
2006 JavaOneSM Conference | Session TS-3313 |

What’s Hot in IBM’s Virtual
Machine for the Java™
Platform?
Trent Gray-Donald
Java SE JVM Lead
IBM
www.ibm.com

TS-3313

2006 JavaOneSM Conference | Session TS-3313 | 2

Learn about IBM’s Java™ Virtual Machine
offerings, the underlying design
philosophy that enables scaling from a
watch to a mainframe, and some of the
core technology, including JIT and GC.

What’s in it for you?
Goal

2006 JavaOneSM Conference | Session TS-3313 | 3

Agenda

Design Philosophy and History
JIT—Scalable Performance
GC—Flexible Collection Policies
Shared Classes—Smarter Resource Use
RAS—Reliability, Availability, Serviceability

2006 JavaOneSM Conference | Session TS-3313 | 4

Agenda

Design Philosophy and History
JIT—Scalable Performance
GC—Flexible Collection Policies
Shared Classes—Smarter Resource Use
RAS—Reliability, Availability, Serviceability

2006 JavaOneSM Conference | Session TS-3313 | 5

Design Philosophy and History
• Current offerings based on the J9 Virtual Machine

• 3rd generation Java VM from IBM
• Designed from the ground up to be a scalable solution

for embedded, desktop, and server class hardware

• Common code base for all Java ME and Java SE
products
• Highly configurable—pluggable interfaces with different

implementations depending on the target market

• Class library independence
• Supports latest language features (Java SE 5)
• Scaling to available hardware

• Wide range—“From a watch to a mainframe”
• Portable, configurable, flexible

2006 JavaOneSM Conference | Session TS-3313 | 6

Java VM Architecture

Pluggable components
that dynamically load

into the virtual
machine

Calls
to C
libraries

Operating System

OS-specific
Calls

Java VM Profiler

Debugger

Real-time Profiler

Uses 1 of many possible
configurations

JCL natives

Java Native
Interface

Java NI

JIT

Virtual Machine

Garbage collector

Interpreter

Exception handler

Class loader Native
Applications

JavaSE
 Foundation

CDC
MIDP

CLDC
class

 library

Java-based Calls

Java-based Application Code

Thread model Port Library (file IO, sockets, memory allocation, etc.)

2006 JavaOneSM Conference | Session TS-3313 | 7

Java VM Architecture

Pluggable components
that dynamically load

into the virtual
machine

Calls
to C
libraries

Operating System

OS-specific
Calls

Java VM Profiler

Debugger

Real-time Profiler

Uses 1 of many possible
configurations

JCL natives

Java Native
Interface

Java NI

JIT

Virtual Machine

Garbage collector

Interpreter

Exception handler

Class loader Native
Applications

JavaSE
 Foundation

CDC
MIDP

CLDC
class

 library

Java-based Calls

Java-based Application Code

Thread model Port Library (file IO, sockets, memory allocation, etc.)

2006 JavaOneSM Conference | Session TS-3313 | 8

Java VM Architecture

Pluggable components
that dynamically load

into the virtual
machine

Calls
to C
libraries

Operating System

OS-specific
Calls

Java VM Profiler

Debugger

Real-time Profiler

Uses 1 of many possible
configurations

JCL natives

Java Native
Interface

Java NI

JIT

Virtual Machine

Garbage collector

Interpreter

Exception handler

Class loader Native
Applications

JavaSE
 Foundation

CDC
MIDP

CLDC
class

 library

Java-based Calls

Java-based Application Code

Thread model Port Library (file IO, sockets, memory allocation, etc.)

2006 JavaOneSM Conference | Session TS-3313 | 9

Agenda

Design Philosophy and History
JIT—Scalable Performance
GC—Flexible Collection Policies
Shared Classes—Smarter Resource Use
RAS—Reliability, Availability, Serviceability

2006 JavaOneSM Conference | Session TS-3313 | 10

JIT Design Goals

• Java technology-centric design
• Flexible to meet different footprint goals
• Configurable optimization framework
• High-performance code with deep platform exploitation
• Complete solution: optimizing transformations fully

operational in the presence of exception handling,
security manager, stack trace, unresolved or volatile
entities, etc.

