
2006 JavaOneSM Conference | Session TS-3885 |

TS-3885

Superpackages:
Development Modules
in Dolphin
Gilad Bracha
Computational Theologist
Sun Microsystems

Copyright © 2006, Sun Microsystems Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-3885 | 2

Agenda

Modules: Development vs. Deployment
Information Hiding
Module Files
Separate Compilation
Conclusions

2006 JavaOneSM Conference | Session TS-3885 | 3

Agenda

Modules: Development vs. Deployment
Information Hiding
Module Files
Separate Compilation
Conclusions

2006 JavaOneSM Conference | Session TS-3885 | 4

What’s the Distinction?

Development Modules vs.
Deployment Modules

● Development modules
● A language construct
● Require direct VM support to enforce semantics

(access control)
● Deployment modules

● Unit of packaging and distribution
● Require extensive tool and library support, but not

necessarily language or VM support
● Concepts do interact, but the interface between

them is relatively narrow

2006 JavaOneSM Conference | Session TS-3885 | 5

JSR 277: Java™ Module System
Deployment Modules

● Handled by JSR 277, whose concerns include:
● Versioning

● Version number schemes
● How to run several versions of the same module side by side

in the same VM
● Distribution and packaging

● JAR files and/or alternative formats
● Module interconnect

● Dynamic module connectivity
● Repositories

● System administration, security, loading/performance
● More ...

2006 JavaOneSM Conference | Session TS-3885 | 6

Deployment Modules

● Hard problems
● In ideal world, a comprehensive solution at

language and run time levels covers everything
● In reality, a longstanding open research issue

● Development time issues handled with conservative,
simple language constructs

● Deployment issues handled by tools on top of
reflective run time API

JSR 277

2006 JavaOneSM Conference | Session TS-3885 | 7

Agenda

Modules: Development vs. Deployment
Information Hiding
Module Files
Separate Compilation
Conclusions

2006 JavaOneSM Conference | Session TS-3885 | 8

Problem #1: Information Hiding

● Put all the code in one package
● Unwieldy
● Exposes subsystem internals to each other

● Sometimes necessary
● Often harmful

● Put each subsystem in its own package
● Cannot grant subsystems privileged access without

excess publicity

Today, If One Develops a System Made of Several
Subsystems, One Has Two Choices:

2006 JavaOneSM Conference | Session TS-3885 | 9

Strawmen

● Don’t document
● Static classes
● A modest proposal

2006 JavaOneSM Conference | Session TS-3885 | 10

Strawmen

● Don’t document
● Static classes
● A modest proposal

2006 JavaOneSM Conference | Session TS-3885 | 11

The Ostrich Solution
Don’t Document

● Define subpackages as convenient
● Define all APIs needed outside of any package

as public
● Don’t describe them with the Javadoc™ tool
● Pray and repeat

● All the problems of access and dependence on APIs
intended to be private

● Does not protect from maliciousness or imbecility
● Witness com.sun.*

2006 JavaOneSM Conference | Session TS-3885 | 12

Strawmen

● Don’t document
● Static classes
● A modest proposal

2006 JavaOneSM Conference | Session TS-3885 | 13

The Clever Ostrich Solution
Static Classes

● Define one package
● Define subsystems as top-level classes in

said package
● Define top level classes of each subsystem as

static nested classes of top level classes
● Sort of works, but

● Only one level deep
● Ugly, especially name mangling at the binary level
● Very little VM level protection

2006 JavaOneSM Conference | Session TS-3885 | 14

Information Hiding with Static Classes
package superpackage;

class Subsystem1 {
public static class PublicClass1{...}

// Public to the world
private static class PrivateClass1{ ... }

// Private to Subsystem1 at language level
// – but at binary level it is
// package private to superpackage
}

 class Subsystem2 {
public static class PublicClass2{...}
private static class PrivateClass2{ ... }

}

2006 JavaOneSM Conference | Session TS-3885 | 15

Information Hiding with Static Classes
package superpackage;

class Subsystem1 {
private static class PrivateClass1{

int subsystem1Method1(){...}
// Intended to be private to Subsystem1, but really
// package private to superpackage
 private int subsystem1Method2() {...}
// this works, until you want to inherit it

 }

}

 class Subsystem2 {
public static class PublicClass2{...}
private static class PrivateClass2{ ... }

}

2006 JavaOneSM Conference | Session TS-3885 | 16

Information Hiding with Static Classes
package superpackage;

class Subsystem1 {
public static class SubSubsystem11{...}
private static class SubSubsystem12{

private static class PrivateClass12{...}
// Still accessible to SubSubystem11
// Still in the same compilation unit
 }

