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Swing: Powerful Rich Client Platform
Main Takeaway

Learn different data access strategies 
and application design patterns for 
building occasionally connected rich client 
applications
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Smart Clients

• Access to local machine resources
• Massive hard drive capacity

• Graphics card

• Memory

• Rich user experience

• Connect to network resources

• Occasionally connected
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Occasionally Connected

• Users demand reliable access to their data 
in an unreliable world

• Smart clients must be prepared to cache
• If disconnected, users can continue working

• Cache must be synchronized with server

• Comprehensive caching technology is still a work 
in progress



2006 JavaOneSM Conference   |   Session TS-4635   | 7

ResponseCache

• ResponseCache provides a pluggable 
mechanism for caching the results of URL 
connections
• @since 1.5

• Works well for storing read-only data
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Web Services + Smart Clients

• Smart Clients use Web 
Services extensively
• Google Maps

• Flickr

• RSS

• Proprietary

• Mashups work well 
in Smart Clients

• Best of both worlds
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Why Web Services?

• Security
• Doesn’t require any new open ports

• Security is built in at the web server level

• Scalability
• Load balancers, clusters, etc.

• Accessible
• Easily accessible from any type of client on any type 

of platform
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Web Service Types

• REST

• XML-RPC

• SOAP

• RSS

• Screen Scraping
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Note: Learn With Flickr

• Flickr is excellent for learning web services
• Supports REST, XML-RPC, SOAP, RSS

• Good documentation

• Tons of freely available data

• Read access doesn’t require registration

• Resulting applications are interesting and fun

• Today’s Demos use Flickr
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REST

• Acronym for Representational State Transfer

• Extremely simple web service
• It’s the way the web works!

• A single URL leads to a unique resource
• Example: 

http://www.flickr.com/photos/romainguy/112798971/
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REST—Yes, that’s it!

• REST is not a framework, its an 
architectural style

• Can be combined with other webservices such 
as XML-RPC

• Often the data returned is
• XML

• PDF

• Image (PNG, JPG, SVG, etc.)
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XML-RPC

• Somewhat more complicated that REST for 
binary data (such as images)

• Provides a structured XML document for making 
remote procedure calls
• Supports only basic primitives

• Usually enough to get the job done

• Very simple

• Supported in most programming languages
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SOAP

• “Simple Object Access Protocol”

• Technically much more that RPC, but usually 
SOAP is used for RPC
• A (much) more advanced form of XML-RPC

• Sometimes too heavyweight for the job

• Industry Support
• Microsoft

• IBM

• Sun
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Flickr REST Request

To request the flickr.test.echo service, invoke like this:

http://www.flickr.com/services/rest/?method=flickr.test.echo&name=value

http://www.flickr.com/services/rest/?method=flickr.test.echo&name=value
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Flickr XML-RPC Request

<methodCall>
<methodName>flickr.test.echo</methodName>
<params>

<param>
<value>

<struct>
<member>

<name>name</name>
<value><string>value</string></value>

</member>
<member>

<name>name2</name>
<value><string>value2</string></value>

</member>
</struct>

</value>
</param>

</params>
</methodCall>

To request the flickr.test.echo service, 
send a request like this
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Flickr SOAP Request
To request the flickr.test.echo service, 
send an envelope like this
<s:Envelope

xmlns:s="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"

>
<s:Body>

<x:FlickrRequest xmlns:x="urn:flickr">
<method>flickr.test.echo</method>
<name>value</name>

</x:FlickrRequest>
</s:Body>

</s:Envelope>
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Flickr REST Response
A method call returns this

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">

[xml-payload-here]
</rsp>
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Flickr XML-RPC Response
A simple call to the echo service returns this

<?xml version="1.0" encoding="utf-8" ?>
<methodResponse>

<params>
<param>

<value>
<string>

[escaped-xml-payload]
</string>

</value>
</param>

</params>
</methodResponse>
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Flickr SOAP Response

<?xml version="1.0" encoding="utf-8" ?>
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-
envelope">

<s:Body>
<FlickrResponse xmlns="http://flickr.com/ns/api#">

[xml-payload]
</FlickrResponse>

</s:Body>
</s:Envelope>

A Simple Call to the Echo Service Returns This
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Flickr REST Code
public static List<Photo> search(String tag) {

URL url = new URL(
"http://www.flickr.com/services/rest/?” +
“method=flickr.photos.search&api_key=” +
myFlickrKey + “&tags=java");

InputStream is = url.openStream();
return FlickrParser.parsePhotos(is);

}
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RSS

• Polling technology that consumes an 
XML document

• RSS readers subscribe to RSS “feeds” 
Whenever the feed is updated, it is consumed 
by the reader

• Very useful, simple, works well in combination 
with REST or some other web service

