@ Sun

Performance Through
Parallelism: Java HotSpot"
GC Improvements

John Coomes, Tony Printezis

Sun Microsystems, Inc.
http://java.sun.com

TS-1168

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.
2006 JavaOne®M Conference | Session TS-1168 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

¢ JavaOne

Our Goal—Convert This:

2006 JavaOnes" Conference | Session TS-1168 | 2 iava.sun.com/javaone/sf

¢ JavaOne

Into This:

2006 JavaOnes" Conference | Session TS-1168 | 3 iava.sun.com/iavaone/sf

Agenda

Motivation

Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What's Cooking in the Lab
Summary

2006 JavaOneS™ Conference

Session TS-1168 | 4

java.sun.com/javaone/sf

Agenda

Motivation

Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What's Cooking in the Lab
Summary

2006 JavaOneS™ Conference

Session TS-1168 | 5

java.sun.com/javaone/sf

Why Parallel?

Hardware Trends
= Multiple...
* Chips per box
» Cores per chip
* Threads per core

- Sun, AMD, IBM, Intel

* Shipping or developing multi-threaded,
multi-core products

* 64-bit addressing

* Allows huge heaps

2006 JavaOnes™ Conference | Session TS-1168 | 6

java.sun.com/javaone/sf

Why Parallel?

Java Programming Language
» Built-in support
* Threads allow parallelism

= Jjava.util.concurrent APls enable parallelism
» Lock-free data structures
* Locking primitives
* Available in Java platform 5 and later

@@Sun 2006 JavaOneSM Conference | Session TS-1168 | 7 iava .sun.com/iavaone/sf

Why Parallel?

Amdahl’'s Law

* Speedup =
1/(Serial Part + (Parallel Part / N))

@Sun 2006 JavaOnes™ Conference | Session TS-1168 | 8

ssssssssssss

64 -

48

Speedup

16

\, N=16
N\ N=32

N=64

Serial Part (%)

java.sun.com/javaone/sf

Why Parallel?

Amdahl’s Law
* Many threads

create garbage 64y
- Just one thread to Wl e
clean it up? a N=64
© GC would becomea 8 »
serial bottleneck 2 \
16\
0

@ Sun

T T T T T T T T T !
o 1 2 3 4 5 6 7 8 9 10

Serial Part (%)

2006 JavaOne®M Conference | Session TS-1168 | 9 iava .sun.com/iavaone/sf

@ Sun

Agenda

Motivation

Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What's Cooking in the Lab
Summary

2006 JavaOneS™ Conference

Session TS-1168 | 10

java.sun.com/javaone/sf

Terms

» Serial
* One thing happens at a time

CPU 0 ﬁ

CPU1

CPU 2
CPU 3

2006 JavaOnesM Conference | Session TS-1168 | 11

java.sun.com/javaone/sf

Terms

» Serial
* One thing happens at a time

Parallel
= Multiple things happen at once

+ Single task
+ Split into parts
* Executed simultaneously

2006 JavaOnesM Conference | Session TS-1168 | 12

CPU O
CPU 1
CPU 2
CPU 3

CPU O
CPU 1
CPU 2
CPU 3

11

java.sun.com/javaone/sf

Terms

» Serial

* One thing happens at a time

» Parallel

= Multiple things happen at once
+ Single task

+ Split into parts

* Executed simultaneously

» Concurrent
* Multiple things happen at once

« Multiple tasks
« Different purposes
- Execute simultaneously

> Here: technology tasks vs. GC tasks

2006 JavaOnesM Conference | Session TS-1168 | 13

CPU O
CPU 1
CPU 2
CPU 3

CPU O
CPU 1
CPU 2
CPU 3

11

CPU O
CPU 1
CPU 2
CPU 3

I

java.sun.com/javaone/sf

Taxonomy

» Generational GC

+ Observation: most objects die young
Segregate objects

- New objects—allocated in the ‘young generation’

» Old objects—promoted to the ‘old generation’
Collect young generation more frequently

