
2006 JavaOneSM Conference | Session TS-1168 |

TS-1168

Performance Through
Parallelism: Java HotSpot™
GC Improvements
John Coomes, Tony Printezis
Sun Microsystems, Inc.
http://java.sun.com

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-1168 | 2

Our Goal—Convert This:

Q: Why does GC take so long?
<grumble, grumble...>

A: It starts at the roots and...

2006 JavaOneSM Conference | Session TS-1168 | 3

Into This:

Q: How does GC go so fast?
A: It uses parallelism and

concurrency and...

2006 JavaOneSM Conference | Session TS-1168 | 4

Agenda

Motivation
Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What’s Cooking in the Lab
Summary

2006 JavaOneSM Conference | Session TS-1168 | 5

Agenda

Motivation
Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What’s Cooking in the Lab
Summary

2006 JavaOneSM Conference | Session TS-1168 | 6

Hardware Trends
Why Parallel?

● Multiple…
● Chips per box
● Cores per chip
● Threads per core

● Sun, AMD, IBM, Intel
● Shipping or developing multi-threaded,

multi-core products
● 64-bit addressing

● Allows huge heaps

2006 JavaOneSM Conference | Session TS-1168 | 7

Java Programming Language
Why Parallel?

● Built-in support
● Threads allow parallelism
● java.util.concurrent APIs enable parallelism

● Lock-free data structures
● Locking primitives
● Available in Java platform 5 and later

2006 JavaOneSM Conference | Session TS-1168 | 8

0 1 2 3 4 5 6 7 8 9 10
0

16

32

48

64

N=16
N=32
N=64

Serial Part (%)

Sp
ee

du
p

Amdahl’s Law
Why Parallel?

● Speedup =
1/(Serial Part + (Parallel Part / N))

2006 JavaOneSM Conference | Session TS-1168 | 9

Amdahl’s Law
Why Parallel?

● Many threads
create garbage

● Just one thread to
clean it up?
● GC would become a

serial bottleneck

0 1 2 3 4 5 6 7 8 9 10
0

16

32

48

64

N=16
N=32
N=64

Serial Part (%)

Sp
ee

du
p

2006 JavaOneSM Conference | Session TS-1168 | 10

Agenda

Motivation
Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What’s Cooking in the Lab
Summary

2006 JavaOneSM Conference | Session TS-1168 | 11

Terms
● Serial

● One thing happens at a time
CPU 0

CPU 1

CPU 2

CPU 3

2006 JavaOneSM Conference | Session TS-1168 | 12

Terms
● Serial

● One thing happens at a time
● Parallel

● Multiple things happen at once
● Single task

● Split into parts
● Executed simultaneously

CPU 0

CPU 1

CPU 2

CPU 3

CPU 0

CPU 1

CPU 2

CPU 3

2006 JavaOneSM Conference | Session TS-1168 | 13

Terms
● Serial

● One thing happens at a time
● Parallel

● Multiple things happen at once
● Single task

● Split into parts
● Executed simultaneously

● Concurrent
● Multiple things happen at once
● Multiple tasks

● Different purposes
● Execute simultaneously
● Here: Java technology tasks vs. GC tasks

CPU 0

CPU 1

CPU 2

CPU 3

CPU 0

CPU 1

CPU 2

CPU 3

CPU 0

CPU 1

CPU 2

CPU 3

2006 JavaOneSM Conference | Session TS-1168 | 14

● Generational GC
● Observation: most objects die young
● Segregate objects

● New objects—allocated in the ‘young generation’
● Old objects—promoted to the ‘old generation’

● Collect young generation more frequently
● Use algorithm optimized for ‘mostly dead space’

● Pros:
● Efficient—work a little, reclaim a lot
● Most pauses are shorter—scan only part of the heap

● Cons:
● Some extra bookkeeping
● Eventually must collect entire heap

Taxonomy

2006 JavaOneSM Conference | Session TS-1168 | 15

Generations in HotSpot

Young Generation

Old
Generation

Permanent Generation

2006 JavaOneSM Conference | Session TS-1168 | 16

Old-to-Young References

Young Generation

Old
Generation

Card
Table

2006 JavaOneSM Conference | Session TS-1168 | 17

Taxonomy

● Stop-the-World GC
● Typical cycle:

● Stop all Java technology threads
● Do GC work
● Restart all Java technology threads

