

Enabling the IP Multimedia Subsystem (IMS) With Java™ **Technology**

Alka Gupta

Staff Engineer Sun Microsystems

www.sun.com

TS-8152

Nasir Khan

Staff Engineer **SL JSR 289 BEA Systems** www.bea.com

Goal of This Talk

Learn how to develop Java[™] technology services for the new telecoms network—IMS

Agenda

Overview of IMS

The Role of Java Technology in IMS SIP Servlet Overview

IP Multimedia Subsystem: History

IMS stands for IP Multimedia Subsystem

- The IMS is a user-centric service-oriented Architecture for communication systems
- 3GPP is a collaboration agreement established among various telecommunications standards bodies
- 3GPP is the standards body defining the "Third Generation Mobile Network" specifications that build on GSM
- The IMS began as a subsystem of mobile networks but has since been adopted by other standards bodies for use in other IP networks

IP Multimedia Subsystem: Relation to Internet Standards

 The IMS is an architecture containing standard protocols and schema's

- Developed through the Internet Engineering Task Force
- The IMS architecture was defined before any protocols were selected
 - The IMS is not "based" on SIP, although SIP is now essential
- The 3GPP specifications split network functions into logical groupings
 - Defines "black boxes" with specific behaviors and protocol-based interfaces
 - There is a relatively explicit definition of functional groupings as "implementable units" which may be sourced from different providers with little (no) functional overlap with other network elements

Why IMS?

- Service providers
- Network equipment providers
- Operators
- End users

Why IMS? (Cont.)

- Service providers
 - Combines services from fixed, mobile and broadband networks
 - Combine multiple media sessions (video, voice, music, pictures, text, data)
 - Common, Integrated platform for fast cost-effective introduction of new services
 - Leverage common applications, and subscriber data across multiple access networks

Why IMS? (Cont.)

- Network equipment providers
 - "Game changer" beyond the core
 - Requires end-to-end enhanced quality of Service (QoS), service blending, security and resource management
 - Opens new service opportunities in integration, services and multi-vendor
 - Increased network traffic accelerates growth

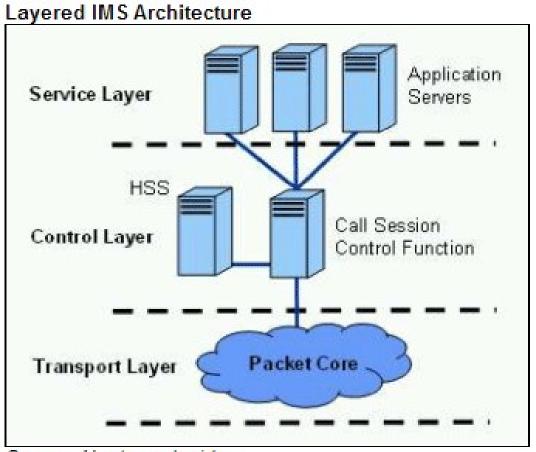
Why IMS?

End users

- Ease of Use, productivity and fun
- Real personalization
- Seamless combination of real-time voice, text, video, images, games, Web, e-mail, and more
- Device independent person-to-person multimedia

Operators

- Customer retention by enriching their experience
- Fast creation of attractive services, deliver converged, network agnostic, real-time, multimedia applications
- Flexible charging model
- Replacement of silo solutions



IMS Value Proposition

- Quality of Service (QoS)
 - Predictable experience, not just best effort
- Charging
 - Services and service combinations, not just volume
 - Flexible business models (QoS, duration, volume)
- Integration of different services
 - Foster ecosystem of service developers
 - Rapid deployment of new services
 - Dynamic combination of voice, data and video
 - Real fixed-mobile convergence

IMS Architecture

Source: Unstrung Insider

IMS Architecture

- Transport layer
 - Network agnostic (GSM, CDMA, 3G, SS7, others)
 - Standard interfaces between Transport and Control layer
 - Potentially independent of vendors in packet core and other layers
- Control layer
 - Home Subscriber Server (HSS)
 - Call Session Control Function (CSCF)
 - Media gateways (BGCF, MGCF, MRF...)