+ Use algorithm optimized for ‘mostly dead space’
Pros:

- Efficient—work a little, reclaim a lot

* Most pauses are shorter—scan only part of the heap
Cons:

« Some extra bookkeeping

» Eventually must collect entire heap

@f@Sun 2006 JavaOneSM Conference | Session TS-1168 | 14 java .sun.com/javaone/sf

Generations in HotSpot

I .
Generation
- Permanent Generation

@Sun 2006 JavaOne® Conference | Session TS-1168 | 15 iava .sun.com/iavaone/sf

sssssssssssss

Old-to-Young References

Young Generation

Old
Generation

| | | | Card
Table

@Sun 2006 JavaOne® Conference | Session TS-1168 | 16 iava .sun.com/iavaone/sf

sssssssssss

Taxonomy

Stop-the-World GC

Typical cycle:
« Stop all Java technology threads
* Do GC work
- Restart all Java technology threads

Pros:
- Simpler—heap is frozen, objects not changing

Cons:
« Some applications sensitive to pause times

2006 JavaOne®M Conference | Session TS-1168 | 17 java .sun.com/iavaone/sf

Taxonomy

Concurrent GC

Typical cycle:
- Start GC

- Java technology threads continue to run
* During most or all of GC cycle

» Finish GC
Pros:
* Pause times are short (or non-existent)

Cons:
* Must take extra care—objects are changing
* Some overhead—performance, heap size

2006 JavaOne®M Conference | Session TS-1168 | 18 java .sun.com/javaone/sf

@ Sun

Agenda

Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What's Cooking in the Lab

Summary

2006 JavaOneS™ Conference

Session TS-1168 | 19

java.sun.com/javaone/sf

>,

Parallel Scavenge

Generational, stop-the-world, parallel
Collects young generation only

Available since JDK™ 1.4.2 software
Experimental in JDK 1.4.1 software

First parallel GC in Java HotSpot
performance engine

For many applications

Majority of GC time is spent on young generation

-XX:+UseParallelGC

2006 JavaOne®™ Conference | Session TS-1168 | 20 java .sun.com/javaone/sf

@ Sun

Typical GC Pattern

CPU O
CPU 1
CPU 2
CPU 3

CPU O
CPU 1
CPU 2
CPU 3

=1

Young GC (Serial)

Parallel Scavenge

2006 JavaOneS™ Conference

4 /

Full GC

4

Full GC

Session TS-1168 | 21

java.sun.com/javaone/sf

>,

Parallel Scavenge
Basic Algorithm

Divide root set among GC threads

Trace reachable objects in young generation
Atomic instruction (CAS) used to claim an object

As objects are claimed, they are copied
Young-ish objects copied to to-space
Old-ish objects promoted into old generation

Use per-thread buffers in destination spaces
Fast, lock-free allocation

At end, eden and from-space are empty
from-space and to-space switch roles

2006 JavaOne®™ Conference | Session TS-1168 | 22 iava.sun.com/iavaone/sf

Scavenge Example—Before

Young Generation

from-space to-space

Survivor
Spaces

@Sun 2006 JavaOne® Conference | Session TS-1168 | 23 iava .sun.com/iavaone/sf

sssssssssss

Scavenge Example—During

Young Generation

[<I><IxI><I . IxI><] Ecer
[|
from-space to-space '
Survivor
Spaces

Old Generatlon .

@Sun 2006 JavaOne®" Conference | Session TS-1168 | 24 iava .sun.com/iavaone/sf

sssssssssss

Scavenge Example—After

Young Generation

Fder

to-space from-space

Survivor
Spaces

@Sun 2006 JavaOne® Conference | Session TS-1168 | 25 iava .sun.com/iavaone/sf

sssssssssss

Agenda

Motivation

Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What's Cooking in the Lab
Summary

2006 JavaOneS™ Conference

Session TS-1168 | 26 java.sun.com/javaone/sf

>,

Concurrent Mark Sweep

- Generational, mostly concurrent,
parallel, non-moving

Collects old and permanent generations only

Paired with Parallel Scavenge
 (Serial scavenge on uniprocessor)

