
2006 JavaOneSM Conference | Session TS-6218 |

How to Write APIs That Will
Stand the Test of Time
Tim Boudreau and Jaroslav Tulach
Sun Microsystems
http://www.netbeans.org

TS-6218
Copyright © 2006, Sun Microsystems, Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-6218 | 2

Design to Last

Learn why to strive for good API design
and few tricks how to do it from guys who
maintain NetBeans™ framework APIs for
more than five years

First Version Is Always Easy

2006 JavaOneSM Conference | Session TS-6218 | 3

Agenda

Why Create an API at All?
What Is an API?
API Design Patterns
API Design Anti-Patterns

2006 JavaOneSM Conference | Session TS-6218 | 4

Distributed Development

● There are a lot of Open Source Solutions
● ant, jalopy, velocity, tomcat, javacc, junit

● Applications are no longer written, but composed
● Linux distributions, Mac OS X

● Source code spread around the world
● Exact schedule is impossible

2006 JavaOneSM Conference | Session TS-6218 | 5

Modular Applications

● Composed from smaller chunks
● Separate teams, schedule, lifecycle

● Dependency management
● Specification Version 1.34.8
● Implementation Version Build20050611
● Dependencies chunk-name1 ≥ 1.32

● RPM packagers
● Execution containers like NetBeans™ technology

http://platform.netbeans.org/

2006 JavaOneSM Conference | Session TS-6218 | 6

What Is an API?

● API is used for communication
● Build trust, clearly describe plans

● Evolution is necessary
● Method and field signatures
● Files and their content
● Environment variables
● Protocols
● Behaviour
● L10N messages

http://openide.netbeans.org/tutorial/api-design.html

2006 JavaOneSM Conference | Session TS-6218 | 7

Preservation of Investments

● Backward compatibility
● Source vs. binary vs. cooperation

● Knowing your clients is not possible
● Incremental improvements
● First version is never perfect
● Coexistence with other versions

http://openide.netbeans.org/tutorial/api-design.html

2006 JavaOneSM Conference | Session TS-6218 | 8

Rules for Successful API design

● Use case driven API design
● Use cases → scenarios → javadoc

● Consistent API design
● An interface that is predictable serves better than one

which is locally optimal but inconsistent across the
whole set

● Simple and clean API design
● Less is more—expose only necessary functionality

● Think about future evolution
● First version is not going to be perfect

2006 JavaOneSM Conference | Session TS-6218 | 9

Stability of APIs

● It is all about communication
● APIs can serve different purposes

● Early adopters
● Internal communications
● Framework APIs

● We have stability categories
● Private, friend
● Under development, stable, standard
● Deprecated

http://openide.netbeans.org/tutorial/api-design.html#life

2006 JavaOneSM Conference | Session TS-6218 | 10

Evaluation of an API Quality

● Customer-centric—easy to use
● Use cases, scenarios, javadoc
● Future evolution
● Test coverage
● Quality = code Δ specification
● The “amoeba” model

NetBeans API Reviews http://openide.netbeans.org/tutorial/reviews/

2006 JavaOneSM Conference | Session TS-6218 | 11

The Amoeba Model

http://openide.netbeans.org/tutorial/test-patterns.html

2006 JavaOneSM Conference | Session TS-6218 | 12

The Amoeba Model

http://openide.netbeans.org/tutorial/test-patterns.html

2006 JavaOneSM Conference | Session TS-6218 | 13

The Amoeba Model

http://openide.netbeans.org/tutorial/test-patterns.html

2006 JavaOneSM Conference | Session TS-6218 | 14

Design Patterns

● “Recurring solutions to software design problems”
● Common name
● Description of the problem
● The solution and its consequences

● Simplify description of the architecture

http://openide.netbeans.org/tutorial/api-design.html

2006 JavaOneSM Conference | Session TS-6218 | 15

API Design Patterns

● Design patterns as well
● simplify description of the architecture

● API framework vs. internal design
● Main emphasis is on evolution
● First version is never perfect

http://openide.netbeans.org/tutorial/api-design.html

2006 JavaOneSM Conference | Session TS-6218 | 16

Factory Method Gives More Freedom

http://openide.netbeans.org/tutorial/api-design.html

// exposing constructor of a class like
ThreadPool pool = new GeneralThreadPool();
// gives you less freedom then
ThreadPool pool = ThreadPool.createGeneral();

● The actual class can change in future
● One can cache instances
● Synchronization is possible