● Pros:
● Simpler—heap is frozen, objects not changing

● Cons:
● Some applications sensitive to pause times

2006 JavaOneSM Conference | Session TS-1168 | 18

Taxonomy

● Concurrent GC
● Typical cycle:

● Start GC
● Java technology threads continue to run

● During most or all of GC cycle
● Finish GC

● Pros:
● Pause times are short (or non-existent)

● Cons:
● Must take extra care—objects are changing
● Some overhead—performance, heap size

2006 JavaOneSM Conference | Session TS-1168 | 19

Agenda

Motivation
Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What’s Cooking in the Lab
Summary

2006 JavaOneSM Conference | Session TS-1168 | 20

Parallel Scavenge

● Generational, stop-the-world, parallel
● Collects young generation only
● Available since JDK™ 1.4.2 software

● Experimental in JDK 1.4.1 software
● First parallel GC in Java HotSpot

performance engine
● For many applications
● Majority of GC time is spent on young generation

● -XX:+UseParallelGC

2006 JavaOneSM Conference | Session TS-1168 | 21

Typical GC Pattern
CPU 0

CPU 1

CPU 2

CPU 3

...

Young GC (Serial) Full GC

CPU 0

CPU 1

CPU 2

CPU 3

...

Parallel Scavenge Full GC

2006 JavaOneSM Conference | Session TS-1168 | 22

Basic Algorithm
Parallel Scavenge

● Divide root set among GC threads
● Trace reachable objects in young generation

● Atomic instruction (CAS) used to claim an object
● As objects are claimed, they are copied

● Young-ish objects copied to to-space
● Old-ish objects promoted into old generation
● Use per-thread buffers in destination spaces

● Fast, lock-free allocation
● At end, eden and from-space are empty

● from-space and to-space switch roles

2006 JavaOneSM Conference | Session TS-1168 | 23

Scavenge Example—Before

from-space

Old Generation

Eden

to-space
Survivor
Spaces

Young Generation

unused

2006 JavaOneSM Conference | Session TS-1168 | 24

Scavenge Example—During

from-space

Old Generation

Eden

to-space
Survivor
Spaces

Young Generation

2006 JavaOneSM Conference | Session TS-1168 | 25

Scavenge Example—After

Old Generation

Eden

from-space
Survivor
Spaces

Young Generation

unused

empty

to-space

2006 JavaOneSM Conference | Session TS-1168 | 26

Agenda

Motivation
Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What’s Cooking in the Lab
Summary

2006 JavaOneSM Conference | Session TS-1168 | 27

Concurrent Mark Sweep

● Generational, mostly concurrent,
parallel, non-moving
● Collects old and permanent generations only
● Paired with Parallel Scavenge

● (Serial scavenge on uniprocessor)
● Most work done concurrently with

Java technology threads
● Available since JDK 1.4.2 software

● Experimental in JDK 1.4.1 software
● -XX:+UseConcMarkSweepGC

2006 JavaOneSM Conference | Session TS-1168 | 28

Concurrent Mark Sweep

● Non-moving
● Once promoted into old generation,

object does not move(*)
● Free lists used for allocation

● Somewhat slower than ‘pointer-bumping’
● Dealing with fragmentation

● Track popular object sizes
● Estimate future demand
● Split or join free blocks to meet demand

● Serial Mark Sweep Compact used as fallback
● (*) Will move old generation objects

2006 JavaOneSM Conference | Session TS-1168 | 29

Concurrent Mark Sweep

● Concurrent Mark Sweep Phases
● Initial mark

● Stop-the-world pause to mark from roots
● Not a complete marking—only one level deep

● Concurrent mark
● Mark from the set of objects found during Initial Mark

● Remark
● Stop-the-world pause to complete marking cycle
● Ensures a consistent view of the world

● Concurrent Sweep
● Reclaim dead space, adding it back onto free lists

● Concurrent Reset

2006 JavaOneSM Conference | Session TS-1168 | 30

Concurrent Mark Sweep Phases
Java thread
GC thread

In
iti

al
 M

ar
k

Co
nc

ur
re

nt

M
ar

k

Re
m

ar
k

Co
nc

ur
re

nt

Sw
ee

p

Re
se

t

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

GC active

2006 JavaOneSM Conference | Session TS-1168 | 31

Concurrent Mark Sweep

● The need for Parallelism
● Remark is typically the largest pause

● Often larger than Young GC pauses
● Parallel remark available since Java 5 platform

