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Learn about IBM’s Java™ Virtual Machine 
offerings, the underlying design 
philosophy that enables scaling from a 
watch to a mainframe, and some of the 
core technology, including JIT and GC.

What’s in it for you?
Goal
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Agenda

Design Philosophy and History
JIT—Scalable Performance
GC—Flexible Collection Policies
Shared Classes—Smarter Resource Use
RAS—Reliability, Availability, Serviceability
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Design Philosophy and History
• Current offerings based on the J9 Virtual Machine

• 3rd generation Java VM from IBM
• Designed from the ground up to be a scalable solution 

for embedded, desktop, and server class hardware

• Common code base for all Java ME and Java SE 
products
• Highly configurable—pluggable interfaces with different 

implementations depending on the target market

• Class library independence
• Supports latest language features (Java SE 5)
• Scaling to available hardware

• Wide range—“From a watch to a mainframe”
• Portable, configurable, flexible
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Java VM Architecture

Pluggable components 
that dynamically load 

into the virtual 
machine

Calls 
to C
libraries

Operating System

OS-specific 
Calls

Java VM Profiler

Debugger

Real-time Profiler

Uses 1 of many possible 
configurations

JCL natives

Java Native 
Interface

Java NI

JIT

Virtual Machine

Garbage collector

Interpreter

Exception handler

Class loader Native
Applications

JavaSE
    Foundation 

CDC
MIDP

CLDC
class

 library

Java-based Calls

Java-based Application Code

Thread model Port Library (file IO, sockets, memory allocation, etc.)



2006 JavaOneSM Conference   |   Session TS-3313   | 7

Java VM Architecture

Pluggable components 
that dynamically load 

into the virtual 
machine

Calls 
to C
libraries

Operating System

OS-specific 
Calls

Java VM Profiler

Debugger

Real-time Profiler

Uses 1 of many possible 
configurations

JCL natives

Java Native 
Interface

Java NI

JIT

Virtual Machine

Garbage collector

Interpreter

Exception handler

Class loader Native
Applications

JavaSE
    Foundation 

CDC
MIDP

CLDC
class

 library

Java-based Calls

Java-based Application Code

Thread model Port Library (file IO, sockets, memory allocation, etc.)



2006 JavaOneSM Conference   |   Session TS-3313   | 8

Java VM Architecture

Pluggable components 
that dynamically load 

into the virtual 
machine

Calls 
to C
libraries

Operating System

OS-specific 
Calls

Java VM Profiler

Debugger

Real-time Profiler

Uses 1 of many possible 
configurations

JCL natives

Java Native 
Interface

Java NI

JIT

Virtual Machine

Garbage collector

Interpreter

Exception handler

Class loader Native
Applications

JavaSE
    Foundation 

CDC
MIDP

CLDC
class

 library

Java-based Calls

Java-based Application Code

Thread model Port Library (file IO, sockets, memory allocation, etc.)



2006 JavaOneSM Conference   |   Session TS-3313   | 9

Agenda

Design Philosophy and History
JIT—Scalable Performance
GC—Flexible Collection Policies
Shared Classes—Smarter Resource Use
RAS—Reliability, Availability, Serviceability



2006 JavaOneSM Conference   |   Session TS-3313   | 10

JIT Design Goals

• Java technology-centric design
• Flexible to meet different footprint goals 
• Configurable optimization framework 
• High-performance code with deep platform exploitation
• Complete solution: optimizing transformations fully 

operational in the presence of exception handling, 
security manager, stack trace, unresolved or volatile 
entities, etc. 

• Dynamic recompilation with profile-directed feedback
• Fast Startup Times
• Support for Hot Code Replace and Full-speed Debug
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Flexible JIT Configurations

• 3 ways to build the JIT
• Full JIT 1–3M

• Used with all the Java SE builds
• Small JIT 300–600K

• Generally bundled with the Java ME CDC offerings 
• Subset of the Full JIT

● Optimizations from the Full JIT can easily be added to 
the Small JIT as small devices increase the amount of 
memory they have

• Micro JIT 50–100K
• Generally bundled with the Java ME CLDC offerings
• Direct bytecode to native code (no intermediate language)
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Configurable Optimization Framework

• Complete suite of classical and Java technology 
optimizations

• Platform neutral optimizer performs IL-IL transformations
• Parameterized by platform-specific code to handle different 

CPU capabilities (e.g., number of registers)

• Multiple optimization strategies for different code 
quality/compile-time tradeoffs
• Used to compose optimizations into a collection of 

transformations
• Spend compile time where it makes biggest difference
• Extremely flexible solutions and infrastructure