IMS Architecture

- Service layer
 - Standard open protocols such as ISC (IMS Session Control)
 - SIP application servers
 - OSA and SCP

Agenda

Overview of IMS

The Role of Java Technology in IMS

SIP Servlet Overview

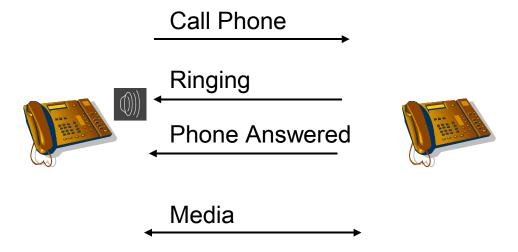
Trend Toward IT Infrastructure

- Telecoms want to build next generation network using proven IT infrastructure
 - Leverage portals, HTTP Container, Web Services, etc.
 - Off-the-shelf software
 - Next generation applications blur the boundary
 - Container managed software
 - State management, persistence, transactions
- The world is converging on IP as transport
- Java technology is having the effect on telecoms networks that it had on enterprise seven years ago
 - Standardized interfaces using the JCP
 - JSR 116 and JSR 289

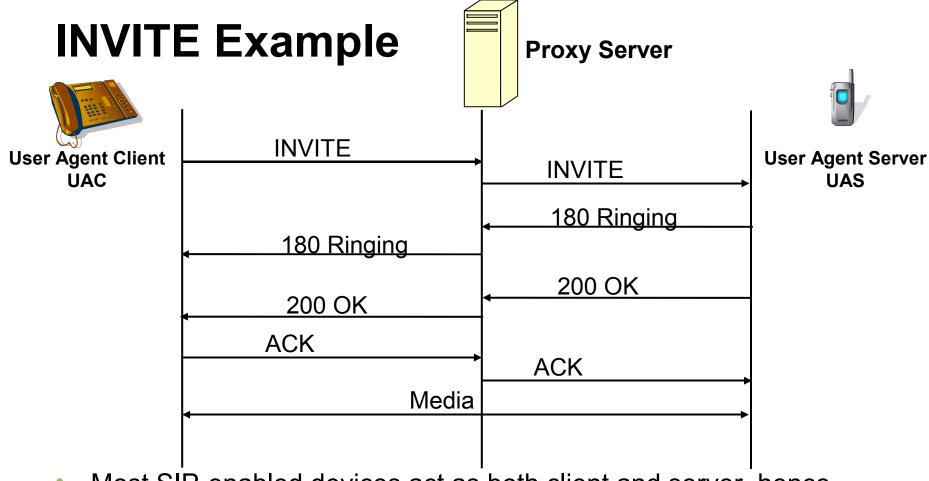
SIP Protocol Basics

- SIP is based on HTTP
 - Text-based protocol
 - Headers followed by a message body
 - A lot of the same status codes
 - 200 OK, 401 Unauthorized, 500 Internal Server Error
 - Some new ones introduced
 - 180 ringing, 300 multiple choices
 - Similar Digest authentication mechanism
 - Uses UDP, can use TCP or SCTP for larger packets

Differences from HTTP


- HTTP Synchronous and Client Server
 - Client Requests, immediate server response
- SIP asynchronous and peer-to-peer
 - UAS accepts requests, responds later
 - Messages may be retransmitted due to timer expiration
- HTTP may front other databases or servers, but client is only aware of HTTP server
- SIP servers often involve complex network interactions
 - Client may have direct communication with other network elements, for media, or for SIP messages

SIP Basics (Session Initiation Protocol)


 Signaling Layer or Control Plane = Meta data about the call

Media Layer = Sounds bits themselves

- Most SIP-enabled devices act as both client and server, hence they're UAs
- Some act only as clients or only as servers, hence UAC and UAS

Basic Server Types

- SIP proxy
 - Receives SIP requests from a UA or another proxy and forwards or proxies the request to another location
- Redirect server
 - Receives a request from a UA or proxy and returns a redirection response (3xx), indicating where the request should be retrieved
- Registrar server
 - Receives a SIP registration request and updates the user's location information into a database of user locations
- B2BUA
 - Is a UAS and UAC combine. Most real world applications are modeled like this
- Inter-working gateway
 - Translates SIP call into another network, like SS7

SIP Applications

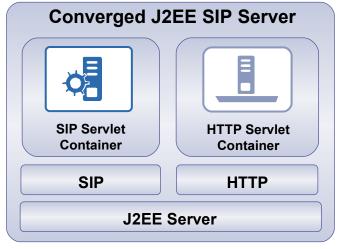
- Basic Routing functions: (simple number translation, Find me, etc.)—Redirect, proxy, B2BUA
- Complex routing: (header manipulation, transcoding, etc.)—B2BUA
- Media capable: (IVR, voice mail, etc.)—B2BUA
- Presence and Location: (Presence server, client, watchers)—Mostly B2BUA
- Converged: (click-to-call, conferencing etc.): proxy or B2BUA with HTTP component

