
2006 JavaOneSM Conference   |   Session TS-4635   | 

Best Practices: 
Data Access Strategies
Richard Bair
SwingLabs Lead
Sun Microsystems
http://swinglabs.org

TS-4635
Copyright © 2006, Sun Microsystems Inc., All rights reserved.



2006 JavaOneSM Conference   |   Session TS-4635   | 2

Swing: Powerful Rich Client Platform
Main Takeaway

Learn different data access strategies 
and application design patterns for 
building occasionally connected rich client 
applications



2006 JavaOneSM Conference   |   Session TS-4635   | 3

Agenda

Smart Clients Defined

Application Design Overview

Demo Application

Summary



2006 JavaOneSM Conference   |   Session TS-4635   | 4

Agenda

Smart Clients Defined
Application Design Overview

Demo Application

Summary



2006 JavaOneSM Conference   |   Session TS-4635   | 5

Smart Clients

• Access to local machine resources
• Massive hard drive capacity

• Graphics card

• Memory

• Rich user experience

• Connect to network resources

• Occasionally connected



2006 JavaOneSM Conference   |   Session TS-4635   | 6

Occasionally Connected

• Users demand reliable access to their data 
in an unreliable world

• Smart clients must be prepared to cache
• If disconnected, users can continue working

• Cache must be synchronized with server

• Comprehensive caching technology is still a work 
in progress



2006 JavaOneSM Conference   |   Session TS-4635   | 7

ResponseCache

• ResponseCache provides a pluggable 
mechanism for caching the results of URL 
connections
• @since 1.5

• Works well for storing read-only data



2006 JavaOneSM Conference   |   Session TS-4635   | 8

Web Services + Smart Clients

• Smart Clients use Web 
Services extensively
• Google Maps

• Flickr

• RSS

• Proprietary

• Mashups work well 
in Smart Clients

• Best of both worlds



2006 JavaOneSM Conference   |   Session TS-4635   | 9

Why Web Services?

• Security
• Doesn’t require any new open ports

• Security is built in at the web server level

• Scalability
• Load balancers, clusters, etc.

• Accessible
• Easily accessible from any type of client on any type 

of platform



2006 JavaOneSM Conference   |   Session TS-4635   | 10

Web Service Types

• REST

• XML-RPC

• SOAP

• RSS

• Screen Scraping



2006 JavaOneSM Conference   |   Session TS-4635   | 11

Note: Learn With Flickr

• Flickr is excellent for learning web services
• Supports REST, XML-RPC, SOAP, RSS

• Good documentation

• Tons of freely available data

• Read access doesn’t require registration

• Resulting applications are interesting and fun

• Today’s Demos use Flickr



2006 JavaOneSM Conference   |   Session TS-4635   | 12

REST

• Acronym for Representational State Transfer

• Extremely simple web service
• It’s the way the web works!

• A single URL leads to a unique resource
• Example: 

http://www.flickr.com/photos/romainguy/112798971/



2006 JavaOneSM Conference   |   Session TS-4635   | 13

REST—Yes, that’s it!

• REST is not a framework, its an 
architectural style

• Can be combined with other webservices such 
as XML-RPC

• Often the data returned is
• XML

• PDF

• Image (PNG, JPG, SVG, etc.)



2006 JavaOneSM Conference   |   Session TS-4635   | 14

XML-RPC

• Somewhat more complicated that REST for 
binary data (such as images)

• Provides a structured XML document for making 
remote procedure calls
• Supports only basic primitives

• Usually enough to get the job done

• Very simple

• Supported in most programming languages



2006 JavaOneSM Conference   |   Session TS-4635   | 15

SOAP

• “Simple Object Access Protocol”

• Technically much more that RPC, but usually 
SOAP is used for RPC
• A (much) more advanced form of XML-RPC

• Sometimes too heavyweight for the job

• Industry Support
• Microsoft

• IBM

• Sun



2006 JavaOneSM Conference   |   Session TS-4635   | 16

Flickr REST Request

To request the flickr.test.echo service, invoke like this:

http://www.flickr.com/services/rest/?method=flickr.test.echo&name=value

http://www.flickr.com/services/rest/?method=flickr.test.echo&name=value


2006 JavaOneSM Conference   |   Session TS-4635   | 17

Flickr XML-RPC Request

<methodCall>
<methodName>flickr.test.echo</methodName>
<params>

<param>
<value>

<struct>
<member>

<name>name</name>
<value><string>value</string></value>

</member>
<member>

<name>name2</name>
<value><string>value2</string></value>

</member>
</struct>

</value>
</param>

</params>
</methodCall>

To request the flickr.test.echo service, 
send a request like this



2006 JavaOneSM Conference   |   Session TS-4635   | 18

Flickr SOAP Request
To request the flickr.test.echo service, 
send an envelope like this
<s:Envelope

xmlns:s="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"