• Dynamic recompilation with profile-directed feedback
• Fast Startup Times
• Support for Hot Code Replace and Full-speed Debug

2006 JavaOneSM Conference | Session TS-3313 | 11

Flexible JIT Configurations

• 3 ways to build the JIT
• Full JIT 1–3M

• Used with all the Java SE builds
• Small JIT 300–600K

• Generally bundled with the Java ME CDC offerings
• Subset of the Full JIT

● Optimizations from the Full JIT can easily be added to
the Small JIT as small devices increase the amount of
memory they have

• Micro JIT 50–100K
• Generally bundled with the Java ME CLDC offerings
• Direct bytecode to native code (no intermediate language)

2006 JavaOneSM Conference | Session TS-3313 | 12

Configurable Optimization Framework

• Complete suite of classical and Java technology
optimizations

• Platform neutral optimizer performs IL-IL transformations
• Parameterized by platform-specific code to handle different

CPU capabilities (e.g., number of registers)

• Multiple optimization strategies for different code
quality/compile-time tradeoffs
• Used to compose optimizations into a collection of

transformations
• Spend compile time where it makes biggest difference
• Extremely flexible solutions and infrastructure

• Target processor optimizations

2006 JavaOneSM Conference | Session TS-3313 | 13

Subset of Classical Optimizations

• Loop versioning, loop unrolling
• Local and global register assigning
• Escape Analysis
• Devirtualization
• Scheduling technology shared with IBM’s

static compilers
• Class hierarchy optimizations

2006 JavaOneSM Conference | Session TS-3313 | 14

Adaptive Compilation in TR JIT
• Methods start out being interpreted

• After N invocations methods get
compiled at ‘warm’ level

• Sampling thread used to identify
hot methods

• Methods may get recompiled at
‘hot’ or ‘scorching’ levels

• Transition to ‘scorching’ goes
through a temporary profiling step

warm

hot

scorching

profiling

interpreted

2006 JavaOneSM Conference | Session TS-3313 | 15

Agenda

Design Philosophy and History
JIT—Scalable Performance
GC—Flexible Collection Policies
Shared Classes—Smarter Resource Use
RAS—Reliability, Availability, Serviceability

2006 JavaOneSM Conference | Session TS-3313 | 16

Garbage Collection

• Workloads
• Transactional (e.g., web)
• Batch (javac/Eclipse workspace build)

• Hardware varies tremendously
• 1MB to 128GB
• Single hardware thread up to 128-way multi-core

Simultaneous MultiThreading (SMT) hardware
• Memory Consistency differences

• z/Series®

• p/Series®

2006 JavaOneSM Conference | Session TS-3313 | 17

GC Policies in IBM SDK 5.0

• Optimize for Throughput –Xgcpolicy:optthruput (default)
• Mark-Sweep-Compact tracing collector

• Optimize for PauseTime –Xgcpolicy:optavgpause
• Concurrent Mark and Sweep

• Subpooling –Xgcpolicy:subpool
• Mark-Sweep-Compact tracing collector
• Designed to reduce heap lock contention on SMP systems

• Generational Concurrent –Xgcpolicy:gencon
• Generational Copy-Collector with concurrent collection

2006 JavaOneSM Conference | Session TS-3313 | 18

GC Policies in IBM SDK 5.0

Time

Thread 1

Thread 2
Thread 3

Thread n

GC
Mutator

-Xgcpolicy:optthruput (and –Xgcpolicy:subpool)

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

How do the policies compare?

2006 JavaOneSM Conference | Session TS-3313 | 19

GC Policies in IBM SDK 5.0

Concurrent Tracing

-Xgcpolicy:optavgpause
How do the policies compare?

Time

Thread 1

Thread 2
Thread 3

Thread n

GC
Mutator

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

2006 JavaOneSM Conference | Session TS-3313 | 20

-Xgcpolicy:gencon

Concurrent Tracing

Time

Thread 1

Thread 2
Thread 3

Thread n

Global GC
Mutator

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

GC Policies in IBM SDK 5.0

Scavenge GC

How do the policies compare?

