
2006 JavaOneSM Conference | Session TS-5439 |

Developing Streaming Media
Applications Using the MMAPI:
What Works, What Doesn’t and
What to Do About It
Craig Robinson
Director of Technology
RealNetworks
http://www.realnetworks.com
/
TS-5439

Brent Newman
Lead SDE
RealNetworks

2006 JavaOneSM Conference | Session TS-5439 | 2

You can develop streaming applications for
mobile handsets using Java™ Platform, Micro
Edition (Java ME) technology! In this session
we will show you how, as well as point out
some issues you need to watch out for. Our
presentation concludes with code examples
and a streaming demo.

Practical advice for developing streaming applications
Using the MMAPI

2006 JavaOneSM Conference | Session TS-5439 | 3

Agenda

What Can You Build?
Overview of Streaming Technologies
Practical Issues with Testing
Limitations of MMAPI Implementations
Helix JSR 135 Bindings
Code Examples
Demo
Q&A

2006 JavaOneSM Conference | Session TS-5439 | 4

Agenda

What Can You Build?
Overview of Streaming Technologies
Practical Issues with Testing
Limitations of MMAPI Implementations
Helix JSR 135 Bindings
Code Examples
Demo
Q&A

2006 JavaOneSM Conference | Session TS-5439 | 5

Mobile media applications are hot right now!
What Can You Build?

• Mobile TV and VOD
• Live television
• On-demand shows

• News, sports, movies

• Mobile music
• Radio
• On-demand tracks

• The ultimate mobile music experience
• Jukebox in the sky
• Any song, any time, any place

2006 JavaOneSM Conference | Session TS-5439 | 6

Agenda

What Can You Build?
Overview of Streaming Technologies
Practical Issues with Testing
Limitations of MMAPI Implementations
Helix JSR 135 Bindings
Code Examples
Demo
Q&A

2006 JavaOneSM Conference | Session TS-5439 | 7

Preliminaries: What is streaming?
Overview of Streaming Technologies

• Just-in-time delivery of time-based media
• Media is delivered from server to client
• Media segments are delivered shortly before they

must be presented
• In practice, some buffering exists

• Pre-roll buffer
• Network jitter buffering
• Handover buffering (mobile)
• 3GPP PSS defines a standard buffer model

2006 JavaOneSM Conference | Session TS-5439 | 8

3GPP PSS
Overview of Streaming Technologies
• 3rd Generation Partnership Project

• Industry consortium that sets international mobile standards

• 3GPP packet switch streaming standards
• “The” standard for mobile streaming
• Consolidates and refines streaming and media standards

defined by IETF, MPEG, W3C and others

• Relevant specifications include
• TS 26.234: “Transparent end-to-end Packet-switched

Streaming Service (PSS);Protocols and codecs”
• TS 22.233: “Transparent End-to-End Packet-switched

Streaming Service; Stage 1”
• TS 26.233: “Transparent end-to-end packet switched

streaming service (PSS); General description”

2006 JavaOneSM Conference | Session TS-5439 | 9

Diagram: streaming to a mobile device
Overview of Streaming Technologies

Internet

Media Server

Firewall Cell Tower

Handset

Carrier Network

2006 JavaOneSM Conference | Session TS-5439 | 10

Protocols used for mobile streaming with Java ME platform
Overview of Streaming Technologies

• RTSP—Real Time Streaming Protocol
• RTSP is a control protocol

• Play, Pause, Stop
• It is always used with a data transport protocol

• RTP—Real-time Transport Protocol
• Can be delivered via UDP or TCP
• 3GPP specifies UDP transport for RTP

2006 JavaOneSM Conference | Session TS-5439 | 11

Protocols used for mobile streaming with Java ME platform
Overview of Streaming Technologies

• HTTP
• Protocol underlying the Web, may also be used

for streaming
• TCP transport
• Control and data on the same connection
• Non-standard for streaming
• Most implementations of MMAPI have problems

with HTTP streaming
• Entire clip is buffered prior to playback

2006 JavaOneSM Conference | Session TS-5439 | 12

Audio Codecs
Overview of Streaming Technologies

• RealAudio
• Good quality at 48-64Kbps
• Much better than mp3 at same bitrates

• AMR
• Widely implemented voice codec
• Standardized by 3GPP

• AAC/aacPlus
• Great quality across range of mobile bitrates
• Standardized by 3GPP

2006 JavaOneSM Conference | Session TS-5439 | 13

Video Codecs
Overview of Streaming Technologies

• RealVideo
• Proprietary codec from Real
• Low cost licensing
• Great quality across a wide range of bitrates

• H.263
• Widely implemented, but lower quality
• Standardized in 3GPP PSS

2006 JavaOneSM Conference | Session TS-5439 | 14

Video Codecs
Overview of Streaming Technologies

• MPEG-4
• Similar to H.263
• Standardized in 3GPP PSS

• H.264 (MPEG-4 AVC)
• High quality codec
• Starting to see implementations accessible from

