
2006 JavaOneSM Conference | Session TS-3881 |

Full-scale Java™ Platform
Diagnostics for Production
Environments
Flavio Bergamaschi—IBM Hursley Lab, UK

Trent Gray-Donald—IBM Ottawa Lab, Canada

Chris Bailey—IBM Hursley Lab, UK

TS-3881

2006 JavaOneSM Conference | Session TS-3881 | 2

What’s in it for you?
Goal

Learn about IBM’s RAS technology and
hear about a new toolkit that will help you
quickly identify and resolve problems all
the way up the Java™ platform stack,
including in your own code.

2006 JavaOneSM Conference | Session TS-3881 | 3

Agenda
Introduction
Review of the IBM Reliability, Availability and Serviceability (RAS), and
Problem Determination (PD) Technology

Functionalities in 1.4.2
Current PD Tools

The new IBM RAS and PD Technology
Improvements in 5.0
Roadmap for 6.0
PD Tooling Roadmap

Dump Toolkit and Framework for Java (DTFJ)
Overview and Architecture
How to get started
DTFJ View

Demo

2006 JavaOneSM Conference | Session TS-3881 |

INTRODUCTION

2006 JavaOneSM Conference | Session TS-3881 | 5

Why Do We Want to
Solve Problems Quickly?
• It means a lower Total Cost of Ownership (TCO) for you and your

customers!
• The projected software warranty cost for the software industry in 2006 is

tens of billion dollars!
• 4 out of 5 IT dollars spent on operations, maintenance, and minor

enhancements
• Problem determination and resolution has become a daunting task as more

of today’s solutions involve complex collections of products and
applications deployed in heterogeneous environments

• Developing and deploying new solutions get delayed by maintenance of
diverse existing systems

• Typically 20% of problems experienced are new defects and 80%
are non-defects

• 25–50% of time is spent in problem determination and resolution
• The skills needed to do manual cross-product problem determination are

scarce and expensive

2006 JavaOneSM Conference | Session TS-3881 | 6

Introduction
Typical Production Environment

J2SE

J2EEExtension
s

Application

Native

Database
Database

Database

Transaction
SystemsTransaction

SystemsTransaction
Systems

LDAP
LDAP

LDAP

D
ispatcher

D
ispatcher

J2SE

J2EEExtension
s

Application

Native

J2SE

J2EEExtensions

Native

Application

J2SE

J2EEExtension
s

Application

Native

J2SE

J2EEExtensions

Native

Application

J2SETM

J2EETMExtensions

Application

Native

2006 JavaOneSM Conference | Session TS-3881 | 7

Introduction
Business Challenges

• Multi-vendor Distributed Environment (Software
and Hardware)

• Most of the problems are only encountered in a
production environment and not in test

• Cannot afford any performance loss when
capturing diagnostic data

• Requires automatic diagnostic data collection
and analysis

• Must avoid deploying a “custom-instrumented”
Java platform

2006 JavaOneSM Conference | Session TS-3881 | 8

Introduction
Business Challenges

• There is an urgent need to reduce the TCO of
Java platform-based solutions

• There is an urgent need to provide the
developers and the clients with the reliability,
availability and serviceability (RAS), and
problem determination (PD) infrastructure and
tools that will help to identify and correct
problems or undesired behaviour in the Java
platform solutions stack

2006 JavaOneSM Conference | Session TS-3881 |

Review of IBM RAS/PD
Technology

2006 JavaOneSM Conference | Session TS-3881 | 10

Agenda
Introduction
Review of the IBM Reliability, Availability and Serviceability (RAS), and
Problem Determination (PD) Technology

Functionalities in 1.4.2
Current PD Tools

The new IBM RAS and PD Technology
Improvements in 5.0
Roadmap for 6.0
PD Tooling Roadmap

Dump Toolkit and Framework for Java (DTFJ)
Overview and Architecture
How to get started
DTFJ View

