@ Sun

Secure Coding Antipatterns:
Avoiding Vulnerabilities

Andreas Sterbenz
Charlie Lai

Sun Microsystems

TS-1238

Copyright © 2006, Sun Microsystems Inc., All rights reserved.
2006 JavaOne®M Conference | Session TS-1238 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

¢ JavaOne

2006 JavaOnesM Conference | Session TS-1238 | 2 iava.sun.com/iavaone/sf

Java

What Is a Vulnerability?

A weakness in a system allowing an
attacker to violate the integrity,
confidentiality, access control, availability,
consistency or audit mechanism of the

system or the data and applications
It hosts

Source: http://en.wikipedia.org/wiki/Vulnerability %28computer_science%29

¥Sun 2006 JavaOnes" Conference | Session TS-1238 | java.sun.com/javaone/sf

What Causes Vulnerabilities?

- Faulty assumptions in the application architecture
Errors in configuration

 |ncorrect logic

Insecure programming practices (antipatterns)

This session focuses on antipatterns

2006 JavaOnes" Conference | Session TS-1238 | 4 java .sun.com/javaone/sf

Secure Coding Antipatterns

Programming practices you should avoid
Negative counterpart to a design pattern

e.g. Implementing methods that don't validate
iInput params

Antipatterns not set in stone
Generally should avoid them, but there are exceptions
Make sure you understand the consequences
Vulnerabilities may exist in various locations

Application code, shared libraries, Java™ platform
core libraries

@%’SM?’I 2006 JavaOne® Conference | Session TS-1238 | iava .sun.com/iavaone/sf

>,

Antipatterns in C
Versus the Java Language

C-based antipatterns often exploit buffer
overflows

Java runtime safely manages memory
Performs automatic bounds checks on arrays
No pointer arithmetic

The Java runtime often executes untrusted code
Must protect against access to unauthorized resources

Results in a different set of coding antipatterns
than C

2006 JavaOne® Conference | Session TS-1238 | iava .sun.com/iavaone/sf

Java

How This Presentation Is Organized

List common coding antipatterns

For each antipattern:

Show real example from an older JDK™
software release

Explain the problem and attack scenario
Describe the proper secure coding guidelines

Summary

URL pointing to more comprehensive list of Java
language secure coding guidelines

@%SZH’Z 2006 JavaOne® Conference | Session TS-1238 | java .sun.com/iavaone/sf

Common Java Platform Antipatterns

1. Assuming objects are immutable

2. Basing security checks on untrusted sources
3.lgnoring changes to superclasses

4. Neglecting to validate inputs

5. Misusing public static variables

0. Believing a constructor exception destroys
the object

2006 JavaOnesM Conference | Session TS-1238 | 8 java .sun.com/javaone/sf

Antipattern 1:
Assuming Objects Are Immutable

Example From JDK 1.1 Software

package java.lang;
public class Class {
private Object[] signers;

public Object[] getSigners () {
return signers;

}

*Class.getSigners() is actually implemented as a native method, but the behavior is equivalent to the above. See
http://java.sun.com/security/getSigners.html

%*%Sun 2006 JavaOnes" Conference | Session TS-1238 | 9 java.sun.com/javaone/sf

Antipattern 1:
Assuming Objects Are Immutable

Attacker Can Change Signers of a Class

package java.lang;
public class Class {
private Object[] signers;

public Object[] getSigners() {
return signers;

}
}

Object[] signers = this.getClass () .getSigners() ;
signers[0] = <new signer>;

2006 JavaOnes™ Conference | Session TS-1238 | 10 iava .sun.com/iavaone/sf

Antipattern 1:
Assuming Objects Are Immutable

Problem

>,

Mutable input and output Objects can be modified
by the caller

Modifications can cause applications to behave
iIncorrectly

Modifications to sensitive security state may
result in elevated privileges for attacker

E.g. altering the signers of a class can give the class
access to unauthorized resources

2006 JavaOne® Conference | Session TS-1238 | iava .sun.com/iavaone/sf

Antipattern 1:
Assuming Objects Are Immutable

Secure Coding Guidelines

Make a copy of mutable output parameters

public Object[] getSigners() {
// signers contains immutable type X509Certificate.
// shallow copy of array is OK.
return signers.clone();

Make a copy of mutable input parameters

public MyClass (Date start, boolean[] flags) {
this.start new Date(start.getTime()) ;
this.flags flags.clone() ;