Java ME platform
• Standardized in 3GPP PSS

2006 JavaOneSM Conference | Session TS-5439 | 15

Overview of Streaming Technologies
Recommended encode bitrates for mobile streaming

Audio Audio/Video
GPRS 20kbps 28kbps
CDMA 1x 24kbps 40kbps
EDGE 32kbps 54kbps
EV-DO 48-64kbps 100-128kbps
UMTS 48-64kbps 100-128kbps

2006 JavaOneSM Conference | Session TS-5439 | 16

Agenda

What Can You Build?
Overview of Streaming Technologies
Practical Issues with Testing
Limitations of MMAPI Implementations
Helix JSR 135 Bindings
Code Examples
Demo
Q&A

2006 JavaOneSM Conference | Session TS-5439 | 17

How to test mobile streaming applications
Practical Issues with Testing

• RTSP
• Server must be accessible to the handset (Internet)
• Problems with carrier firewalls

• Carrier must allow RTSP traffic (port 554)
• Carrier must allow streaming of UDP traffic

• Debugging
• Can sometimes sniff traffic on server side
• Client side debugging is tricky

• Standard mobile debugging techniques

• Need to have flat rate data plan
• Streaming charges can really add up!

2006 JavaOneSM Conference | Session TS-5439 | 18

Agenda

What Can You Build?
Overview of Streaming Technologies
Practical Issues with Testing
Limitations of MMAPI Implementations
Helix JSR 135 Bindings
Code Examples
Demo
Q&A

2006 JavaOneSM Conference | Session TS-5439 | 19

Things to be aware of
Limitations of MMAPI Implementations

• Codec support differs from handset to handset
• Implementations may incorrectly report what

is supported
• Behaviour differences

• Volume often not mapped to system volume
• Player events not always reported

• HTTP streaming not widely supported
• No access to the data stream

• Precludes things like decryption at Java
technology layer

2006 JavaOneSM Conference | Session TS-5439 | 20

Agenda

What Can You Build?
Overview of Streaming Technologies
Practical Issues with Testing
Limitations of MMAPI Implementations
Helix JSR 135 Bindings
Code Examples
Demo
Q&A

2006 JavaOneSM Conference | Session TS-5439 | 21

A Battle-tested implementation for JSR 135
Helix JSR 135 Bindings

• Open Source project on the HelixCommunity to
adapt the Helix media engine to support JSR
135 interface

• Same media engine underlying the RealPlayer
• Supports 3GPP PSS and Real codecs and

protocols
• Lightweight framework—optimized for mobile
• Can be used by JSR 135 implementers and

handset manufacturers

2006 JavaOneSM Conference | Session TS-5439 | 22

Agenda

What Can You Build?
Overview of Streaming Technologies
Practical Issues with Testing
Limitations of MMAPI Implementations
Helix JSR 135 Bindings
Code Examples
Demo
Q&A

2006 JavaOneSM Conference | Session TS-5439 | 23

What content MIME types does my handset support?
Code Examples

• To get all supported content types:
String[] contentTypes =

Manager.getSupportedContentTypes(null);
Some Possible Results:

audio/w-wav audio/amr
audio/midi video/mp4
audio/mid video/3gpp
audio/x-tone-seq video/3gpp2
audio/mpeg video/x-pmd
audio/mp4 audio/qcelp
audio/mp4a-latm audio/vnd.qcelp
audio/3gpp audio/3gpp2

• Provide parameter to filter by protocol:
String[] contentTypes =

Manager.getSupportedContentTypes(”rtsp”);

2006 JavaOneSM Conference | Session TS-5439 | 24

What media protocols does my handset support?
Code Examples

• To get all supported protocols
String[] protocols =

Manager.getSupportedProtocols(null);
Some Possible Results:

device
http
https
rtsp
file
capture

• Provide parameter to filter by content type:
String[] protocols =

Manager.getSupportedProtocols(”audio/mp4a-latm”);

2006 JavaOneSM Conference | Session TS-5439 | 25

What content types are streamable on my handset?
Code Examples

• To get all supported streamable contents:

String streamable =
System.getProperty("streamable.contents");

Some Possible Results:
audio/x-wav (emulator)
audio/mp4a-latm (handset)

• Warning: This method is fairly unreliable; some
devices return values here, others return null.

2006 JavaOneSM Conference | Session TS-5439 | 26

RTSP streaming made easy
Code Examples

• Start the playback!