• http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html



2006 JavaOneSM Conference   |   Session TS-4635   | 24

Screen Scraping

• Poor webservice

• Essentially imitating a browser
• Parse the HTML from a URL and “scrape” out the 

relevant info

• Use HTTP PUT/GET/POST requests to request 
pages or post forms

• Breaks whenever the page you are scraping 
changes incompatibly
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Web Service Types Summary

• REST: easiest and most straightforward solution

• SOAP: somewhat heavyweight for typical 
desktop requirements

• XML-RPC: nice balance between easy 
and powerful
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ResultSet

• Traditional database access technology

• Easy to write

• Harder to read

• Hard to interact with from a GUI
• Has a cursor

• May be unidirectional

• Throws checked exceptions on most methods
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ResultSet Code
public static List<Photo> search(String tag) {

Connection c = createConnection();
ResultSet rs = c.createStatement().

executeQuery(“select url from PHOTO”);
List<Photo> results =      

new ArrayList<Photo>();
while (rs.next()) {

results.add(new Photo(rs.getString(1)));
}
rs.close();
c.close();
return results;

}
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Database Roundup

• ResultSet

• RowSet

• DataSet

• EJB 3 Architecture/Hibernate



2006 JavaOneSM Conference   |   Session TS-4635   | 31

RowSet

• Extends ResultSet

• Provides for disconnected data (CachedRowSet)

• Provides API for serializing results to XML (WebRowSet)

• Normally has a bidirectional cursor

• Still hard to use in the GUI
• Moving the cursor around makes it perform poorly in JTable

• Still throws a lot of checked exceptions
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RowSet Code
public static List<Photo> search(String tag) {

Connection c = createConnection();
CachedRowSet rs = new CachedRowSetImpl();
rs.setCommand(“select url from PHOTO”);
rs.execute(c);
List<Photo> results = new ArrayList<Photo>();
while (rs.next()) {

results.add(new Photo(rs.getString(1)));
}
rs.close();
c.close();
return results;

}
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DataSet

• New in Mustang (Java™ SE 6 platform, pending 
approval from the Mustang EG)

• Part of JDBC™ 4.0 software

• Extends java.util.List

• Provides for both connected and 
disconnected states

• Part of the Ease Of Development enhancements 
in JDBC 4.0 software
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DataSet Code
public static List<Photo> search(String tag) {

Connection c = createConnection();
Queries q =

c.createQueryObject(Queries.class);
c.close();
return q.getAllPhotos();

}

interface Queries extends BaseQuery {
@Select (“select * from PHOTO”)
DataSet<Photo> getAllPhotos();

}



2006 JavaOneSM Conference   |   Session TS-4635   | 36

Database Roundup

• ResultSet

• RowSet

• DataSet

• EJB™ 3 Architecture/Hibernate
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EJB 3

• Latest Enterprise JavaBeans™ (EJB) Spec, part of Java 
EE 5 platform

• “This is not your father’s J2EE™ platform!”
—Bill Shannon

• Can be used in Java SE platform
• Requires bundling some jars

• Requires an implementation
• Hibernate is the popular choice

• More powerful, more complex than JDBC 4.0 software DataSet
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Hibernate

• Enormously popular ORM library

• Major participant in JSR-220 
(EJB 3.0 architecture)

• http://www.hibernate.org/152.html

• Suffers from dependency madness
• 36 dependency jars shipped with Hibernate 3!

• EJB™ 3.0 technology docs don’t reflect 
current reality
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EJB 3 Architecture Code

public static List<Photo> search(String tag) {
EntityManagerFactory f = Persistence.

createEntityManagerFactory(“flickr”);
EntityManager m = f.createEntityManager();
Query q = m.

createNativeQuery(“select url from PHOTO”);
return q.getResultList();

}
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EJB 3 Architecture Configuration
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name="flickr" 
transaction-type="RESOURCE_LOCAL">

<provider>org.hibernate.ejb.HibernatePersistence</provider>
<class>delme.hibernate.Photo</class>
<properties>

<property name="hibernate.connection.driver_class" 
value="org.apache.derby.jdbc.EmbeddedDriver"/>

<property name="hibernate.connection.url" 
value="jdbc:derby:flickr;create=true"/>

<property name="hibernate.dialect" 
value="org.hibernate.dialect.HSQLDialect"/>

</properties>
</persistence-unit>

</persistence>
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Database Summary

• Desktop applications should use DataSet
• RowSet and ResultsSet are just transport types

• Hibernate and EJB beans are too heavyweight 
for typical desktop needs
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Separate Data Access Logic From UI!
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Separate Concerns

• Single most important concept

• UI should evolve according to users needs

• Data access should evolve according to 
technical needs

• Presentation Logic layer acts as adaptive layer 
to “glue” the UI to the data layer
• Popular pattern: Presentation Model

• Individual circumstances may require adaptation
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Observability

• Key part of JavaBeans™ architecture 
component model

• Allows construction of loosely 
coupled components

• Extremely useful in the data access layer 
and in the GUI layer
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Typical Uses

• Data binding
• Allows framework to observe changes 

and synchronize between beans

• Tools
• For both visual and non visual components

• Observe status and update GUI as appropriate
• isLoaded()
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How Do I Send a Diff to the Server?
Design Problem #1

“How do I efficiently synchronize the 
server with small changes to data that 
is cached locally?”
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Solution: Observability

• Write a DataObserver 
• Listens to property change events on your 

data objects

• Records what data has been changed

• Records the original value

• When preparing the diff
• Consult the DataObserver for those fields 

that have changed
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Design Problem #2
What Do I Do About Conflicts?

