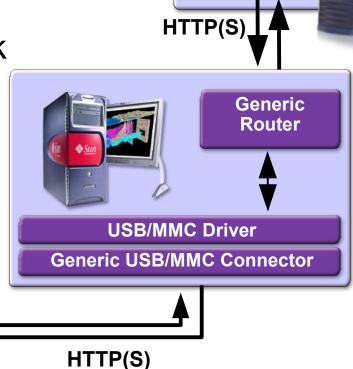
Two Levels


- Container-handled communications
 - Connection endpoints handled by containers
 - Request processing delegated to application components
- Application-handled communications
 - Connections initiated/handled at the application level
 - Can implement both client and server communication model

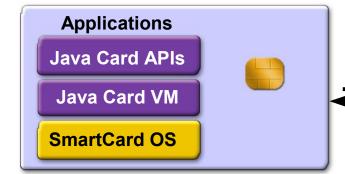
Security Containment Model

- Applications run in secure isolation spaces
 - Components from the same application can interact (share data)
- Containers run in Java Card RE isolation space
- Inter-application and Application-Java Card RE interactions restricted by Firewall
- Policy-based access control across Firewall

RE Interaction


Client Infrastructure Components

No card reader required


Direct USB, MMC

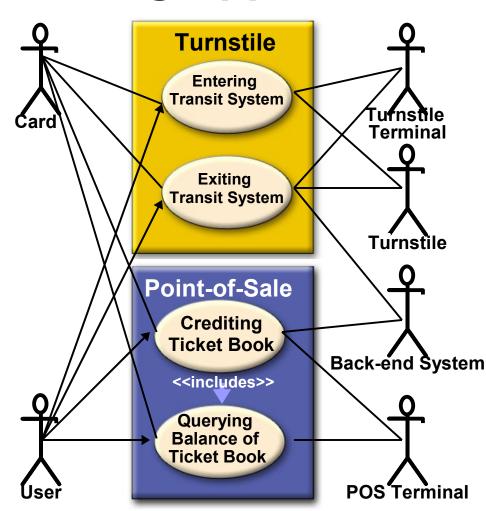
General purpose network

drivers on the terminal

Server App(s)

Next Generation Applications

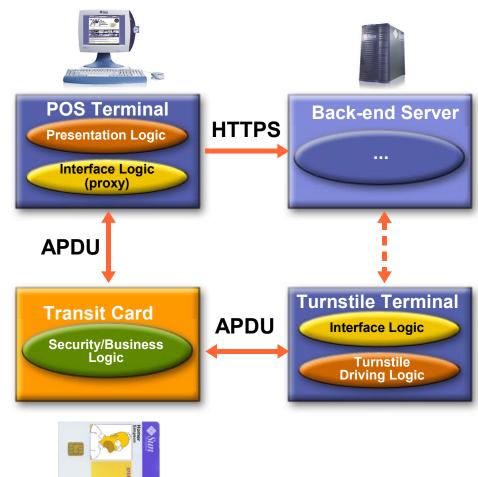
- End-to-end secure applications
 - Servers communicating directly with cards
 - Security does not depend on trusted client device
 - Secure banking transactions
 - Debit/credit
- DRM applications
- Browser-enabled applications
 - Private information self-management



A Transit/Mobile Ticketing Application

Typical Use Cases

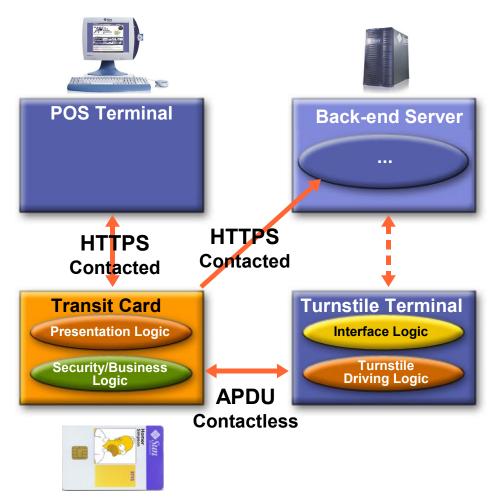
- Turnstile subsystem
 - Use cases
 - Entering
 - Exiting
 - Actors
 - Card and card holder
 - Turnstile and terminal
 - Back-end system
- POS subsystem
 - Use cases
 - Crediting
 - Querying balance
 - Actors
 - Card and card holder
 - POS terminal
 - Back-end system