>
<s:Body>

<x:FlickrRequest xmlns:x="urn:flickr">
<method>flickr.test.echo</method>
<name>value</name>

</x:FlickrRequest>
</s:Body>

</s:Envelope>



2006 JavaOneSM Conference   |   Session TS-4635   | 19

Flickr REST Response
A method call returns this

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">

[xml-payload-here]
</rsp>



2006 JavaOneSM Conference   |   Session TS-4635   | 20

Flickr XML-RPC Response
A simple call to the echo service returns this

<?xml version="1.0" encoding="utf-8" ?>
<methodResponse>

<params>
<param>

<value>
<string>

[escaped-xml-payload]
</string>

</value>
</param>

</params>
</methodResponse>



2006 JavaOneSM Conference   |   Session TS-4635   | 21

Flickr SOAP Response

<?xml version="1.0" encoding="utf-8" ?>
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-
envelope">

<s:Body>
<FlickrResponse xmlns="http://flickr.com/ns/api#">

[xml-payload]
</FlickrResponse>

</s:Body>
</s:Envelope>

A Simple Call to the Echo Service Returns This



2006 JavaOneSM Conference   |   Session TS-4635   | 22

Flickr REST Code
public static List<Photo> search(String tag) {

URL url = new URL(
"http://www.flickr.com/services/rest/?” +
“method=flickr.photos.search&api_key=” +
myFlickrKey + “&tags=java");

InputStream is = url.openStream();
return FlickrParser.parsePhotos(is);

}



2006 JavaOneSM Conference   |   Session TS-4635   | 23

RSS

• Polling technology that consumes an 
XML document

• RSS readers subscribe to RSS “feeds” 
Whenever the feed is updated, it is consumed 
by the reader

• Very useful, simple, works well in combination 
with REST or some other web service

• http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html



2006 JavaOneSM Conference   |   Session TS-4635   | 24

Screen Scraping

• Poor webservice

• Essentially imitating a browser
• Parse the HTML from a URL and “scrape” out the 

relevant info

• Use HTTP PUT/GET/POST requests to request 
pages or post forms

• Breaks whenever the page you are scraping 
changes incompatibly



2006 JavaOneSM Conference   |   Session TS-4635   | 25

Web Service Types Summary

• REST: easiest and most straightforward solution

• SOAP: somewhat heavyweight for typical 
desktop requirements

• XML-RPC: nice balance between easy 
and powerful



2006 JavaOneSM Conference   |   Session TS-4635   | 26

Database Roundup

• ResultSet

• RowSet

• DataSet

• EJB™ 3 Architecture/Hibernate



2006 JavaOneSM Conference   |   Session TS-4635   | 27

Database Roundup

• ResultSet

• RowSet

• DataSet

• EJB™ 3 Architecture/Hibernate



2006 JavaOneSM Conference   |   Session TS-4635   | 28

ResultSet

• Traditional database access technology

• Easy to write

• Harder to read

• Hard to interact with from a GUI
• Has a cursor

• May be unidirectional

• Throws checked exceptions on most methods



2006 JavaOneSM Conference   |   Session TS-4635   | 29

ResultSet Code
public static List<Photo> search(String tag) {

Connection c = createConnection();
ResultSet rs = c.createStatement().

executeQuery(“select url from PHOTO”);
List<Photo> results =      

new ArrayList<Photo>();
while (rs.next()) {

results.add(new Photo(rs.getString(1)));
}
rs.close();
c.close();
return results;

}



2006 JavaOneSM Conference   |   Session TS-4635   | 30

Database Roundup

• ResultSet

• RowSet

• DataSet

• EJB 3 Architecture/Hibernate



2006 JavaOneSM Conference   |   Session TS-4635   | 31

RowSet

• Extends ResultSet

• Provides for disconnected data (CachedRowSet)

• Provides API for serializing results to XML (WebRowSet)

• Normally has a bidirectional cursor

• Still hard to use in the GUI
• Moving the cursor around makes it perform poorly in JTable