}

Perform deep cloning on arrays if necessary

@%’SM?’I 2006 JavaOne® Conference | Session TS-1238 | iava .sun.com/iavaone/sf

Common Java Platform Antipatterns

1. Assuming objects are immutable

2.Basing security checks on untrusted sources
3.lgnoring changes to superclasses

4. Neglecting to validate inputs

5. Misusing public static variables

0. Believing a constructor exception destroys
the object

2006 JavaOnes™ Conference | Session TS-1238 | 13 java .sun.com/javaone/sf

Antipattern 2: Basing Security
Checks on Untrusted Sources

Example From JDK 5.0 Software

public RandomAccessFile openFile(final java.io.File f) ({
askUserPermission (f.getPath()) ;

return (RandomAccessFile)AccessController.doPrivileged() ({
public Object run() {
return new RandomAccessFile (f.getPath());

}

@f@SMﬂ 2006 JavaOnes™ Conference | Session TS-1238 | 14 java .sun.com/javaone/sf

Antipattern 2: Basing Security
Checks on Untrusted Sources

Attacker Can Pass in Subclass of java.io.File
That Overrides getPath()

public RandomAccessFile openFile(final java.io.File f) {
askUserPermission (f.getPath()) ;

return new RandomAccessFile (f.getPath()) ;

}

public class BadFile extends java.io.File {
private int count;
public String getPath() {
return (++count == 1) ? “/tmp/foo” : “/etc/passwd”;
}

%*%Sun 2006 JavaOnes" Conference | Session TS-1238 | 15 java.sun.com/javaone/sf

Antipattern 2: Basing Security
Checks on Untrusted Sources
Problem

Security checks can be fooled if they are based
on information that attackers can control

It is easy to assume input types defined in the
Java core libraries (like java.io.File) are secure
and can be trusted

Non-final classes/methods can be subclassed
Mutable types can be modified

@%’SM?’I 2006 JavaOne® Conference | Session TS-1238 | iava .sun.com/iavaone/sf

Antipattern 2: Basing Security
Checks on Untrusted Sources
Secure Coding Guidelines

Don’t assume inputs are immutable

Make defensive copies of non-final or mutable
iInputs and perform checks using copies

public RandomAccessFile openFile (File f) {
final File copy = f.clone()
askUserPermission (copy.getPath()) ;

return new RandomAccessFile (copy.getPath())

@%’SM?’I 2006 JavaOne® Conference | Session TS-1238 | java .sun.com/iavaone/sf

>,

Antipattern 2: Basing Security
Checks on Untrusted Sources
Secure Coding Guidelines

- WRONG: clone() copies attacker’s subclass

public RandomAccessFile openFile(java.io.File f) {
final java.io.File copy = £, ()
askUserPermission (copy.getPath()) ;

}

* RIGHT

java.io.File copy = new java.io.File(f.getPath()) ;s

2006 JavaOnes™ Conference | Session TS-1238 | 18 java .sun.com/javaone/sf

Common Java Platform Antipatterns

1. Assuming objects are immutable

2. Basing security checks on untrusted sources
3.lgnoring changes to superclasses

4. Neglecting to validate inputs

5. Misusing public static variables

0. Believing a constructor exception destroys
the object

2006 JavaOnes™ Conference | Session TS-1238 | 19 java .sun.com/javaone/sf

Antipattern 3: Ignoring
Changes to Superclasses

Example From JDK 1.2 Software

java.util.Hashtable put (key, wval)
remove (key)
T extends
java.util.Properties
T extends
java.security.Provider put (key, val) // security check

remove (key) // security check

2006 JavaOne®M™ Conference | Session TS-1238 | 20

java.sun.com/javaone/sf

Antipattern 3: Ignoring
Changes to Superclasses

Example From JDK 1.2 Software (Cont.)

java.util.Hashtable

T extends

java.util.Properties

T extends

java.security.Provider

put (key, wval)
remove (key)
Set entrySet ()

put (key, val) // security check
remove (key) // security check

2006 JavaOnes" Conference | Session TS-1238 | 21 java .sun.com/iavaone/sf

Antipattern 3: Ignoring
Changes to Superclasses

Attacker Bypasses remove Method and Uses
Inherited entrySet Method to Delete Properties

Set entrySet() //supports removal

remove (key) // security check

sssssssssssss 2006 JavaOne®™ Conference | Session TS-1238 | 22 iava .sun.com/iavaone/sf

Antipattern 3: Ignoring
Changes to Superclasses

Problem

Subclasses cannot guarantee encapsulation

Superclass may modify behavior of methods that have
not been overridden

Superclass may add new methods

Security checks enforced in subclasses can
be bypassed

Provider.remove security check bypassed if attacker
calls newly inherited entrySet method to
perform removal