String mUrl = “rtsp://abc.org:554/content/test.3gp”;
Player mPlayer = Manager.createPlayer(mUrl);

mPlayer.start(); // Blocks until player is realized

• Use another thread to avoid blocking the UI
• Implement PlayerListener interface

• Allows you to get information about playback status
• Can present feedback to the user

2006 JavaOneSM Conference | Session TS-5439 | 27

Code Examples

• Many early implementations did not support
streaming

• HTTP streaming often downloads entire file first
• Millions of these handsets are still in use!
• Creative solution: “chunked” playback

• Use HTTP to read media
• Break into individual, playable pieces

• Play back-to-back
• Disadvantages

• Can result in audible clicks or gaps between clips
• Requires intimate knowledge of file format

Sometimes you need to be creative!

2006 JavaOneSM Conference | Session TS-5439 | 28

Code Examples

• Custom player implementation
• Receives events from MMAPI for each chunk
• Hides “chunking” behavior from rest of app
• Includes standard play(), stop(), etc.
• Manages time, download progress
• Must carefully manage memory, especially on

older, limited handsets

ChunkPlayer overview

2006 JavaOneSM Conference | Session TS-5439 | 29

Code Examples
 if (event == PlayerListener.END_OF_MEDIA) {
 mCurrentChunk = mChunker.getNextChunk();
 mCurrentChunk.addListener(this);

 if (mCurrentChunk != null) {
 try {
 mCurrentChunk.start();
 mLastClipStart = mMediaTime;
 }
 catch (Exception e) {

// handle exception
}

 }
 else { stop(); }
 }

playerUpdate()—manages next Chunk to be played

2006 JavaOneSM Conference | Session TS-5439 | 30

Code Examples

• Reads file via HTTP
• Makes a copy of the original file header
• Breaks the audio data into playable “chunks”
• Copies new file header into chunk, adjusts for

new size and duration
• Reports progress to ChunkPlayer
• Watches memory, reports problems
• Can be customized for any file format

Chunker overview

2006 JavaOneSM Conference | Session TS-5439 | 31

Code Examples
public void open(String url, String contentType) {
 try {
 mHttpConnection =
 (HttpConnection)Connector.open(url);
 mInputStream = new
 DataInputStream(mHttpConnection.openInputStream());
 mTotalLength = (int)mHttpConnection.getLength();
 mDuration = 0;

 mContentType = contentType;
 mHeader = new byte[HEADER_SIZE];

 new Thread(this).start();
 }

Chunker initialization

2006 JavaOneSM Conference | Session TS-5439 | 32

Code Examples
 if ((readFully(mHeader, HEADER_SIZE, 0) == true) &&
 (isValidHeader(mHeader) == true) &&
 (decodeFormat(mHeader) == true)) {
 int newChunkSize = getNextChunkSize();
 while (!mDone) {
 if (newChunkSize != 0) {
 processNextChunk(newChunkSize);
 }
 else {
 try {
 Thread.sleep(1000);
 } catch (Exception ie) { mDone = true; }
 }
 newChunkSize = getNextChunkSize();

Chunker—main run() method

2006 JavaOneSM Conference | Session TS-5439 | 33

Code Examples
 public void processNextChunk(int size) {
 Chunk chunk = new Chunk(mType);
 chunk.allocateBuffer(HEADER_SIZE + size);
 // Copy header information into buffer
 System.arraycopy(mHeader, 0, chunk.getData(),
 0, HEADER_SIZE);
 // Set the total size
 setUINT32(chunk.getData(),
 size + HEADER_SIZE - 8, 4);
 chunk.setDuration((8 * (long)size * 1000000) /
 ((long)mAverageBPS));

Creating a Chunk

2006 JavaOneSM Conference | Session TS-5439 | 34

DEMO
Streaming with the Java ME Platform

2006 JavaOneSM Conference | Session TS-5439 | 35

Summary
• Mobile media applications are hot!
• You can build streaming apps with the

Java ME platform
• Different handsets support different codecs
• Testing mobile streaming apps can be tricky
• Some MMAPI implementations are better than others
• Helix JSR 135 bindings provide a solution for VM

vendors and handset manufacturers
• Some problems with current implementations

can be overcome with creative strategies

2006 JavaOneSM Conference | Session TS-5439 | 36

For More Information

• JSR 135
• http://www.jcp.org/en/jsr/detail?id=135

• 3GPP
• http://www.3gpp.org/

• Helix JSR 135 bindings at HelixCommunity
• http://helix-client.helixcommunity.org/2005/devdocs/

jsr135adaptation
• Java ME Platform Media Services Profile

• Document created by Real as a guide for handset
manufacturers and JSR 135 implementers
(see us for details)

2006 JavaOneSM Conference | Session TS-5439 | 37

Q&A
Craig Robinson, RealNetworks
Brent Newman, RealNetworks

2006 JavaOneSM Conference | Session TS-5439 |

Developing Streaming Media
Applications Using the MMAPI:
What Works, What Doesn’t and
What to Do About It
Craig Robinson
Director of Technology
RealNetworks
http://www.realnetworks.com
/
TS-5439

Brent Newman
Lead SDE
RealNetworks