• Target processor optimizations
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Subset of Classical Optimizations

• Loop versioning, loop unrolling
• Local and global register assigning
• Escape Analysis
• Devirtualization
• Scheduling technology shared with IBM’s 

static compilers
• Class hierarchy optimizations
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Adaptive Compilation in TR JIT
• Methods start out being interpreted

• After N invocations methods get 
compiled at ‘warm’ level

• Sampling thread used to identify 
hot methods

• Methods may get recompiled at 
‘hot’ or ‘scorching’ levels

• Transition to ‘scorching’ goes 
through a temporary profiling step

warm

hot

scorching

profiling

interpreted
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Garbage Collection

• Workloads
• Transactional (e.g., web)
• Batch (javac/Eclipse workspace build)

• Hardware varies tremendously
• 1MB to 128GB
• Single hardware thread up to 128-way multi-core 

Simultaneous MultiThreading (SMT) hardware
• Memory Consistency differences

• z/Series®

• p/Series®
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GC Policies in IBM SDK 5.0

• Optimize for Throughput –Xgcpolicy:optthruput (default)
• Mark-Sweep-Compact tracing collector

• Optimize for PauseTime –Xgcpolicy:optavgpause
• Concurrent Mark and Sweep

• Subpooling –Xgcpolicy:subpool
• Mark-Sweep-Compact tracing collector
• Designed to reduce heap lock contention on SMP systems

• Generational Concurrent –Xgcpolicy:gencon
• Generational Copy-Collector with concurrent collection
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GC Policies in IBM SDK 5.0 

Time

Thread 1

Thread 2
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Thread n

GC
Mutator

-Xgcpolicy:optthruput     (and –Xgcpolicy:subpool)

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is 
to show theoretical differences in pause times between GC policies.

How do the policies compare?
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GC Policies in IBM SDK 5.0 

Concurrent Tracing

-Xgcpolicy:optavgpause
How do the policies compare?

Time
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Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is 
to show theoretical differences in pause times between GC policies.
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-Xgcpolicy:gencon

Concurrent Tracing

Time

Thread 1

Thread 2
Thread 3

Thread n

Global GC
Mutator

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is 
to show theoretical differences in pause times between GC policies.

GC Policies in IBM SDK 5.0 

Scavenge GC

How do the policies compare?
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Tuning
<af type="nursery" id="1134" timestamp="Fri May 05 17:10:32 2006" intervalms="1882.416">
  <minimum requested_bytes="88" />
  <time exclusiveaccessms="0.109" />
  <nursery freebytes="0" totalbytes="56465408" percent="0" />
  <tenured freebytes="629133648" totalbytes="1191182336" percent="52" >
    <soa freebytes="617221968" totalbytes="1179270656" percent="52" />
    <loa freebytes="11911680" totalbytes="11911680" percent="100" />
  </tenured>
  <gc type="scavenger" id="1134" totalid="1142" intervalms="1882.915">
    <flipped objectcount="309209" bytes="10003828" />
    <tenured objectcount="150595" bytes="4840096" />
    <refs_cleared soft="234" weak="0" phantom="0" />
    <finalization objectsqueued="7" />
    <scavenger tiltratio="84" />
    <nursery freebytes="45832192" totalbytes="56475648" percent="81" tenureage="2" />
    <tenured freebytes="624027856" totalbytes="1191182336" percent="52" >
      <soa freebytes="612116176" totalbytes="1179270656" percent="51" />
      <loa freebytes="11911680" totalbytes="11911680" percent="100" />
    </tenured>
    <time totalms="86.619" />
  </gc>
  <nursery freebytes="45830144" totalbytes="56475648" percent="81" />
  <tenured freebytes="624027856" totalbytes="1191182336" percent="52" >
    <soa freebytes="612116176" totalbytes="1179270656" percent="51" />
    <loa freebytes="11911680" totalbytes="11911680" percent="100" />
  </tenured>
  <time totalms="87.229" />
</af>

Allocation request 
details, time it took 
to stop all mutator 
threads.

Heap occupancy 
details before GC.

Heap occupancy 
details after GC.

Details about 
the scavenge.
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What Policy Should I Choose?

I want my application to run to completion 
as quickly as possible.

-Xgcpolicy:optthruput

My application requires good response time 
to unpredictable events.

-Xgcpolicy:optavgpause
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What Policy Should I Choose?

My application has a high allocation and 
death rate.

-Xgcpolicy:gencon

My application is running on big metal and 
has high allocation rates on many threads.