@%’SM?’I 2006 JavaOne® Conference | Session TS-1238 | iava .sun.com/iavaone/sf

Antipattern 3: Ignoring
Changes to Superclasses

Secure Coding Guidelines

Avoid inappropriate subclassing
Subclass when the inheritance model is well-specified
and well-understood

Monitor changes to superclasses

|dentify behavioral changes to existing inherited
methods and override if necessary

|dentify new methods and override if necessary

java.security.Provider put(key, value)// security check
remove (key) // security check
Set entrySet() // immutable set

@%’SM?’I 2006 JavaOne® Conference | Session TS-1238 | iava .sun.com/iavaone/sf

Common Java Platform Antipatterns

1. Assuming objects are immutable

2. Basing security checks on untrusted sources
3.lgnoring changes to superclasses
4.Neglecting to validate inputs

5. Misusing public static variables

0. Believing a constructor exception destroys
the object

2006 JavaOnes" Conference | Session TS-1238 | 25 java .sun.com/javaone/sf

Antipattern 4: Neglecting to
Validate Inputs

Example From JDK 1.4 Software

package sun.net.www.protocol.http;

public class HttpURLConnection extends
java.net.HttpURLConnection {
/**
* Set header on HTTP request
*/
public void setRequestProperty (String key, String value) {
// no input validation on key and value

}

é’f@SMﬂ 2006 JavaOnes™ Conference | Session TS-1238 | 26 java .sun.com/javaone/sf

Antipattern 4: Neglecting to
Validate Inputs

Attacker Crafts HTTP Headers With Embedded
Requests That Bypass Security

package sun.net.www.protocol.http;

public class HttpURLConnection extends java.net.URLConnection ({
public void setRequestProperty (String key, String value) {
// no input validation on key and value

}
}

urlConn.setRequestProperty
("Accept",
"* A\r\n\r\nGET http://victim host HTTP/1.0\r\n\r\n");

@Sun 2006 JavaOne®" Conference | Session TS-1238 | 27 iava .sun.com/iavaone/sf

sssssssssss

Antipattern 4: Neglecting to
Validate Inputs

Embedded Request Bypasses Security Check

GET http://origin_host HTTP/1.0q
Accept: *.*q

1
GET http://victim_host HTTP/1.04

Applet

Client - =
Host \

GET http://origin_host HTTP/1.04
Accept: *.*q

Victim
H ost GET http://victim_host HTTP/1.04

2006 JavaOnes™ Conference | Session TS-1238 | 28 iava .sun.com/iavaone/sf

Antipattern 4: Neglecting to
Validate Inputs

Problem

Creative inputs with out-of-bounds values or
escape characters can be crafted

Affects code that processes requests or
delegates to subcomponents

Implements network protocols
Constructs SQL requests
Calls shell scripts

Additional issues when calling native methods
No automatic array bounds checks

@%’SM?’I 2006 JavaOne® Conference | Session TS-1238 | iava .sun.com/iavaone/sf

Antipattern 4: Neglecting to
Validate Inputs

Secure Coding Guidelines

Validate inputs
Check for escape characters
Check for out-of-bounds values
Check for malformed requests
Regular expression API can help validate String inputs

Pass validated inputs to subcomponents

Wrap native methods in Java language wrapper to
validate inputs

Make native methods private

@%’SM?’I 2006 JavaOne® Conference | Session TS-1238 | java .sun.com/iavaone/sf

Common Java Platform Antipatterns

1. Assuming objects are immutable

2. Basing security checks on untrusted sources
3.lgnoring changes to superclasses

4. Neglecting to validate inputs

5. Misusing public static variables

0. Believing a constructor exception destroys
the object

2006 JavaOnes" Conference | Session TS-1238 | 31 java .sun.com/javaone/sf

®Sun

Antipattern 5: Misusing Public
Static Variables

Example From JDK 1.4.2 Software

package org.apache.xpath.compiler;

public class FunctionTable {
public static FuncLoader m functions;

}

2006 JavaOne®M Conference | Session TS-1238 | 32

java.sun.com/javaone/sf

Antipattern 5: Misusing Public
Static Variables

Attacker Can Replace Function Table

m;functions;

FunctionTable.m functions = <new_ table>;

@SM?} 2006 JavaOne®™ Conference | Session TS-1238 | 33 java.sun.com/javaone/sf

Java

Antipattern 5: Misusing Public
Static Variables

Problem

Sensitive static state can be modified by
untrusted code
Replacing the function table gives attackers access to
the XPathContext used to evaluate XPath expressions

Static variables are global across a Java runtime
environment

Can be used as a communication channel between
different application domains (e.g. by code loaded into
different class loaders)