Demo

2006 JavaOneSM Conference | Session TS-3881 | 11

IBM RAS/PD Technology
Functionalities in 1.4.2
• JVM™ Software Trace Facility

• Componentized high performance trace engine
• Comprehensive set of trace in all the JVM software components
• Tracing to thread local buffers
• Trigger Tracing
• Back-stack tracing

• First Failure Data Capture—FFDC
• “Flight Recorder” tracing
• System dump on all platforms
• JVM software-initiated system dumps
• Componentized Cross-platform dump formatter

• Improved FFDC for memory leak detection and analysis
• Enhanced Java code heap dump
• Enhanced native memory traces

2006 JavaOneSM Conference | Session TS-3881 | 12

IBM RAS/PD Technology
Functionalities in 1.4.2
• Component Level Diagnostics
• JVM Software RAS Interface

• External interface to the JVM software trace facility and Component level
diagnostics

• Trace configuration/control on-demand
• Diagnostic reports/requests on-demand
• Error Injection

• Light weight JVM Software Monitoring
• Monitoring of JVM software health indicators
• Monitoring of JVM software behavior

• JVM Software Monitoring Interface
• External interface to light weight JVM software monitoring
• Monitoring configuration/control on demand

2006 JavaOneSM Conference | Session TS-3881 | 13

IBM RAS/PD Technology
Functionalities in 1.4.2
• Cross Platform dump formatter

• Dump analysis tool to analyze crash dumps
• Looks inside the JVM software
• Looks at state of Java code heap
• Inspects loaded classes and methods
• Traces through the stack of the JVM software threads
• Checks lock states, etc

• Improved FFDC for memory leak detection and analysis
• Enhanced Java code heap dump (example correlation of multiple heap dumps)
• Enhanced native memory traces
• Automatic triggering of data capture ahead of total memory exhaustion

• Management and control of diagnostic data capture of IBM VM
for the Java platform

• No JVM restart required
• Fine control of JVM software internal tracing
• Java code heap dump, thread dump, etc

• Management control of platform diagnostic data capture
• Request OS statistics and diagnostic data on current health of JVM software

2006 JavaOneSM Conference | Session TS-3881 | 14

IBM RAS/PD Technology
Functionalities in 1.4.2

• First/Second Failure Data Capture:
• OOM: heapdump, verbose GC
• Crash: system dump, java dump
• Hang: deadlock detector in javadump
• Performance verbose GC, JVM software trace,

method trace
• Exceptions method trace

2006 JavaOneSM Conference | Session TS-3881 | 15

IBM RAS/PD Technology
Current PD Tools

• Verbose GC:
• PMAT, GC Collector, GC Analyzer

• Heapdump
• HeapAnalyzer, HeapRoots, FindRoots, MDD4J

• Javadump
• ThreadAnalyzer

• System dump
• JFormat/JDmpView

2006 JavaOneSM Conference | Session TS-3881 |

New IBM RAS/PD
Technology

2006 JavaOneSM Conference | Session TS-3881 | 17

Agenda
Introduction
Review of the IBM Reliability, Availability and Serviceability (RAS), and
Problem Determination (PD) Technology

Functionalities in 1.4.2
Current PD Tools

The new IBM RAS and PD Technology
Improvements in 5.0
Roadmap for 6.0
PD Tooling Roadmap

Dump Toolkit and Framework for Java (DTFJ)
Overview and Architecture
How to get started
DTFJ View

Demo

2006 JavaOneSM Conference | Session TS-3881 | 18

IBM RAS/PD Technology
Improvements in Java 5.0 Platform

• Re-engineering of Trace Engine:
• “Flight Recorder” for First Failure Data Capture

(FFDC)
• Traced to in-memory buffer
• Traces key VM trace points on per thread basis
• Separate buffer for GC data
• Buffers dumped on error scenarios or user request

• Method Trace Improvements
• Trace methods entry/exit with parameters
• Trace works with JIT on or off