● Single marking thread
● Can keep up with ~4–8 cpus, usually not more
● Parallel concurrent mark available in Java 6 platform

● Single sweeping thread
● Less of a bottleneck than marking
● Parallel concurrent sweep coming soon

2006 JavaOneSM Conference | Session TS-1168 | 32

Concurrent Mark Sweep Phases
Java thread
GC thread

In
iti

al
 M

ar
k

Co
nc

ur
re

nt

M
ar

k

Re
m

ar
k

Co
nc

ur
re

nt

Sw
ee

p

Re
se

t

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

GC active

2006 JavaOneSM Conference | Session TS-1168 | 33

Concurrent Mark Sweep Phases
Java thread
GC thread

In
iti

al
 M

ar
k

Co
nc

ur
re

nt

M
ar

k

Re
m

ar
k

Co
nc

ur
re

nt

Sw
ee

p

Re
se

t

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

GC active

2006 JavaOneSM Conference | Session TS-1168 | 34

DEMO
Concurrent Mark Sweep

2006 JavaOneSM Conference | Session TS-1168 | 35

Agenda

Motivation
Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What’s Cooking in the Lab
Summary

2006 JavaOneSM Conference | Session TS-1168 | 36

Parallel Compaction

● Stop-the-world, parallel, sliding compaction
● New! Available in Java EE 5 update 6
● Full GC—collects entire heap
● Paired with Parallel Scavenge
● -XX:+UseParallelOldGC

CPU 0

CPU 1

CPU 2

CPU 3

...

Parallel Scavenge Parallel Compaction

2006 JavaOneSM Conference | Session TS-1168 | 37

Parallel Compaction

● Three phases: marking, summary, compaction
● Heap divided into fixed-sized regions

● Marking records information about each region
● Used later to enable compaction in parallel

● Sliding compaction—preserves object order
● Possible cache benefits

2006 JavaOneSM Conference | Session TS-1168 | 38

Marking Phase

● Divide root set among GC threads
● Trace all live objects, in parallel

● Objects claimed atomically
● Liveness recorded in an external bitmap

● Once object is claimed, update per-region data
● Add object size to region total
● Extra bookkeeping if object extends onto other regions

2006 JavaOneSM Conference | Session TS-1168 | 39

Summary Phase

● Compute the “dense prefix”
● Block of very dense regions on the left

● Nearly all objects are live
● Remainder are not reclaimed (dead wood)

● Per-region liveness data guides selection
● Find the prefix with the best reclamation ratio

● Space reclaimed/data copied
● Compute destination of each region

● Where the first live byte in the region will go

2006 JavaOneSM Conference | Session TS-1168 | 40

Summary Phase (Cont.)

● Additional data saved for each region
● Source region
● Destination count

● Summary phase currently done serially
● Can be parallelized
● Not as important for performance

● Operates on regions, not objects

2006 JavaOneSM Conference | Session TS-1168 | 41

Compaction Phase

● Fill regions, in parallel
● First identify available regions

● Empty regions
● Regions that compact only into themselves

● Then threads claim available regions atomically
● Once claimed, no other synchronization required
● Fill the region, repeat

2006 JavaOneSM Conference | Session TS-1168 | 42

Compaction Phase (Cont.)

● Filling a region
● Find the first byte destined for this region
● Copy objects until region is full (or nothing left to copy)
● Do some bookkeeping for source regions

● Easy!

2006 JavaOneSM Conference | Session TS-1168 | 43

Compaction Phase (Cont.)

● Filling a region
● Find the first byte destined for this region

● Start with source region
● May have to skip over some objects

● Consult bitmap for liveness info
● Copy objects until region is full (or nothing left to copy)
● Do some bookkeeping for source regions

2006 JavaOneSM Conference | Session TS-1168 | 44

Compaction Phase (Cont.)

● Filling a region
● Find the first byte destined for this region
● Copy objects until region is full (or nothing left to copy)

● Must find live objects and skip dead space
● Consult bitmap

● Do some bookkeeping for source regions

2006 JavaOneSM Conference | Session TS-1168 | 45

Compaction Phase (Cont.)

● Filling a region
● Find the first byte destined for this region
● Copy objects until region is full (or nothing left to copy)

● Must find live objects and skip dead space
● Consult bitmap

● Must update interior references to point to new locations
● Consult ...

● Do some bookkeeping for source regions

2006 JavaOneSM Conference | Session TS-1168 | 46

Compaction Phase (Cont.)