Most work done concurrently with
Java technology threads

Available since JDK 1.4.2 software
- Experimental in JDK 1.4.1 software

-XX:+UseConcMarkSweepGC

2006 JavaOne®™ Conference | Session TS-1168 | 27

java.sun.com/javaone/sf

Concurrent Mark Sweep

Non-moving

Once promoted into old generation,
object does not move(*)

Free lists used for allocation
Somewhat slower than ‘pointer-bumping’
Dealing with fragmentation
Track popular object sizes
Estimate future demand
Split or join free blocks to meet demand

Serial Mark Sweep Compact used as fallback
(*) Will move old generation objects

@%’SM?’I 2006 JavaOneSM Conference | Session TS-1168 | 28 iava.sun.com/iavaone/sf

Concurrent Mark Sweep

» Concurrent Mark Sweep Phases

 Initial mark

- Stop-the-world pause to mark from roots

* Not a complete marking—only one level deep
Concurrent mark

« Mark from the set of objects found during Initial Mark
Remark

- Stop-the-world pause to complete marking cycle

* Ensures a consistent view of the world
Concurrent Sweep

- Reclaim dead space, adding it back onto free lists

Concurrent Reset

”%:%S’M?’l 2006 JavaOnesM Conference | Session TS-1168 | 29 java .sun.com/javaone/sf

@ Sun

Concurrent Mark Sweep Phases

CPU O
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

GC active

>

2006 JavaOnesM Conference | Session TS-1168 | 30

Java thread

= GC thread

java.sun.com/javaone/sf

Concurrent Mark Sweep

* The need for Parallelism

* Remark is typically the largest pause

 Often larger than Young GC pauses

- Parallel remark available since Java 5 platform
+ Single marking thread

« Can keep up with ~4-8 cpus, usually not more

+ Parallel concurrent mark available in Java 6 platform
» Single sweeping thread

* Less of a bottleneck than marking

- Parallel concurrent sweep coming soon

@%Sun 2006 JavaOnes" Conference | Session TS-1168 | 31 java .sun.com/javaone/sf

@ Sun

Concurrent Mark Sweep Phases

CPU O
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

GC active

>

2006 JavaOnesM Conference | Session TS-1168 | 32

Java thread

= GC thread

java.sun.com/javaone/sf

@ Sun

Concurrent Mark Sweep Phases

CPU O
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Java thread

= GC thread

GC active

>

2006 JavaOne®M Conference | Session TS-1168 | 33 iava .sun.com/iavaone/sf

DEMO

Concurrent Mark Sweep

2006 JavaOne®™ Conference | Session TS-1168 | 34 jaua.sun.comfjauaone{sf

Agenda

Motivation

Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What's Cooking in the Lab
Summary

2006 JavaOneS™ Conference

Session TS-1168 | 35 java.sun.com/javaone/sf

Parallel Compaction

- Stop-the-world, parallel, sliding compaction
* New! Available in Java EE 5 update 6
* Full GC—-collects entire heap

+ Paired with Parallel Scavenge
« -XX:+UseParallelOIldGC

CPU O
CPU 1
CPU 2
CPU 3

V\

Parallel Scavenge Parallel Compaction

é’f@SMﬂ 2006 JavaOnesM Conference | Session TS-1168 | 36 java .sun.com/javaone/sf

Parallel Compaction

* Three phases: marking, summary, compaction

» Heap divided into fixed-sized regions
» Marking records information about each region
* Used later to enable compaction in parallel

 Sliding compaction—preserves object order
» Possible cache benefits

@%Sun 2006 JavaOnesM Conference | Session TS-1168 | 37 java .sun.com/javaone/sf

Marking Phase

 Divide root set among GC threads

= Trace all live objects, in parallel

- Objects claimed atomically
* Liveness recorded in an external bitmap

» Once object is claimed, update per-region data

- Add object size to region total
- Extra bookkeeping if object extends onto other regions