2006 JavaOneSM Conference | Session TS-3881 | 19

IBM RAS/PD Technology
Improvements in Java 5.0 Platform

• Re-engineering of Dump Facilities:
• Extended range of dump triggers

• From 3 triggers to 14
• Dump events extended by the use of filters

• User defined dump labels
• Ability to include: time, date, pid, uid, jre info

• Ability to configure number of dumps generated
• Ability to execute tool on dump event

2006 JavaOneSM Conference | Session TS-3881 | 20

IBM RAS/PD Technology
Improvements in Java 5.0 Platform

• Re-engineering of JIT PD options
• Consolidation of options into -Xjit:
• Ability to set compilation levels for methods
• Ability to trace compilation of individual methods

• Does not require a debug library

2006 JavaOneSM Conference | Session TS-3881 | 21

IBM RAS/PD Technology
Improvements in Java 5.0 Platform

• JNI Code Validator (-Xcheck:jni)
• Enables addition checks on Java Native Interface

(JNI) code at runtime:
• Provides errors, warnings and advice level statements
• Configurable according to level of information required
• Checks for 20 commonly occurring JNI coding mistakes

• Includes -Xcheck:jni:trace option
• Outputs details of every JNI native and function call

2006 JavaOneSM Conference | Session TS-3881 | 22

IBM RAS/PD Technology
Improvements in Java 5.0 Platform

• Introduction of the Dump Toolkit and Framework
for Java (DTFJ) API
• A Java technology API for accessing JVM software

data from system dumps
• Removes need for tools writers to:

• understand system dump formats
• understand VM implementation specifics

• System Dump Analytic Tool
• DTFJView

2006 JavaOneSM Conference | Session TS-3881 | 23

IBM RAS/PD Technology
Roadmap for Java 6.0 Platform

• Enhance dump agents to collect
“Must Gather” data

• Create javadump for more exception types
• Allow trigger trace to support dynamic options
• Allow time triggered/delayed dumps
• Extend DTFJ to act on more data formats and

live processes
• javadump, heapdump, verbose GC, GC trace

2006 JavaOneSM Conference | Session TS-3881 | 24

Diagnostic Tooling
Roadmap

• Deployment of DTFJ as a tooling API
• Extend DTFJ API for Applications
• Creation of Scenario-based Tooling
• Integration with IBM Support Assistant

2006 JavaOneSM Conference | Session TS-3881 |

DTFJ—Dump Toolkit and
Framework for Java

2006 JavaOneSM Conference | Session TS-3881 | 26

Agenda
Introduction

Review of the pre-Java 5 IBM Reliability, Availability and Serviceability
(RAS), and Problem Determination (PD) Technology

Functionalities in 1.4.2
Current PD Tools

The new Java 5 IBM RAS and PD Technology
Improvements in 5.0
Roadmap for 6.0
PD Tooling Roadmap

Dump Toolkit and Framework for Java (DTFJ)
Overview and Architecture
How to get started
DTFJ View

Demo

2006 JavaOneSM Conference | Session TS-3881 | 27

Dump Toolkit and Framework
for Java (DTFJ)—Motivation

• Lots of different RAS artifacts, no common
tooling to introspect
• System dumps (core files, MiniDumps)
• Heap dumps (.phd files)
• javacore files (javacore…txt files)

• Many good reasons for different file formats
• Historical tooling too JVM software-specific

• jformat, jcore, kca

2006 JavaOneSM Conference | Session TS-3881 | 28

DTFJ—Overview

• Java technology API, not a fixed purpose tool
• Layered interface independent of runtime

implementation
• Cross Platform
• Cross VM
• Language neutral

• Base extensions understand and introspect on IBM VM
data structures
• Heaps
• Objects
• Threads
• Monitors…

2006 JavaOneSM Conference | Session TS-3881 | 29

What Is DTFJ Like?