2006 JavaOneSM Conference | Session TS-3313 | 21

Tuning
<af type="nursery" id="1134" timestamp="Fri May 05 17:10:32 2006" intervalms="1882.416">
 <minimum requested_bytes="88" />
 <time exclusiveaccessms="0.109" />
 <nursery freebytes="0" totalbytes="56465408" percent="0" />
 <tenured freebytes="629133648" totalbytes="1191182336" percent="52" >
 <soa freebytes="617221968" totalbytes="1179270656" percent="52" />
 <loa freebytes="11911680" totalbytes="11911680" percent="100" />
 </tenured>
 <gc type="scavenger" id="1134" totalid="1142" intervalms="1882.915">
 <flipped objectcount="309209" bytes="10003828" />
 <tenured objectcount="150595" bytes="4840096" />
 <refs_cleared soft="234" weak="0" phantom="0" />
 <finalization objectsqueued="7" />
 <scavenger tiltratio="84" />
 <nursery freebytes="45832192" totalbytes="56475648" percent="81" tenureage="2" />
 <tenured freebytes="624027856" totalbytes="1191182336" percent="52" >
 <soa freebytes="612116176" totalbytes="1179270656" percent="51" />
 <loa freebytes="11911680" totalbytes="11911680" percent="100" />
 </tenured>
 <time totalms="86.619" />
 </gc>
 <nursery freebytes="45830144" totalbytes="56475648" percent="81" />
 <tenured freebytes="624027856" totalbytes="1191182336" percent="52" >
 <soa freebytes="612116176" totalbytes="1179270656" percent="51" />
 <loa freebytes="11911680" totalbytes="11911680" percent="100" />
 </tenured>
 <time totalms="87.229" />
</af>

Allocation request
details, time it took
to stop all mutator
threads.

Heap occupancy
details before GC.

Heap occupancy
details after GC.

Details about
the scavenge.

2006 JavaOneSM Conference | Session TS-3313 | 22

What Policy Should I Choose?

I want my application to run to completion
as quickly as possible.

-Xgcpolicy:optthruput

My application requires good response time
to unpredictable events.

-Xgcpolicy:optavgpause

2006 JavaOneSM Conference | Session TS-3313 | 23

What Policy Should I Choose?

My application has a high allocation and
death rate.

-Xgcpolicy:gencon

My application is running on big metal and
has high allocation rates on many threads.

-Xgcpolicy:subpool

2006 JavaOneSM Conference | Session TS-3313 | 24

Danger! Caveat Emptor…
• Some WebSphere®

applications perform better
with gencon—however,
some applications degrade
in performance

• Peak throughput
performance versus lower
GC pause times tradeoffs
possible

WebSphere 6.1—Trade 6

0
20

40
60

80
100

120

optthruput gencon

WebSphere 6.1—SPECjAppServer

0
20

40
60

80
100

120

optthruput gencon

Numbers are approximate and only intended to show
a general behaviour seen when running Trade6
compared to SPECjAppServer.

2006 JavaOneSM Conference | Session TS-3313 | 25

Garbage Collection FAQ

• “I want to reduce my maximum pause time.”
• Lock the new generation size to a fixed value

• Fixed number of possible live objects per collect
• Adjust the taxation rate of the concurrent collector

• Amortize the cost of collection over longer periods
• Disable compaction

• Reduced large pauses at the expense of increased
fragmentation

2006 JavaOneSM Conference | Session TS-3313 | 26

Garbage Collection FAQ

• “I want my system to handle occasional large
objects allocations without Garbage Collecting
every time.”
• Increase the size of the large object area

• Reduce need for garbage collector to create space
by pre-reserving heap

• Adjust concurrent collector metering against
regular allocates, large object allocates, or both

• Determined by frequency of large object allocates

2006 JavaOneSM Conference | Session TS-3313 | 27

Garbage Collection—Tuning gencon

• Balancing nursery and the tenured space
• Automatic

• Specify the minimum and maximum heap size
(e.g., –Xms512m –Xmx1024m)

• JDK 5 nursery will not automatically grow
beyond 64MB

• Hand Tuning
• Main factors are new object death rates, tenure

space used
• Recommended approach for performance-

sensitive, server-side applications

2006 JavaOneSM Conference | Session TS-3313 | 28

Agenda

Design Philosophy and History
JIT—Scalable Performance
GC—Flexible Collection Policies
Shared Classes—Smarter Resource Use
RAS—Reliability, Availability, Serviceability

2006 JavaOneSM Conference | Session TS-3313 | 29

Shared Classes

• Server environments where multiple JVMs exist
on the same box

• Improves startup time and memory footprint
• Sharing of class data—granularity is .class file
• Multiple sharing strategies

• Standard classloaders (including Application
Classloader) exploit the feature when enabled