• Still throws a lot of checked exceptions



2006 JavaOneSM Conference   |   Session TS-4635   | 32

RowSet Code
public static List<Photo> search(String tag) {

Connection c = createConnection();
CachedRowSet rs = new CachedRowSetImpl();
rs.setCommand(“select url from PHOTO”);
rs.execute(c);
List<Photo> results = new ArrayList<Photo>();
while (rs.next()) {

results.add(new Photo(rs.getString(1)));
}
rs.close();
c.close();
return results;

}



2006 JavaOneSM Conference   |   Session TS-4635   | 33

Database Roundup

• ResultSet

• RowSet

• DataSet

• EJB™ 3 Architecture/Hibernate



2006 JavaOneSM Conference   |   Session TS-4635   | 34

DataSet

• New in Mustang (Java™ SE 6 platform, pending 
approval from the Mustang EG)

• Part of JDBC™ 4.0 software

• Extends java.util.List

• Provides for both connected and 
disconnected states

• Part of the Ease Of Development enhancements 
in JDBC 4.0 software



2006 JavaOneSM Conference   |   Session TS-4635   | 35

DataSet Code
public static List<Photo> search(String tag) {

Connection c = createConnection();
Queries q =

c.createQueryObject(Queries.class);
c.close();
return q.getAllPhotos();

}

interface Queries extends BaseQuery {
@Select (“select * from PHOTO”)
DataSet<Photo> getAllPhotos();

}



2006 JavaOneSM Conference   |   Session TS-4635   | 36

Database Roundup

• ResultSet

• RowSet

• DataSet

• EJB™ 3 Architecture/Hibernate



2006 JavaOneSM Conference   |   Session TS-4635   | 37

EJB 3

• Latest Enterprise JavaBeans™ (EJB) Spec, part of Java 
EE 5 platform

• “This is not your father’s J2EE™ platform!”
—Bill Shannon

• Can be used in Java SE platform
• Requires bundling some jars

• Requires an implementation
• Hibernate is the popular choice

• More powerful, more complex than JDBC 4.0 software DataSet



2006 JavaOneSM Conference   |   Session TS-4635   | 38

Hibernate

• Enormously popular ORM library

• Major participant in JSR-220 
(EJB 3.0 architecture)

• http://www.hibernate.org/152.html

• Suffers from dependency madness
• 36 dependency jars shipped with Hibernate 3!

• EJB™ 3.0 technology docs don’t reflect 
current reality



2006 JavaOneSM Conference   |   Session TS-4635   | 39

EJB 3 Architecture Code

public static List<Photo> search(String tag) {
EntityManagerFactory f = Persistence.

createEntityManagerFactory(“flickr”);
EntityManager m = f.createEntityManager();
Query q = m.

createNativeQuery(“select url from PHOTO”);
return q.getResultList();

}



2006 JavaOneSM Conference   |   Session TS-4635   | 40

EJB 3 Architecture Configuration
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name="flickr" 
transaction-type="RESOURCE_LOCAL">

<provider>org.hibernate.ejb.HibernatePersistence</provider>
<class>delme.hibernate.Photo</class>
<properties>

<property name="hibernate.connection.driver_class" 
value="org.apache.derby.jdbc.EmbeddedDriver"/>

<property name="hibernate.connection.url" 
value="jdbc:derby:flickr;create=true"/>

<property name="hibernate.dialect" 
value="org.hibernate.dialect.HSQLDialect"/>

</properties>
</persistence-unit>

</persistence>



2006 JavaOneSM Conference   |   Session TS-4635   | 41

Database Summary

• Desktop applications should use DataSet
• RowSet and ResultsSet are just transport types

• Hibernate and EJB beans are too heavyweight 
for typical desktop needs



2006 JavaOneSM Conference   |   Session TS-4635   | 42

Agenda

Smart Clients Defined

Application Design Overview
Demo Application

Summary



2006 JavaOneSM Conference   |   Session TS-4635   | 43

Separate Data Access Logic From UI!