Do Not Expose More Than You Have To

2006 JavaOneSM Conference | Session TS-6218 | 17

Method Is Better Than Field

http://openide.netbeans.org/tutorial/api-design.html

class Person extends Identifiable {
 String name;
 public void setName(String n) {
 this.name = n;
 }

● Synchronization is possible
● Validation of input parameters in setter

can be done
● The method can be moved to super class

Do Not Expose More Than You Have To

2006 JavaOneSM Conference | Session TS-6218 | 18

Non-Public Packages

http://openide.netbeans.org/tutorial/api-design.html

OpenIDE-Module-Module: org.your.app/1
OpenIDE-Module-Public-Packages: org.your.api
OpenIDE-Module-Friends: org.your.otherapp/1

● NetBeans allows to specify list of public packages
● Enforced on ClassLoader level
● Possible to enumerate modules that can access them
● Split API classes into one package and hide the rest

Do Not Expose More Than You Have To

2006 JavaOneSM Conference | Session TS-6218 | 19

Restrict Access to Friends

http://openide.netbeans.org/tutorial/api-design.html

public final class api.Item {
 /** Friend only constructor */
 Item(int value) { this.value = value; }
 /** API method(s) */
 public int getValue() { return value; }
 /** Friend only method */
 final void addListener(Listener l) { ... }
}

● Use package private classes
● Java technology does not have friend

packages, but...

Do Not Expose More Than You Have To

2006 JavaOneSM Conference | Session TS-6218 | 20

Restrict Access to Friends (Cont.)

http://openide.netbeans.org/tutorial/api-design.html

/** The friend package defines an accessor
 * interfaces and asks for its implementation
 */
public abstract class impl.Accessor {
 public static Accessor DEFAULT;
 static { Object o = api.Item.class; }
 public abstract Item newItem(int value);
 public abstract void addListener(

Item item, Listener l);
}

Do Not Expose More Than You Have To

2006 JavaOneSM Conference | Session TS-6218 | 21

Restrict Access to Friends (Cont.)

http://openide.netbeans.org/tutorial/api-design.html

class api.AccessorImpl extends impl.Accessor {
 public Item newItem(int value) {
 return new Item(value); }
 public void addListener(Item item, Listener l) {
 return item.addListener(l); }
}
public final class Item {
 static {
 impl.Accessor.DEFAULT = new api.AccessorImpl();
 }
}

Do Not Expose More Than You Have To

2006 JavaOneSM Conference | Session TS-6218 | 22

The Difference Between
Java Code and C Code

http://openide.netbeans.org/tutorial/api-design.html

● Imagine API for control of media player in C
 void xmms_pause();
 void xmms_add_to_playlist(char *file);
● Java version is nearly the same
 class XMMS {
 public void pause();
 public void addToPlaylist(String file);
 }
● Adding new methods is possible and beneficial

Separate Client and Provider API

2006 JavaOneSM Conference | Session TS-6218 | 23

Provider Contract in
Java Code and C Code

http://openide.netbeans.org/tutorial/api-design.html

● Now let’s write the interface for playback plugin in C
 // it takes pointer to a function f(char* data)
 void xmms_register_playback((void)(f*)(char*));
● Java version much cleaner
 interface XMMS.Playback {
 public void playback(byte[] data);
 }
● Adding new methods breaks compatibility!

Separate Client and Provider API

2006 JavaOneSM Conference | Session TS-6218 | 24

Co-Variance and Contra-Variance

http://openide.netbeans.org/tutorial/api-design.html

Separate Client and Provider API
● Client API requirements are opposite

to Provider API
● Very different and complicated in C
● Simple in object-oriented languages

● Anything sub-classable is de-facto provider API
● Do not mix client and provider APIs

2006 JavaOneSM Conference | Session TS-6218 | 25

New OutputStream Method

http://openide.netbeans.org/tutorial/api-design.html

● Can you add write(ByteBuffer) to OutputStream?
 public void write(ByteBuffer b) throws IOException {
 throw new IOException(“Not supported”);
 }

● Previous version complicates clients, but there is a way:
 public void write(ByteBuffer b) throws IOException {
 byte[] arr = new byte[b.capacity()];
 b.position(0).get(arr);
 write(arr);
 }

Separate Client and Provider API

2006 JavaOneSM Conference | Session TS-6218 | 26

The FilterOutputStream Problem

http://openide.netbeans.org/tutorial/api-design.html

● Shall FilterOutputStream delegate or call super?
 public void write(ByteBuffer b) throws IOException {
 out.write(b); // super.write(b);?
 }

FOS.write(ByteBuffer)

FOS.write(byte[])

OS.write(ByteBuffer)

OS.write(...)