• A set of Java technology APIs, influenced by
• JVM Tool Interface
• Reflection

• Loosely based on a hierarchical view of a JVM
software process
• High-level objects contain iterators to examine

increasingly specific components

2006 JavaOneSM Conference | Session TS-3881 | 30

The DTFJ View of a JVM Software Process
Image

ImageAddressSpacesImageAddressSpaces ImageAddressSpaces

ImageProcessImageProcess ImageProcess

ManagedRuntime ManagedRuntimeManagedRuntime

JavaRuntime

2006 JavaOneSM Conference | Session TS-3881 | 31

The DTFJ View of a JVM Software Process

JavaRuntime

JavaObject

JavaClassLoader
JavaHeap

JavaClass

JavaField

JavaMonitor JavaThread

JavaStackFrame

JavaLocation

JavaMethod

2006 JavaOneSM Conference | Session TS-3881 | 32

The DTFJ View of a JVM Software Process

ImageStackFrame

ImageRegister

Image

ImageModule

ImageSignalHandler

ImageAddressSpaces

ImageProcessImageThread

ManagedRuntime

ImagePointer

JavaHeap

JavaObject

JavaLocation

JavaField

JavaMonitor

JavaRuntime

JavaMethod JavaClassLoader

JavaClass

JavaThread

JavaStackFrame

JavaMember

2006 JavaOneSM Conference | Session TS-3881 | 33

Dump Toolkit and
Framework for Java (DTFJ)

DTFJ

Input

Filter

j9core.dmp

j9core.xml

DTFJ View

ReportController

<your tool>

DTFJ

API

2006 JavaOneSM Conference | Session TS-3881 | 34

How to Get Started With DTFJ?

• Get an Image Object
• There is a ImageFactory class to do this

• Different Image implementations

• Everything subsequent is based on iterators
• Image.getAddressSpaces()
• AddressSpace.getProcesses()
• etc…

2006 JavaOneSM Conference | Session TS-3881 | 35

DTFJ—Base Tooling
• Build diagnostic tools capable of inspecting a process image
• Extract information about system

• Physical memory, CPU type and count, system type

• Extract process information
• Threads, libraries and symbols, command line, environment
• Native stack traces and register contents

• Extract Java VM information
• Class loaders, threads, monitors, heaps, objects, trace buffers
• Java thread state: stack trace, priority, native thread, j.l.Thread
• Monitor state: owner, waiters
• Class info: class loader, name, inheritance, fields, methods, etc
• Object info: class, size, hashcode, id, field values

2006 JavaOneSM Conference | Session TS-3881 | 36

DTFJ—Extended Tooling

• Application specific tooling
• You write extensions for your app

• Middleware tooling
• Web Applications server
• Cache Servers

• Layered approach allows proper separation
of concerns

2006 JavaOneSM Conference | Session TS-3881 | 37

DTFJ Packages

• com.ibm.dtfj.image
• Entities which are common to process images,

with or without managed runtimes
• com.ibm.dtfj.runtime

• Generic managed runtime entity
• com.ibm.dtfj.java

• Entities which apply to the Java
technology-managed runtime

2006 JavaOneSM Conference | Session TS-3881 | 38

Example: Count Objects by Class
public static void main(String[] args) throws Exception {

Image theImage = (Image) ImageFactory.getInstance(args[0]);

ImageAddressSpace currentAddressSpace = ((ImageAddressSpace)theImage.getAddressSpaces().next());

ImageProcess currentProcess = currentAddressSpace.getCurrentProcess();

JavaRuntime currentRuntime = (JavaRuntime) currentProcess.getRuntimes().next();

Map<String,Long> objectCountMap = new HashMap<String,Long>();

Iterator allHeaps = currentRuntime.getHeaps();

while(allHeaps.hasNext()) {

countObjects((JavaHeap)allHeaps.next(),objectCountMap);

}

for (String objectClassName : objectCountMap.keySet()) {

System.out.println(objectClassName + “ occurs “ + objectCountMap.get(objectClassName));