• API to extend custom ClassLoaders available

2006 JavaOneSM Conference | Session TS-3313 | 30

Shared Classes Performance

0

2

4

6

8

10

12

S
ta

rtu
p

Ti
m

e
in

 S
ec

on
ds

Standard run
Shared, no cache
Shared, with cache

2006 JavaOneSM Conference | Session TS-3313 | 31

Agenda

Design Philosophy and History
JIT—Scalable Performance
GC—Flexible Collection Policies
Shared Classes—Smarter Resource Use
RAS—Reliability, Availability,

Serviceability

2006 JavaOneSM Conference | Session TS-3313 | 32

Reliability, Availability,
Serviceability (RAS)

• Top IBM focus
• Necessary for effective support of over

1,800 IBM products on top of Java
• Problem types are varied

• Hangs
• Spins
• Unexpected Java code exceptions/errors
• Crashes (because of user Java NI code or

Java VM code)
• Performance issues

2006 JavaOneSM Conference | Session TS-3313 | 33

RAS Tools—Java NI

• Difficult problem area
• Different Java VM behaviours

• Arrays—copy vs. pin
• References (reuse, lifetimes)

• Non-Java technology paradigm
• Explicit exception checks
• Allocation failures

• -Xcheck:jni
• Validates a full range of Java NI errors

seen internally and in customer code
• Range from critical to pedantic

2006 JavaOneSM Conference | Session TS-3313 | 34

RAS Tools –Xdump and DTFJ

• Trigger informative dumps (Java based/
system/heap) on a multitude of events
• e.g., OutOfMemoryError produces javacore.txt

and a heap dump
• Events include class load, exception throw,

thread start/stop, GC

• Dump Tools Framework for Java Technology
(DTFJ)
• Toolkit to allow programmatic introspection into

different RAS artifacts (system dumps, etc.)
• TS-3881 for a deep dive

2006 JavaOneSM Conference | Session TS-3313 | 35

RAS Tools –Xdump File Types

• Javacore.txt (human and machine readable)
• Java VM version
• Java VM arguments, OS paths
• Major Java VM structure addresses
• Java-based Threads with stack trace
• Monitors with owners, blockers, waiters
• Classloaders and classes

• Heapdump.phd (machine readable)
• Dense Java-based heap contents

• System dumps (OS specific)

2006 JavaOneSM Conference | Session TS-3313 | 36

RAS Tools –Xdump Examples

• -Xdump:java:events=throw,filter=MyException
• -Xdump:heap:events=unload,filter=MyClass
• -Xdump:java:events=load,range=4..7

JVMDUMP006I Processing Dump Event "load", detail "java/lang/reflect/GenericDeclaration" -
Please Wait.
JVMDUMP007I JVM Requesting Java Dump using C:\150\jre\bin\javacore.20060425.010831.2720.txt
JVMDUMP010I Java Dump written to C:\150\jre\bin\javacore.20060425.010831.2720.txt
JVMDUMP013I Processed Dump Event "load", detail "java/lang/reflect/GenericDeclaration".

2006 JavaOneSM Conference | Session TS-3313 | 37

RAS Tools –Xtrace

• Provides tiered tracing of Java VM internal
program flow and Java technology-level
method execution

• Always on for some internal trace in JDK™ 5.0
software
• Very useful for First Fail Data Capture (FFDC)

purposes
• GC statistics kept in separate rolling trace buffer

and dumped into javacore*.txt files whenever
triggered

2006 JavaOneSM Conference | Session TS-3313 | 38

Observations on the Future

• Quality of service
• Pause time (not just GC!)
• Performance
• RAS

• Real-time GC
• Metronome (1ms max pause time)

• Multi-core CPUs
• NUMA
• 64-bit Java VMs and hybrid solutions

(NB: No guarantee re: future products or research)

2006 JavaOneSM Conference | Session TS-3313 | 39

Summary

Design Philosophy and History
JIT—Scalable Performance
GC—Flexible Collection Policies
Shared Classes—Smarter Resource Use
RAS—Reliability, Availability, Serviceability

2006 JavaOneSM Conference | Session TS-3313 | 40

Q&A

2006 JavaOneSM Conference | Session TS-3313 |

What’s Hot in IBM’s Virtual
Machine for the Java™
Platform?
Trent Gray-Donald
Java SE JVM Lead
IBM
www.ibm.com

TS-3313