Converged J2EE™ SIP Container

Service Providers and Applications

Voice/Video Real-time Collaboration

Real-time Voice/Video Messaging

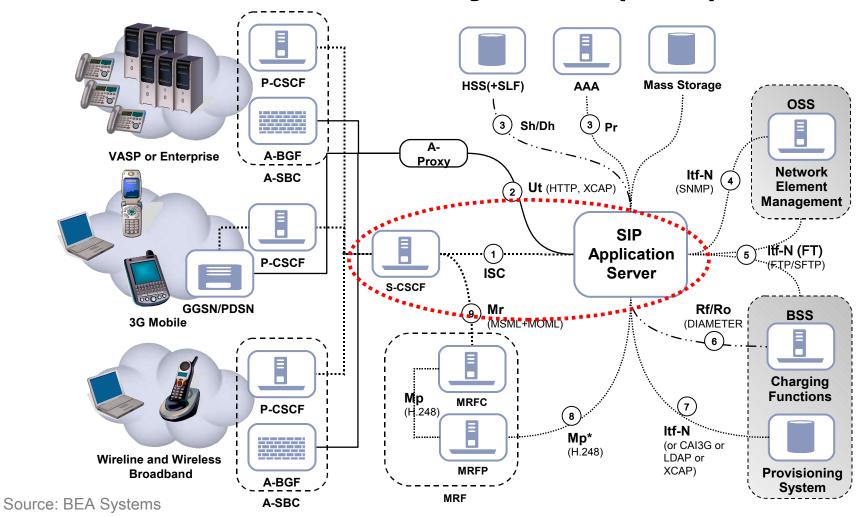


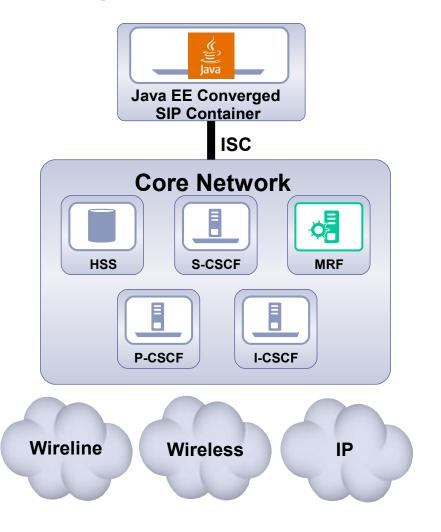
Voice/Video Over IP

Push-to-Talkover-Cellular

Service Delivery Layer

Network Elements




IP Multimedia Subsystem (IMS)

Role of Container in IMS

- Integrates with IMS network via ISC interface
- Standardized on SIP
- Standardized application server for in-house and third-party development
- Combine services from fixed, mobile, broadband networks

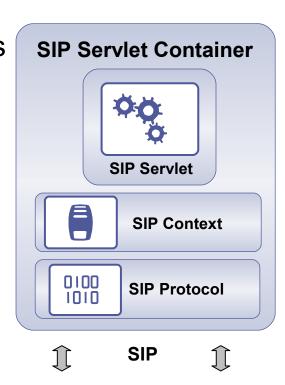
IMS Service Control

An S-CSCF instance is assigned to each user when that user Filter Criteria govern REGISTERs with the the forwarding of SIP system or when a messages to one or request is received by several application the I-CSCF targeting servers. Application an unregistered (but Servers may either known) Public ID. SIP AS 1 SIP AS 2 SIP AS 3 proxy requests back to the S-CSCF or may teminate the ISC **ISC** ISC dialog and send a response. **HSS** SIP Request SIP Request S-CSCF

Agenda

Overview of IMS

The Role of Java Technology in IMS


SIP Servlet Overview

Container Introduction

- JSR 116 SIP Servlet API
- SIP protocol stack—Implements key RFCs
- SIP session and transaction management
- SIP servlet lifecycle management
 - Shared container startup/shutdown with HTTP servlet container
- Concurrent execution of SIP and HTTP applications
 - Links HTTP/SIP servlet contexts
- Management via Admin Console
 - JMX/MBean-based
- JAAS-based security via WLS
 - SIP/HTTP apps can share same user ID and password

Extension to HTTP Servlet Model

- HTTP Servlets need only send responses
 - Only defined for origin servers
- SIP Servlets are broader
 - May operate in proxies or B2BUAs
 - Functions required
 - Send responses
 - Proxy requests
 - Initiate requests
 - Receive responses

- Only asynchronous events in HTTP Servlets are requests
- In SIP, asynchronous events are requests and responses
 - Need doResponse() in addition to doInvite()
- Model is the same though
 - Event arrives to system (request or response)
 - Servlet is determined
 - Service method invoked