● New location of object x
● Start with destination of the region containing x
● Add size of partial object extending onto the region
● Add sizes of live objects that precede x in the region

● Consult the bitmap :-)
● region(x).destination() +

region(x).partial_obj_size() +
bitmap.live_words_in_range(region_start, x)

2006 JavaOneSM Conference | Session TS-1168 | 47

Compaction Phase (Cont.)

● Filling a region
● Find the first byte destined for this region
● Copy objects until region is full (or nothing left to copy)
● Do some bookkeeping for source regions

● Decrement destination count
● If count reaches 0, region can be filled

2006 JavaOneSM Conference | Session TS-1168 | 48

Compaction Phase (Cont.)

● Filling a region
● Find the first byte destined for this region
● Copy objects until region is full (or nothing left to copy)
● Do some bookkeeping for source regions

2006 JavaOneSM Conference | Session TS-1168 | 49

Compaction Phase (Cont.)

● Filling a region
● Find the first byte destined for this region
● Copy objects until region is full (or nothing left to copy)
● Do some bookkeeping for source regions

● Whew!

2006 JavaOneSM Conference | Session TS-1168 | 50

DEMO
Parallel Compaction

2006 JavaOneSM Conference | Session TS-1168 | 51

Agenda

Motivation
Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What’s Cooking in the Lab
Summary

2006 JavaOneSM Conference | Session TS-1168 | 52

Parallel Successes

● Parallelism used successfully so far
● Parallel Scavenge
● Concurrent Mark Sweep
● Parallel Compaction

● Naturally, we (and you!) want more…
● Shorter, predictable pauses—less disruption
● Without fragmentation problems

2006 JavaOneSM Conference | Session TS-1168 | 53

Evaluating a New Low-latency GC

● Generational
● Parallel
● Concurrent
● Predictable

● Pauses managed to meet specified goals
● Compacting

● Only part of the heap at a time
● Keeps pauses small

2006 JavaOneSM Conference | Session TS-1168 | 54

Evaluating a New Low-latency GC

● Generational, without fixed generations
● Single physical space
● Divided into “regions”
● Young and old regions can be intermixed

● Absence of fixed boundary allows flexibility
● Marking phase

● Concurrent and parallel (like CMS)
● Calculates liveness info per region
● Much shorter remark pause than CMS

2006 JavaOneSM Conference | Session TS-1168 | 55

Evaluating a New Low-latency GC

● Per-region liveness info
● Used to identify empty and mostly-empty regions
● Empty regions—reclaimed
● Mostly-empty regions

● Evacuated—live objects copied to other regions
● Then reclaimed

● All collection through copying
● Focus on mostly-empty regions

● Maximizes GC efficiency
● Both young and old regions collected

2006 JavaOneSM Conference | Session TS-1168 | 56

Evaluating a New Low-latency GC

● Predictability
● Model GC costs
● Predict and schedule GC activity

● Shorter pause times
● Through tricks!

2006 JavaOneSM Conference | Session TS-1168 | 57

Agenda

Motivation
Terms and Taxonomy
Parallel Scavenge
Concurrent Mark Sweep
Parallel Compaction
What’s Cooking in the Lab
Summary

2006 JavaOneSM Conference | Session TS-1168 | 58

Summary

● Parallelism is pervasive
● Must be exploited for good performance

● Throughput
● Responsiveness

● Java HotSpot technology GC
makes use of it today
● In several different forms

● We can only expect more
opportunities in the future

2006 JavaOneSM Conference | Session TS-1168 | 59

For More Information

Resources
● Ask the Experts

● Today, 12:00 Noon—Pavilion, Booth 724
● BOF-0197

● “Java HotSpot VM Q&A”
● Thursday, 7:30pm
● Moscone Center North Mtg Room 121/122

● GC Tuning Guides
● http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
● http://java.sun.com/docs/hotspot/gc1.4.2/index.html

● Description of the GCs in the Java HotSpot VM
● http://www.devx.com/Java/Article/21977/

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/gc1.4.2/index.html
http://www.devx.com/Java/Article/21977/

2006 JavaOneSM Conference | Session TS-1168 | 60

Q&A
John Coomes, Tony Printezis

2006 JavaOneSM Conference | Session TS-1168 |

TS-1168

Performance Through
Parallelism: Java HotSpot™
GC Improvements
John Coomes, Tony Printezis
Sun Microsystems, Inc.
http://java.sun.com