2006 JavaOneSM Conference   |   Session TS-4635   | 44

Separate Concerns

• Single most important concept

• UI should evolve according to users needs

• Data access should evolve according to 
technical needs

• Presentation Logic layer acts as adaptive layer 
to “glue” the UI to the data layer
• Popular pattern: Presentation Model

• Individual circumstances may require adaptation



2006 JavaOneSM Conference   |   Session TS-4635   | 45

Observability

• Key part of JavaBeans™ architecture 
component model

• Allows construction of loosely 
coupled components

• Extremely useful in the data access layer 
and in the GUI layer



2006 JavaOneSM Conference   |   Session TS-4635   | 46

Typical Uses

• Data binding
• Allows framework to observe changes 

and synchronize between beans

• Tools
• For both visual and non visual components

• Observe status and update GUI as appropriate
• isLoaded()



2006 JavaOneSM Conference   |   Session TS-4635   | 47

How Do I Send a Diff to the Server?
Design Problem #1

“How do I efficiently synchronize the 
server with small changes to data that 
is cached locally?”



2006 JavaOneSM Conference   |   Session TS-4635   | 48

Solution: Observability

• Write a DataObserver 
• Listens to property change events on your 

data objects

• Records what data has been changed

• Records the original value

• When preparing the diff
• Consult the DataObserver for those fields 

that have changed



2006 JavaOneSM Conference   |   Session TS-4635   | 49

Design Problem #2
What Do I Do About Conflicts?

“Data on the server has changed; how do
I detect conflicts between local data and
changed data on the server?”



2006 JavaOneSM Conference   |   Session TS-4635   | 50

Solution: Observability

• Write a DataObserver 
• Listens to property change events on your 

data objects

• Records what data has been changed

• Records the original value

• Consult the DataObserver for conflicts

• Notify the UI of conflicts so the user can 
resolve them



2006 JavaOneSM Conference   |   Session TS-4635   | 51

Easy Observability
import org.jdesktop.swingx.JavaBean;
public class MyDataObject extends JavaBean {

private boolean loaded;

public boolean isLoaded() {
return loaded;

}
protected void setLoaded(boolean b) {

boolean old = isLoaded();
this.loaded = b;
firePropertyChange(“loaded”, old, 

isLoaded());
}

}



2006 JavaOneSM Conference   |   Session TS-4635   | 52

Code Notes

• SwingLabs provides the JavaBeans 
technology class
• Methods for adding/removing listeners 

• Methods for firing events

• Trivial to implement observability

• “isLoaded()” is called in the setLoaded method
• Notification works correctly even if “isLoaded” 

is overridden

• Methods don’t have to be public



2006 JavaOneSM Conference   |   Session TS-4635   | 53

Designing for the Network

• The network is unreliable

• Users are impatient



2006 JavaOneSM Conference   |   Session TS-4635   | 54

Rule #1: The Network Is Unreliable

• Network requests may not succeed

• Network response time may be unpredictable
• Typical requests range from 150–5000 milliseconds



2006 JavaOneSM Conference   |   Session TS-4635   | 55

Rule #2: Users Are Impatient

• If an application is unresponsive users may
• Distrust the application

• Think the application has crashed

• Quit the application and lose data

• Look for other competing solutions

• Take you off their Christmas list

• Users must be kept informed of progress



2006 JavaOneSM Conference   |   Session TS-4635   | 56

Solution: Threading

• Spawn a thread for all network related requests
• SwingWorker makes it easier to manage 

background threads
• http://swingworker.dev.java.net

• Where possible, keep track of progress
• HTTP responses may have a header indicating the number 

of bytes in the “page”



2006 JavaOneSM Conference   |   Session TS-4635   | 57

Threading

• The data access layer or presentation model 
layer is responsible for creating and managing 
these threads

• The UI layer must be notified of the status 
of these tasks
• Progress indicators may need to be shown

• Components may need to be disabled until the 
task is completed

• Threads must be cancelable, where possible



2006 JavaOneSM Conference   |   Session TS-4635   | 58

Threading
• Swing GUI should be updated only on the Event Dispatch 

Thread (EDT)
• This happens by default in Swing

• Swing listeners always run on the EDT

• To update the GUI from a background thread
• SwingUtilities.invokeLater (asynchronous)
• SwingUtilities.invokeAndWait (synchronous)

• In Java 1.5 platform, java.util.concurrent package contains 
many very useful threading utilities
• Thread pools
• Cancelable tasks
• Concurrent collections



2006 JavaOneSM Conference   |   Session TS-4635   | 59

Async Data Access

• Presentation Model for a GUI is notified of some 
action (button press)