2006 JavaOne® Conference | Session TS-1168 | 38 java .sun.com/javaone/sf

Summary Phase

» Compute the “dense prefix”

- Block of very dense regions on the left
* Nearly all objects are live
» Remainder are not reclaimed (dead wood)

* Per-region liveness data guides selection
* Find the prefix with the best reclamation ratio
- Space reclaimed/data copied
- Compute destination of each region
- Where the first live byte in the region will go

”%:%S’M?’l 2006 JavaOnesM Conference | Session TS-1168 | 39 java .sun.com/javaone/sf

Summary Phase (Cont.)

- Additional data saved for each region
* Source region
 Destination count

» Summary phase currently done serially
« Can be parallelized

* Not as important for performance
» Operates on regions, not objects

@f@Sun 2006 JavaOneSM Conference | Session TS-1168 | 40 java .sun.com/javaone/sf

Compaction Phase

* Fill regions, in parallel
» First identify available regions
* Empty regions
* Regions that compact only into themselves
» Then threads claim available regions atomically

* Once claimed, no other synchronization required
 Fill the region, repeat

2006 JavaOne® Conference | Session TS-1168 | 41 java .sun.com/javaone/sf

Compaction Phase (Cont.)

» Filling a region
* Find the first byte destined for this region
« Copy objects until region is full (or nothing left to copy)
- Do some bookkeeping for source regions

- Easy!

of’f@SZﬂ’l 2006 JavaOneSM Conference | Session TS-1168 | 42 iava .sun.com/iavaone/sf

Compaction Phase (Cont.)

» Filling a region
» Find the first byte destined for this region

- Start with source region
- May have to skip over some objects

» Consult bitmap for liveness info
« Copy objects until region is full (or nothing left to copy)
- Do some bookkeeping for source regions

of’f@SZﬂ’l 2006 JavaOneSM Conference | Session TS-1168 | 43 iava .sun.com/iavaone/sf

Compaction Phase (Cont.)

» Filling a region

» Copy objects until region is full (or nothing left to copy)
* Must find live objects and skip dead space

» Consult bitmap
- Do some bookkeeping for source regions

%‘“@Sun 2006 JavaOne®™ Conference | Session TS-1168 | 44 java.sun.com/javaone/sf

Compaction Phase (Cont.)

» Filling a region

» Copy objects until region is full (or nothing left to copy)
* Must find live objects and skip dead space

» Consult bitmap
* Must update interior references to point to new locations

* Consult ...
- Do some bookkeeping for source regions

%‘“@Sun 2006 JavaOne®™ Conference | Session TS-1168 | 45 java.sun.com/javaone/sf

Compaction Phase (Cont.)

* New location of object x
- Start with destination of the region containing x
- Add size of partial object extending onto the region

+ Add sizes of live objects that precede x in the region
+ Consult the bitmap :-)

« region(x) .destination() +
region(x) .partial obj size() +
bitmap.live words in range (region start, x)

”%:%S’M?’l 2006 JavaOnesM Conference | Session TS-1168 | 46 java .sun.com/javaone/sf

Compaction Phase (Cont.)

» Filling a region
* Find the first byte destined for this region
» Copy objects until region is full (or nothing left to copy)

- Do some bookkeeping for source regions
* Decrement destination count
* If count reaches 0, region can be filled

@Sun 2006 JavaOne® Conference | Session TS-1168 | 47 iava .sun.com/iavaone/sf

sssssssssss

Compaction Phase (Cont.)

» Filling a region
* Find the first byte destined for this region
» Copy objects until region is full (or nothing left to copy)
Do some bookkeeping for source regions

@Szm 2006 JavaOne® Conference | Session TS-1168 | 48 iava .sun.com/iavaone/sf

sssssssssss

Compaction Phase (Cont.)