“Data on the server has changed; how do
I detect conflicts between local data and
changed data on the server?”
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Solution: Observability

• Write a DataObserver 
• Listens to property change events on your 

data objects

• Records what data has been changed

• Records the original value

• Consult the DataObserver for conflicts

• Notify the UI of conflicts so the user can 
resolve them
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Easy Observability
import org.jdesktop.swingx.JavaBean;
public class MyDataObject extends JavaBean {

private boolean loaded;

public boolean isLoaded() {
return loaded;

}
protected void setLoaded(boolean b) {

boolean old = isLoaded();
this.loaded = b;
firePropertyChange(“loaded”, old, 

isLoaded());
}

}
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Code Notes

• SwingLabs provides the JavaBeans 
technology class
• Methods for adding/removing listeners 

• Methods for firing events

• Trivial to implement observability

• “isLoaded()” is called in the setLoaded method
• Notification works correctly even if “isLoaded” 

is overridden

• Methods don’t have to be public
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Designing for the Network

• The network is unreliable

• Users are impatient
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Rule #1: The Network Is Unreliable

• Network requests may not succeed

• Network response time may be unpredictable
• Typical requests range from 150–5000 milliseconds
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Rule #2: Users Are Impatient

• If an application is unresponsive users may
• Distrust the application

• Think the application has crashed

• Quit the application and lose data

• Look for other competing solutions

• Take you off their Christmas list

• Users must be kept informed of progress
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Solution: Threading

• Spawn a thread for all network related requests
• SwingWorker makes it easier to manage 

background threads
• http://swingworker.dev.java.net

• Where possible, keep track of progress
• HTTP responses may have a header indicating the number 

of bytes in the “page”
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Threading

• The data access layer or presentation model 
layer is responsible for creating and managing 
these threads

• The UI layer must be notified of the status 
of these tasks
• Progress indicators may need to be shown

• Components may need to be disabled until the 
task is completed

• Threads must be cancelable, where possible
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Threading
• Swing GUI should be updated only on the Event Dispatch 

Thread (EDT)
• This happens by default in Swing

• Swing listeners always run on the EDT

• To update the GUI from a background thread
• SwingUtilities.invokeLater (asynchronous)
• SwingUtilities.invokeAndWait (synchronous)

• In Java 1.5 platform, java.util.concurrent package contains 
many very useful threading utilities
• Thread pools
• Cancelable tasks
• Concurrent collections
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Async Data Access

• Presentation Model for a GUI is notified of some 
action (button press)

• PM notifies data access layer to load some data

• Data Access layer creates background thread, 
returns a SwingWorker

• PM observes SwingWorker, updates UI state 
to reflect the loading status

• PM updates UI state when task is complete
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Async Redux

• Presentation Model for a GUI is notified of some 
action (button press)

• PM observes “loaded” property of data object

• While not loaded, PM observes “status” property 
of data object, updates UI accordingly

• When “loaded”, UI is updated with data
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Swing + Mashups = Smashups

• Easy and powerful
• The hard work is done by the web service providers 

on the server

• Many popular web services already have data access 
logic written for Java technology

• New Swing components for popular web services 
are being implemented in SwingLabs

• Best of both worlds
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Slickr

• Sample “Smashup” application
• The beginnings of a general Flickr client

• Flickr photo viewer and trip reporter

• http://aerith.dev.java.net
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Demo
Aerith
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Demo Notes

• Flickr images are wrapped in a PhotoWrapper
• PhotoWrapper notifies when the real photo 

image is loaded

• Google Map tiles are wrapped in a Tile
• Notifies when the tile image is loaded

• Maintains a SoftReference for the image

• ResponseCache implementation for caching 
images (both tiles and photos)
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Summary

• Smart Clients use WebServices

• Smashups are easy and powerful additions 
to your applications

• Cache data for offline use

• Perform network tasks asynchronously
• Inform the user!

• Inform the user of their connection state

• Many database access options available
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For More Information

• Technical Sessions
• TS-1074: Desktop Patterns and Data Binding

• TS-4855: Swing Threading 101

• BOFs
• BOF-0614: SwingLabs

• URLs
• http://www.martinfowler.com/eaaDev/PresentationModel.html

• http://swinglabs.org

• Google for: Microsoft Smart Client design guide

• http://www.flickr.com/services/api
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