Session TS-3925

A Transit/Mobile Ticketing Application

Architecture of a Classic APDU Applet-based Application

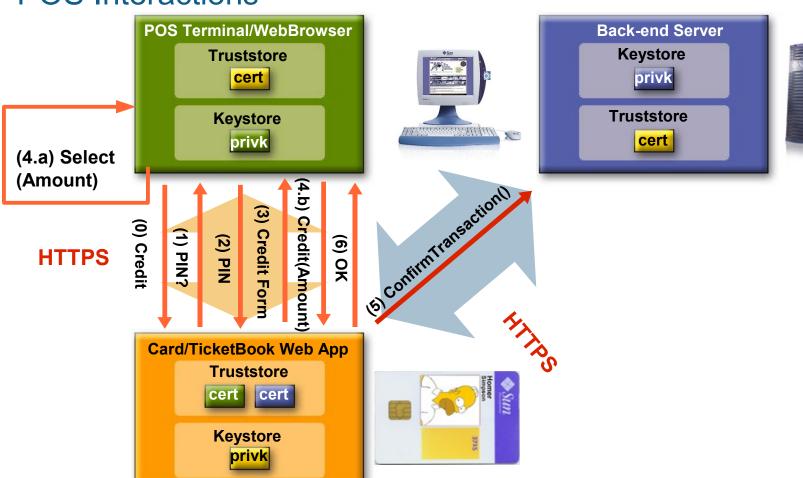
- Functional partitioning
 - Card
 - Security + Business logic
 - POS terminal
 - Card interface logic
 - Presentation logic (UI)
 - Back-end interface logic
 - Turnstile terminal
 - Card interface logic
 - Turnstile driving logic
 - Back-end server
 - Out-of-scope



A Transit/Mobile Ticketing Application

Architecture of a Connected Application

- Functional partitioning
 - Presentation (UI) implemented by card
 - Interaction b/w card and terminal: (X)HTML over HTTP(S)
 - Interaction w/back-end handled by card: structured data (binary or text) over HTTP(S)
 - Thin terminal application client (browser) simplifies deployment



Transit/Mobile Ticketing Application

POS Interactions

Summary

- Next generation Smart Card hardware
 - 16K RAM, >256K ROM
 - USB, MMC communication interfaces
 - Card connects directly to client device
 - No card reader required
- Directions for Next generation Java Card technology
 - Fully backward compatible
 - Mainstream Java language programmable
 - 32 bit VM, .class file loading, automatic GC
 - Enables end-to-end security—Server-to-Card
 - HTTP servlet-like model
 - TCP/IP communication networks

For More Information

- URL: http://java.sun.com/products/javacard
- Pavilion Sun Booth
 - Pod #731: Java Card Technology
 - Pod #732: Java Card Applications for the Mobile Environment
- Other Java Card Technical Sessions and BOFs
 - Mobility General Session (TS-3203)
 - New White Card Schemes and Java Card[™] Technology (TS-3814)
 - XXL—Large Java™ Platform (U)SIM Cards—"The Advanced Mobile Communication Enabler for the Future" (TS-9925)
 - DReaM: Secure End-to-End Interoperable DRM Using Java[™] Technology (TS-3326)
 - Measuring the Performance of the Java Card[™] Platform Card (BOF-2816)
 - Reviewing the Deployment Strategies and Issues with TCP/IP-Connected Java Card[™] Technology (BOF-2890)

Q&A

Tanjore Ravishankar, Florian Tournier, Thierry Violleau

Java Card[™] Platform Evolution: Future Directions

Tanjore Ravishankar, Florian Tournier, Thierry Violleau

Java Card Team Sun Microsystems, Inc. TS-3925