-Xgcpolicy:subpool
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Danger! Caveat Emptor…
• Some WebSphere® 

applications perform better 
with gencon—however, 
some applications degrade 
in performance

• Peak throughput 
performance versus lower 
GC pause times tradeoffs 
possible

WebSphere 6.1—Trade 6
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Numbers are approximate and only intended to show 
a general behaviour seen when running Trade6 
compared to SPECjAppServer.
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Garbage Collection FAQ

• “I want to reduce my maximum pause time.”
• Lock the new generation size to a fixed value

• Fixed number of possible live objects per collect
• Adjust the taxation rate of the concurrent collector

• Amortize the cost of collection over longer periods
• Disable compaction

• Reduced large pauses at the expense of increased 
fragmentation
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Garbage Collection FAQ

• “I want my system to handle occasional large 
objects allocations without Garbage Collecting 
every time.”
• Increase the size of the large object area

• Reduce need for garbage collector to create space 
by pre-reserving heap

• Adjust concurrent collector metering against 
regular allocates, large object allocates, or both

• Determined by frequency of large object allocates
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Garbage Collection—Tuning gencon

• Balancing nursery and the tenured space 
• Automatic

• Specify the minimum and maximum heap size 
(e.g., –Xms512m –Xmx1024m)

• JDK 5 nursery will not automatically grow 
beyond 64MB

• Hand Tuning
• Main factors are new object death rates, tenure 

space used
• Recommended approach for performance- 

sensitive, server-side applications
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Shared Classes

• Server environments where multiple JVMs exist 
on the same box

• Improves startup time and memory footprint
• Sharing of class data—granularity is .class file
• Multiple sharing strategies

• Standard classloaders (including Application 
Classloader) exploit the feature when enabled

• API to extend custom ClassLoaders available
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Shared Classes Performance
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Reliability, Availability, 
Serviceability (RAS)

• Top IBM focus
• Necessary for effective support of over 

1,800 IBM products on top of Java
• Problem types are varied

• Hangs
• Spins
• Unexpected Java code exceptions/errors
• Crashes (because of user Java NI code or 

Java VM code)
• Performance issues
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RAS Tools—Java NI

• Difficult problem area
• Different Java VM behaviours

• Arrays—copy vs. pin
• References (reuse, lifetimes)

• Non-Java technology paradigm
• Explicit exception checks
• Allocation failures

• -Xcheck:jni
• Validates a full range of Java NI errors 

seen internally and in customer code
• Range from critical to pedantic
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RAS Tools –Xdump and DTFJ

• Trigger informative dumps (Java based/ 
system/heap) on a multitude of events
• e.g., OutOfMemoryError produces javacore.txt 

and a heap dump
• Events include class load, exception throw, 

thread start/stop, GC

• Dump Tools Framework for Java Technology 
(DTFJ)
• Toolkit to allow programmatic introspection into 

different RAS artifacts (system dumps, etc.)
• TS-3881 for a deep dive
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RAS Tools –Xdump File Types

• Javacore.txt (human and machine readable)
• Java VM version
• Java VM arguments, OS paths
• Major Java VM structure addresses
• Java-based Threads with stack trace
• Monitors with owners, blockers, waiters
• Classloaders and classes

• Heapdump.phd (machine readable)
• Dense Java-based heap contents

• System dumps (OS specific)
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RAS Tools –Xdump Examples

• -Xdump:java:events=throw,filter=MyException
• -Xdump:heap:events=unload,filter=MyClass
• -Xdump:java:events=load,range=4..7

JVMDUMP006I Processing Dump Event "load", detail "java/lang/reflect/GenericDeclaration" - 
Please Wait.
JVMDUMP007I JVM Requesting Java Dump using C:\150\jre\bin\javacore.20060425.010831.2720.txt
JVMDUMP010I Java Dump written to C:\150\jre\bin\javacore.20060425.010831.2720.txt
JVMDUMP013I Processed Dump Event "load", detail "java/lang/reflect/GenericDeclaration".
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RAS Tools –Xtrace

• Provides tiered tracing of Java VM internal 
program flow and Java technology-level 
method execution

• Always on for some internal trace in JDK™ 5.0 
software
• Very useful for First Fail Data Capture (FFDC) 

purposes
• GC statistics kept in separate rolling trace buffer 

and dumped into javacore*.txt files whenever 
triggered
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Observations on the Future

• Quality of service
• Pause time (not just GC!)
• Performance
• RAS

• Real-time GC
• Metronome (1ms max pause time)

• Multi-core CPUs
• NUMA
• 64-bit Java VMs and hybrid solutions

(NB: No guarantee re: future products or research)
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