» Filling a region
* Find the first byte destined for this region
« Copy objects until region is full (or nothing left to copy)
- Do some bookkeeping for source regions

* Whew!

of’f@SZﬂ’l 2006 JavaOneSM Conference | Session TS-1168 | 49 iava .sun.com/iavaone/sf

DEMO

Parallel Compaction

2006 JavaOne®™ Conference | Session TS-1168 | 50 jaua.sun.comfjauaone{sf

Agenda

Motivation

Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What’s Cooking in the Lab
Summary

java.sun.com/javaone/sf

2006 JavaOnes™ Conference | Session TS-1168 | 51

Parallel Successes

» Parallelism used successfully so far
+ Parallel Scavenge
» Concurrent Mark Sweep
+ Parallel Compaction

» Naturally, we (and you!) want more...
« Shorter, predictable pauses—Iess disruption
+ Without fragmentation problems

@f@Sun 2006 JavaOnes" Conference | Session TS-1168 | 52 java .sun.com/javaone/sf

Evaluating a New Low-latency GC

» Generational
Parallel
Concurrent

Predictable
- Pauses managed to meet specified goals

Compacting
* Only part of the heap at a time
- Keeps pauses small

2006 JavaOne®M Conference | Session TS-1168 | 53 java .sun.com/javaone/sf

Evaluating a New Low-latency GC

Generational, without fixed generations
Single physical space
Divided into “regions”
Young and old regions can be intermixed
Absence of fixed boundary allows flexibility

Marking phase
Concurrent and parallel (like CMS)
Calculates liveness info per region
Much shorter remark pause than CMS

”%:”fSZﬂ’l 2006 JavaOnes™ Conference | Session TS-1168 | 54 java .sun.com/javaone/sf

Evaluating a New Low-latency GC

Per-region liveness info
Used to identify empty and mostly-empty regions
Empty regions—reclaimed
Mostly-empty regions
Evacuated—Iive objects copied to other regions
Then reclaimed

All collection through copying

Focus on mostly-empty regions
Maximizes GC efficiency
Both young and old regions collected

@%’SM?’I 2006 JavaOnesM Conference | Session TS-1168 | 55 iava.sun.com/iavaone/sf

Evaluating a New Low-latency GC

- Predictability
* Model GC costs
» Predict and schedule GC activity

» Shorter pause times
* Through tricks!

%‘“@Sun 2006 JavaOne®™ Conference | Session TS-1168 | 56 java.sun.com/javaone/sf

Agenda

Motivation

Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What's Cooking in the Lab
Summary

java.sun.com/javaone/sf

2006 JavaOne®™ Conference | Session TS-1168 | 57

Summary

Parallelism is pervasive

» Must be exploited for good performance
* Throughput
* Responsiveness

Java HotSpot technology GC

makes use of it today
* In several different forms

We can only expect more
opportunities in the future

2006 JavaOnesM Conference | Session TS-1168 | 58 java .sun.com/javaone/sf

For More Information

Resources

* Ask the Experts
- Today, 12:00 Noon—Pavilion, Booth 724

- BOF-0197
- “Java HotSpot VM Q&A”
* Thursday, 7:30pm
* Moscone Center North Mtg Room 121/122

* GC Tuning Guides

 http://java.sun.com/docs/hotspot/gc5.0/gc_tuning 5.html
* http://java.sun.com/docs/hotspot/gc1.4.2/index.html

» Description of the GCs in the Java HotSpot VM
* http://www.devx.com/Java/Article/21977/

‘%%SM?} 2006 JavaOne®™ Conference | Session TS-1168 | 59 java.sun.com/javaone/sf

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/gc1.4.2/index.html
http://www.devx.com/Java/Article/21977/

Q&A

John Coomes, Tony Printezis

2006 JavaOne®™ Conference | Session TS-1168 | 60 jaua.sun.comfjauaone{sf

@ Sun

Performance Through
Parallelism: Java HotSpot"
GC Improvements

John Coomes, Tony Printezis

Sun Microsystems, Inc.
http://java.sun.com

TS-1168

2006 JavaOne®M Conference | Session TS-1168 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