SIP Servlet Specification

Events: Receive request or response, timeout

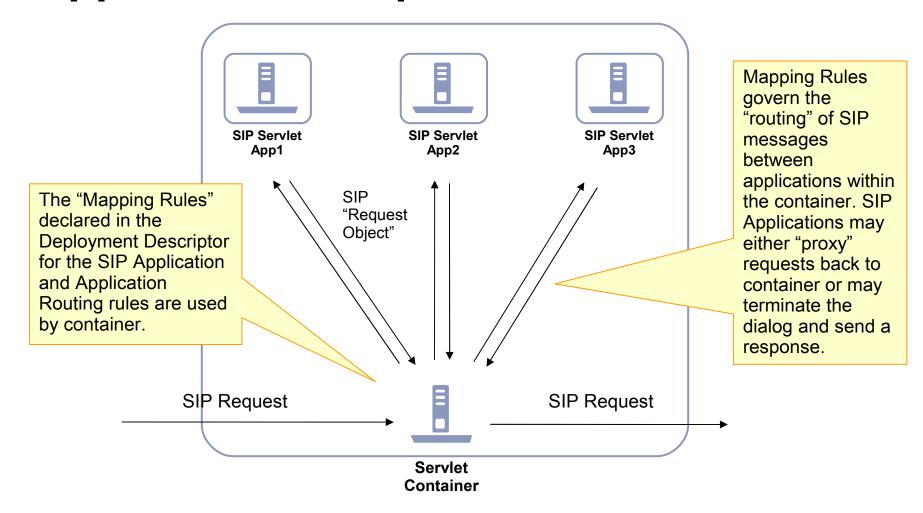
Single entry point: Defined by javax.servlet.Servlet:

void service(ServletRequest req, ServletResponse resp) throws ...;

which dispatches on whether event is request or response

- void doRequest(SipServletRequest) throws ServletException
- Dispatches on SIP method:
 - doInvite(SipServletRequest req), doAck, doOptions, doBye, doCancel, doRegister
 - Extension methods

- void doResponse(SipServletResponse) throws ServletException
- Dispatches on status code:
 - doProvisionalResponse(resp)
 - doErrorResponse(resp)
 - doSuccessResponse(resp)



"Standard" Platform: SIP Servlet API

- The SIP Servlet API is a Java Community ProcessSM services standard (JSR 116/JSR289)
- The SIP Servlet API specifies a programming model based on the "Cascaded Services Model (SERL)"
 - Allows SIP/HTTP applications to be transparently co-located on a single host or deployed on different hosts within the network without the need to modify the application code
- Interaction between applications is managed by the "Servlet Container"
- The relative "signaling" performance between such "co-located" applications and the same applications deployed on separate AS instances is 10 to 100 times more efficient
 - The conceptual "architecture" of the IMS network is not affected and no standards are compromised

Application Composition

Servlet Mapping Rules Example

```
<servlet-mapping>
                               <servlet-name>servlet1</servlet-name>
                               <pattern>
                                     <and>
                                          <or>
                                                <equal>
                                                <var>request.method</var>
                                                <value>INVITE</value>
(Method="INVITE" OR
                                                </equal>
                                                 <equal>
Method="SUBSCRIBE") AND
                                                <var>request.method</var>
(Method = "MESSAGE" OR (NOT
                                                <value>SUBSCRIBE</value>
                                                </equal>
Header = "from" Match =
                                          </or>
"joe"))
                                          <or>
                                                <equal>
                                                <var>request.method</var>
                                                <value>MESSAGE</value>
                                                </equal>
                                                <not>
                                                     <equal>
                                                     <var>request.from.display-name</var>
                                                     <value>joe</value>
                                                     </equal>
                                                </not>
                                          </or>
                                     </and>
                               </pattern>
                               </servlet-mapping>
```


Proxy Code Example

Enhancements in SIP Servlet API 1.1

- Application composition standardized
- Formal distinction between callee and caller services
 - Therefore SIP servlets can now easily determine on whose behalf they are being invoked
- The ability to map certain communication features to SIP Servlets and invoke those features in an independent manner
- Enhanced SIP Servlet control of Application Invocation
 - SIP servlets should be able to convey their intentions about how they wish subsequent service invocation to take place

Enhancements in SIP Servlet API 1.1

- Enhance specification to support additional RFC, addressing IMS specific needs and behaviours (Path, Service-Route, etc.)
- Provide explicit support for B2BUA type object
- The ability to move seamlessly between HTTP and SIP servlets within a convergence application (and other J2EE components)
- Enhancements for the ordering and dynamic application of Servlet Mapping Rules
- Support for multi-homed hosts
- Aligned with Servlet Spec 2.5
- Lightweight container model. Annotations

Summary

- IMS is the telecom network of the future
- Open Java technologies will have a role
- Developers will be able to leverage this network
- Applications drivers are video, voice, data, and messaging

For More Information

List

- http://jcp.org/en/jsr/detail?id=116
- http://jcp.org/en/jsr/detail?id=289
- http://www.sipservlet.org/
- http://dev2dev.bea.com/wlcp/

A&Q

Enabling the IP Multimedia Subsystem (IMS) With Java™ **Technology**

Alka Gupta

Staff Engineer Sun Microsystems

www.sun.com

TS-8152

Nasir Khan

Staff Engineer **SL JSR 289 BEA Systems** www.bea.com