}

}

2006 JavaOneSM Conference | Session TS-3881 | 39

Example: Count Objects by Class
private static void countObjects(JavaHeap currentHeap, Map<String, Long> objectCountMap)

throws Exception{

Iterator currentHeapObjects = currentHeap.getObjects();

while(currentHeapObjects.hasNext()) {

JavaObject currentObject = (JavaObject)currentHeapObjects.next();

String objectClassName = currentObject.getJavaClass().getName();

long objectCount = 0;

if (objectCountMap.containsKey(objectClassName)) {

objectCount = objectCountMap.get(objectClassName);

}

objectCountMap.put(objectClassName, objectCount + 1);

}

}

2006 JavaOneSM Conference | Session TS-3881 | 40

DTFJ View

• A command-line prompt-driven tool designed to
analyze core dump files using the DTFJ API
• Look at the contents of objects
• Read arbitrary sections of memory
• Get a lot of other information from a core dump file
• Analyze problems

• e.g. detect and display deadlock information

• An extensible analysis API
• Driven by a GDB like command set

2006 JavaOneSM Conference | Session TS-3881 | 41

DTFJ View—Command Set

• hexdump
• info [cls|thread|ls]
• x/[j|x|gd|wd|k]
• deadlock
• help
• Heap dumps, trace, synonyms, execute

2006 JavaOneSM Conference | Session TS-3881 | 42

DTFJ View—Deadlock Analysis
> deadlock

deadlocks for runtime #0 - "J2RE 1.5.0 IBM J9 2.3 Windows XP x86-32 (JIT enabled) J9VM - 20051004_03470_lHdSMR JIT - 20051004_1800_r8
GC - 20050930_AA"

deadlock branch(es):

3176 (0x8bcec0) => 2524 (0x8bcea0) => 3100 (0x8bcd80)

3236 (0x8bcf00) => 3672 (0x8bcee0) => 724 (0x8bcdc0) => 3100 (0x8bcd80)

4600 (0x8bcda0) => 3100 (0x8bcd80)

deadlock loop:

2488 (0x8bcd60) => 3100 (0x8bcd80) => 2488 (0x8bcd60)

deadlock branch(es):

6044 (0x8bd060) => 2036 (0x8bd040)

deadlock loop:

2036 (0x8bd040) => 4860 (0x8bd080) => 3004 (0x8bd0a0) => 2036 (0x8bd040)

2036

6044

4860

3004

3236 3176

3672

4600

724

2488

3100

2524

2006 JavaOneSM Conference | Session TS-3881 |

LIVE DEMO

2006 JavaOneSM Conference | Session TS-3881 | 44

Summary

• 1.4.2
• FFDC dumps for OutOfMemory, etc..

• 5.0
• FFDC Trace
• New Dump triggers

• Java 6.0 Platform
• Easier ‘Must Gather’
• Focus on automation

• Dump Toolkit and Framework for Java

2006 JavaOneSM Conference | Session TS-3881 |

Q&A
Flavio Bergamaschi—IBM Hursley Lab, UK

Trent Gray-Donald—IBM Ottawa Lab, Canada

Chris Bailey—IBM Hursley Lab, UK

2006 JavaOneSM Conference | Session TS-3881 | 46

Resources

• http://www.ibm.com/developerworks/java/jdk
• http://www.alphaworks.ibm.com/java
• http://www.ibm.com/support

2006 JavaOneSM Conference | Session TS-3881 | 47

Contact info:
Flavio@uk.ibm.com
Trent_Gray-Donald@ca.ibm.com
Baileyc@uk.ibm.com

© Copyright IBM Corporation 2006. All rights reserved.