Useless
Desirable

Separate Client and Provider API

2006 JavaOneSM Conference | Session TS-6218 | 27

The FilterOutputStream Problem

http://openide.netbeans.org/tutorial/api-design.html

● Shall FilterOutputStream delegate or call super?
 public void write(ByteBuffer b) throws IOException {
 out.write(b); // super.write(b);?
 }

class MyFOS extends FOS {
 write(byte[] arr) {
 for (i) {
 arr[i] ~= 0xff;
 }
 out.write(arr);
 }
}

necessary

Separate Client and Provider API

FOS.write(ByteBuffer)

FOS.write(byte[])

OS.write(ByteBuffer)

OS.write(...)

Useless
Desirable

2006 JavaOneSM Conference | Session TS-6218 | 28

Fixing FilterOutputStream Problem

http://openide.netbeans.org/tutorial/api-design.html

● Fixing existing problem
● Delegate iff FOS.write(ByteBuffer) is not overridden

● Think about evolution during API design. For example:
public /*final*/ class OutputStream extends Object {
 private Impl impl;
 public OutputStream(Impl i) { impl = i };
 public final void write(byte[] arr) { impl.write(arr); }
 public interface Impl {
 void write(byte[] arr);
 }
 public interface ImplWithBuffer extends Impl {
 void write(ByteBuffer arr);
 }
}

Separate Client and Provider API

2006 JavaOneSM Conference | Session TS-6218 | 29

Separate Interface From
Implementation

http://www.netbeans.org/download/4_1/javadoc/usecases.html#usecase-Lookup

● Modular applications are not monolithic
● Testability of units
● Communication using well defined interfaces
 public abstract class LicenseManager {

 public abstract boolean licenseAccepted(URL licese);

 }

 class DefaultLM extends LicenseManager { ... }

 class TestingLM extends LicenseManager { ... }

Modular Applications Are the Future

2006 JavaOneSM Conference | Session TS-6218 | 30

Lookup Your Implementation

http://www.netbeans.org/download/4_1/javadoc/usecases.html#usecase-Lookup

● Inversion of control
● application code does not care about the implementation
● specified from outside

import org.openide.util.Lookup;

LicenseManager manager;

manager = Lookup.getDefault().lookup(LicenseManager.class);

manager.licenseAccepted(myLicenseURL);

● Different setup in tests and in runtime environment

Modular Applications Are the Future

2006 JavaOneSM Conference | Session TS-6218 | 31

Foreign Code From Constructor

http://openide.netbeans.org/tutorial/api-design.html

● Accessing not fully initialized object is dangerous
● Fields not assigned
● Virtual methods work

● java.awt.Component calls updateUI
● org.openide.loaders.DataObject calls
register

● Wrap with factories, make the constructors lightweight

Anti-Patterns

2006 JavaOneSM Conference | Session TS-6218 | 32

Foreign Code in Critical Section

http://openide.netbeans.org/tutorial/api-design.html

● Calling foreign code under lock leads to deadlocks
● Sometimes hard to prevent
 private HashSet allCreated = new HashSet ();
 public synchronized JLabel createLabel () {
 JLabel l = new JLabel ();
 allCreated.add (l);
 return l;
 }

● java.awt.Component grebs AWT tree lock
● HashSet.add calls Object.equals

Anti-Patterns

2006 JavaOneSM Conference | Session TS-6218 | 33

Verification

● Mistakes happen
● Automatic testing of global aspects

● Signature tests
● Files layout
● List of exported packages
● Module dependencies
● Automated tests

● Executed after each daily build

http://openide.netbeans.org/proposals/arch/clusters.html#verify

2006 JavaOneSM Conference | Session TS-6218 | 34

Summary

● Be client-centric
● Be predictable
● Always think about evolution
● Design to last

2006 JavaOneSM Conference | Session TS-6218 | 35

Q&A
Tim Boudreau
Jaroslav Tulach

2006 JavaOneSM Conference | Session TS-6218 |

How to Write APIs That Will
Stand the Test of Time
Tim Boudreau and Jaroslav Tulach
Sun Microsystems
http://www.netbeans.org

TS-6218