}

2006 JavaOneSM Conference | Session TS-3885 | 17

Information Hiding with Static Classes

● Too complex
● Doesn’t nest
● VM protection not exactly what you expect

2006 JavaOneSM Conference | Session TS-3885 | 18

Strawmen

● Don’t document
● Static classes
● A modest proposal

2006 JavaOneSM Conference | Session TS-3885 | 19

Defining a Superpackage
super package com.sun.myModule {

 export com.sun.myModule.myStuff.*;
 export com.sun.myModule.yourStuff.Interface;

 com.sun.myModule.myStuff;
 com.sun.myModule.yourStuff;
 com.sun.SomeOtherModule.theirStuff;
 org.someOpenSource.someCoolStuff;

}

2006 JavaOneSM Conference | Session TS-3885 | 20

Superpackages May Nest
super package mySystem {
 export mySubsubsystem11.PublicType111;

 mySubsystem1;
 mySubsystem2;
}

super package mySubsystem1 {
 export mySubsubsystem11.PublicType111,

mySubsubsystem11.SemiPublicType112,
 mySubsubsystem12.SemiPublicType121;

 mySubsubsystem11;
 mySubsubsystem12;
}

2006 JavaOneSM Conference | Session TS-3885 | 21

Agenda

Modules: Development vs. Deployment
Information Hiding
Separate Compilation
Module Files
Conclusions

2006 JavaOneSM Conference | Session TS-3885 | 22

Don’t Take “File” Too Literally
Module Files

● The authoritative binary definition of a module
● Membership
● Imports
● Exports
● Metadata

● Class files can claim membership in a module
● Claims must be cross checked with module file
● VM uses membership and export info to enforce

access control

2006 JavaOneSM Conference | Session TS-3885 | 23

Module Files (cont.)

● Other information is useful for JSR 277
● For example, import information can be used to

validate configurations
● A module file corresponds to (part of) a JSR 277

module definition
● Multiple module instances can coexist at runtime

2006 JavaOneSM Conference | Session TS-3885 | 24

Agenda

Modules: Development vs. Deployment
Information Hiding
Module files
Separate Compilation
Conclusions

2006 JavaOneSM Conference | Session TS-3885 | 25

Problem #2: Separate Compilation
Compilation Units Today Consist of Implementations
● Sometimes one doesn’t have the

implementation handy
● Haven’t built it yet
● Another developer hasn’t handed it to me yet

● Needed to be able to compile against the
interface of another “module”
● Workaround is ugly and tedious: declare phony

implementation

2006 JavaOneSM Conference | Session TS-3885 | 26

Separate Compilation
package fully.qualified.packageName;

public class C implements fully.qualified.interface {
 public String someMethod(){ // fake body

return nil; // fake return statement
}

 public C(int i){}; // fake body
 protected Object aFieldName;
}

2006 JavaOneSM Conference | Session TS-3885 | 27

Separate Compilation: Definition
package interface fully.qualified.packageName;

// implicitly public types and members
class C implements fully.qualified.interface {
 String someMethod();
 C(int i);
 protected Object aFieldName;
}

2006 JavaOneSM Conference | Session TS-3885 | 28

Separate Compilation: Usage
package another.packageName;

import fully.qualified.packageName;

// Code as usual – exactly as if imported package exists
}

2006 JavaOneSM Conference | Session TS-3885 | 29

Superpackages May Nest: Revised
package interface mySystem {
 public class mySubsubsystem11.PublicType111;
}

package interface mySubsystem1 {
 public class mySubsubsystem11.PublicType111;

 public class mySubsubsystem11.SemiPublicType112;
 public class mySubsubsystem12.SemiPublicType121;

}

2006 JavaOneSM Conference | Session TS-3885 | 30

Superpackages May Nest: Revised
super package mySystem {

 export mySystem.*;

 mySubsystem1;
 mySubsystem2;
}

super package mySubsystem1 {

 export mySubsystem.*;

 mySubsubsystem11;
 mySubsubsystem12;
}

2006 JavaOneSM Conference | Session TS-3885 | 31

Agenda

Modules: Development vs. Deployment
Information Hiding
Module Files
Separate Compilation
Conclusions

2006 JavaOneSM Conference | Session TS-3885 | 32

Summary

● Java Platform 7 will:
● Provide flexible information hiding
● Likely provide true separate compilation

● Language level module constructs (JSR 294)
● Deployment level module system (JSR 277)

2006 JavaOneSM Conference | Session TS-3885 | 33

For More Information

● gilad.bracha@sun.com
● http://jcp.org/en/jsr/detail?id=294
● http://jcp.org/en/jsr/detail?id=277
● http://blogs.sun.com/gbracha/

Useful Links

2006 JavaOneSM Conference | Session TS-3885 | 34

Q&A

2006 JavaOneSM Conference | Session TS-3885 |

TS-3885

Superpackages:
Development Modules
in Dolphin
Gilad Bracha
Computational Theologist
Sun Microsystems