The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express
or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these
materials is intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the
terms and conditions of the applicable license agreement governing the use of IBM software.
References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.
Product release dates and/or capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities
or other factors, and are not intended to be a commitment to future product or feature availability in any way.
IBM, the IBM logo, the e-business logo and other IBM products and services are trademarks or registered trademarks of the International Business
Machines Corporation, in the United States, other countries or both.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries or both.
Microsoft, Windows, Windows NT and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries or both.
All other trademarks, company, products or service names may be trademarks, registered trademarks or service marks of others

Disclaimer: NOTICE – BUSINESS VALUE INFORMATION IS PROVIDED TO YOU 'AS IS' WITH THE UNDERSTANDING THAT THERE ARE NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND EITHER EXPRESS OR IMPLIED. IBM DISCLAIMS ALL WARRANTIES INCLUDING, BUT NOT LIMITED TO,
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IBM DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS
REGARDING THE USE, VALIDITY, ACCURACY OR RELIABILITY OF THE BUSINESS BENEFITS SHOWN.. IN NO EVENT SHALL IBM BE LIABLE FOR ANY
DAMAGES, INCLUDING THOSE ARISING AS A RESULT OF IBM'S NEGLIGENCE.WHETHER THOSE DAMAGES ARE DIRECT, CONSEQUENTIAL, INCIDENTAL,
OR SPECIAL, FLOWING FROM YOUR USE OF OR INABILITY TO USE THE INFORMATION PROVIDED HEREWITH OR RESULTS EVEN IF IBM HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE ULTIMATE RESPONSIBILITY FOR ACHIEVING THE CALCULATED RESULTS REMAINS WITH YOU.

2006 JavaOneSM Conference | Session TS-3881 |

Full-scale Java™ Platform
Diagnostics for Production
Environments
Flavio Bergamaschi—IBM Hursley Lab, UK

Trent Gray-Donald—IBM Ottawa Lab, Canada

Chris Bailey—IBM Hursley lab, UK

TS-3881

	Full-scale Java™ Platform Diagnostics for Production Environments
	Goal
	Agenda
	INTRODUCTION
	Why Do We Want to Solve Problems Quickly?
	IntroductionTypical Production Environment
	IntroductionBusiness Challenges
	IntroductionBusiness Challenges
	Review of IBM RAS/PD Technology
	Agenda
	IBM RAS/PD TechnologyFunctionalities in 1.4.2
	IBM RAS/PD TechnologyFunctionalities in 1.4.2
	IBM RAS/PD TechnologyFunctionalities in 1.4.2
	IBM RAS/PD TechnologyFunctionalities in 1.4.2
	IBM RAS/PD Technology Current PD Tools
	New IBM RAS/PD Technology
	Agenda
	IBM RAS/PD TechnologyImprovements in Java 5.0 Platform
	IBM RAS/PD TechnologyImprovements in Java 5.0 Platform
	IBM RAS/PD TechnologyImprovements in Java 5.0 Platform
	IBM RAS/PD TechnologyImprovements in Java 5.0 Platform
	IBM RAS/PD TechnologyImprovements in Java 5.0 Platform
	IBM RAS/PD TechnologyRoadmap for Java 6.0 Platform
	Diagnostic ToolingRoadmap
	DTFJ—Dump Toolkit and Framework for Java
	Agenda
	Dump Toolkit and Framework for Java (DTFJ)—Motivation
	DTFJ—Overview
	What Is DTFJ Like?
	The DTFJ View of a JVM Software Process
	The DTFJ View of a JVM Software Process
	The DTFJ View of a JVM Software Process
	Dump Toolkit and Framework for Java (DTFJ)
	How to Get Started With DTFJ?
	DTFJ—Base Tooling
	DTFJ—Extended Tooling
	DTFJ Packages
	Example: Count Objects by Class
	Example: Count Objects by Class
	DTFJ View
	DTFJ View—Command Set
	DTFJ View—Deadlock Analysis
	LIVE DEMO
	Summary
	Q&A
	Resources
	Contact info: Flavio@uk.ibm.comTrent_Gray-Donald@ca.ibm.comBaileyc@uk.ibm.com
	Full-scale Java™ Platform Diagnostics for Production Environments