@%’SM?’I 2006 JavaOne® Conference | Session TS-1238 | iava .sun.com/iavaone/sf

>,

Antipattern 5: Misusing Public
Static Variables

Secure Coding Guidelines

» Reduce the scope of static fields

private static FuncLoader m functions;

» Treat public statics primarily as constants
- Consider using enum types
» Make public static fields final

public class MyClass {
public static final int LEFT = 1;
public static final int RIGHT = 2;

2006 JavaOnes" Conference | Session TS-1238 | 35 java .sun.com/javaone/sf

Antipattern 5: Misusing Public
Static Variables

Secure Coding Guidelines

+ Define accessor methods for mutable static state
- Add appropriate security checks

public class MyClass {
private static byte[] data;

public static byte[] getData() {
return data.clone() ;

}

public static void setData (byte[] b) {
securityCheck () ;
data = b.clone();

}

2006 JavaOnes™ Conference | Session TS-1238 | 36 java .sun.com/javaone/sf

Common Java Platform Antipatterns

1. Assuming objects are immutable

2. Basing security checks on untrusted sources
3.lgnoring changes to superclasses

4. Neglecting to validate inputs

5. Misusing public static variables

6. Believing a constructor exception destroys
the object

2006 JavaOnes" Conference | Session TS-1238 | 37 java .sun.com/javaone/sf

@ Sun

Antipattern 6: Believing a Constructor
Exception Destroys the Object

Example From JDK 1.0.2 Software

package java.lang;

public class ClasslLoader ({
public ClassLoader () {
// permission needed to create class loader
securityCheck () ;
init () ;

2006 JavaOnes™ Conference | Session TS-1238 | 38 java .sun.com/javaone/sf

Antipattern 6: Believing a Constructor
Exception Destroys the Object

Attacker Overrides Finalize to Get Partially
Initialized ClassLoader Instance

public class MyCL extends ClassLoader ({
static ClassLoader cl;

package java.lang;

public class ClassLoader {
public ClassLoader () {
securityCheck () ;
init () ;

protected void finalize() ({
cl = this;
}

public static void main(String[] s) {
try {
new MyCL()
} catch (Exception e) { }

System.gc() ;
System.runFinalization() ;
System.out.println(cl) ;
}
}

2006 JavaOnes™ Conference | Session TS-1238 | 39 java .sun.com/iavaone/sf

Java

Antipattern 6: Believing a Constructor
Exception Destroys the Object

Problem

Throwing an exception from a constructor does
not prevent a partially initialized instance from
being acquired

Attacker can override finalize method to obtain
the object

Constructors that call into outside code often
naively propagate exceptions

Enables the same attack as if the constructor directly
threw the exception

@:%SMW 2006 JavaOne® Conference | Session TS-1238 | iava .sun.com/iavaone/sf

Antipattern 6: Believing a Constructor
Exception Destroys the Object

Secure Coding Guidelines

Make class final if possible

If finalize method can be overridden, ensure
partially initialized instances are unusable

Do not set fields until all checks have completed
Use an initialized flag

public class ClassLoader ({
private boolean initialized = false;

ClassLoader () {
securityCheck () ;
init();
initialized = true; // check flag in all relevant methods

}

@%’SM?’I 2006 JavaOne® Conference | Session TS-1238 | iava .sun.com/iavaone/sf

Summary

* Vulnerabilities are a concern for all developers
- Can have severe impacts on security and privacy
* Follow secure coding guidelines to reduce
vulnerabilities
- Encourages secure programming from the outset
* Helps limit bad assumptions that might be made
* Avoids common antipatterns

@%Sun 2006 JavaOnes" Conference | Session TS-1238 | 42 java .sun.com/javaone/sf

For More Information

- Contact the Java SE Security Team
with comments

* java-security@sun.com

- Meet the Java SE Security Team
* 10:30pm, May 18, Gateway 102/103

- Secure coding guidelines for Java technology

 http://java.sun.com/security/seccodeguide.html
+ Currently being updated, new version to be posted soon

2006 JavaOnes™ Conference | Session TS-1238 | 43 java .sun.com/javaone/sf

Acknowledgements

» Secure Internet Programming group
at Princeton University

» Dirk Balfanz, Drew Dean, Edward W. Felten, and
Dan Wallach

- Marc Schonefeld
- Harmen van der Wal

@@Sun 2006 JavaOneSM Conference | Session TS-1238 | 44 java .sun.com/iavaone/sf

2006 JavaOne®™ Conference | Session TS-1238 | 45 jaua.sun.comfjauaone{sf

@ Sun

Secure Coding Antipatterns:
Avoiding Vulnerabilities

Andreas Sterbenz
Charlie Lai
Sun Microsystems

TS-1238

2006 JavaOne®M Conference | Session TS-1238 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