• PM notifies data access layer to load some data

• Data Access layer creates background thread, 
returns a SwingWorker

• PM observes SwingWorker, updates UI state 
to reflect the loading status

• PM updates UI state when task is complete



2006 JavaOneSM Conference   |   Session TS-4635   | 60

Async Redux

• Presentation Model for a GUI is notified of some 
action (button press)

• PM observes “loaded” property of data object

• While not loaded, PM observes “status” property 
of data object, updates UI accordingly

• When “loaded”, UI is updated with data



2006 JavaOneSM Conference   |   Session TS-4635   | 61

Agenda

Smart Clients Defined

Application Design Overview

Demo Application
Summary



2006 JavaOneSM Conference   |   Session TS-4635   | 62

Swing + Mashups = Smashups

• Easy and powerful
• The hard work is done by the web service providers 

on the server

• Many popular web services already have data access 
logic written for Java technology

• New Swing components for popular web services 
are being implemented in SwingLabs

• Best of both worlds



2006 JavaOneSM Conference   |   Session TS-4635   | 63

Slickr

• Sample “Smashup” application
• The beginnings of a general Flickr client

• Flickr photo viewer and trip reporter

• http://aerith.dev.java.net



2006 JavaOneSM Conference   |   Session TS-4635   | 64

Demo
Aerith



2006 JavaOneSM Conference   |   Session TS-4635   | 65

Demo Notes

• Flickr images are wrapped in a PhotoWrapper
• PhotoWrapper notifies when the real photo 

image is loaded

• Google Map tiles are wrapped in a Tile
• Notifies when the tile image is loaded

• Maintains a SoftReference for the image

• ResponseCache implementation for caching 
images (both tiles and photos)



2006 JavaOneSM Conference   |   Session TS-4635   | 66

Agenda

Smart Clients Defined

Application Design Overview

Demo Application

Summary



2006 JavaOneSM Conference   |   Session TS-4635   | 67

Summary

• Smart Clients use WebServices

• Smashups are easy and powerful additions 
to your applications

• Cache data for offline use

• Perform network tasks asynchronously
• Inform the user!

• Inform the user of their connection state

• Many database access options available



2006 JavaOneSM Conference   |   Session TS-4635   | 68

For More Information

• Technical Sessions
• TS-1074: Desktop Patterns and Data Binding

• TS-4855: Swing Threading 101

• BOFs
• BOF-0614: SwingLabs

• URLs
• http://www.martinfowler.com/eaaDev/PresentationModel.html

• http://swinglabs.org

• Google for: Microsoft Smart Client design guide

• http://www.flickr.com/services/api



2006 JavaOneSM Conference   |   Session TS-4635   | 69

Q&A
Richard Bair

2006 JavaOneSM Conference   |   Session TS-4635   | 69



2006 JavaOneSM Conference   |   Session TS-4635   | 

Best Practices: 
Data Access Strategies
Richard Bair
SwingLabs Lead
Sun Microsystems
http://swinglabs.org

TS-4635


	Best Practices: Data Access Strategies
	Main Takeaway
	Agenda
	Agenda
	Smart Clients
	Occasionally Connected
	ResponseCache
	Web Services + Smart Clients
	Why Web Services?
	Web Service Types
	Note: Learn With Flickr
	REST
	REST—Yes, that’s it!
	XML-RPC
	SOAP
	Flickr REST Request
	Flickr XML-RPC Request
	Flickr SOAP Request
	Flickr REST Response
	Flickr XML-RPC Response
	Flickr SOAP Response
	Flickr REST Code
	RSS
	Screen Scraping
	Web Service Types Summary
	Database Roundup
	Database Roundup
	ResultSet
	ResultSet Code
	Database Roundup
	RowSet
	RowSet Code
	Database Roundup
	DataSet
	DataSet Code
	Database Roundup
	EJB 3
	Hibernate
	EJB 3 Architecture Code
	EJB 3 Architecture Configuration
	Database Summary
	Agenda
	Separate Data Access Logic From UI!
	Separate Concerns
	Observability
	Typical Uses
	Design Problem #1
	Solution: Observability
	Design Problem #2
	Solution: Observability
	Easy Observability
	Code Notes
	Designing for the Network
	Rule #1: The Network Is Unreliable
	Rule #2: Users Are Impatient
	Solution: Threading
	Threading
	Threading
	Async Data Access
	Async Redux
	Agenda
	Swing + Mashups = Smashups
	Slickr
	Demo
	Demo Notes
	Agenda
	Summary
	For More Information
	Q&A
	Best Practices: Data Access Strategies

