
2006 JavaOneSM Conference | Session TS-1246 |

Simplify Enterprise
Development With Scripting
Guillaume Laforge
Software Architect
OCTO Technology
http://www.octo.com

TS-1246

Tim Gleason/Tugdual Grall
OracleAS Development
Oracle Corporation
http://www.oracle.com

2006 JavaOneSM Conference | Session TS-1246 | 2

Learn how scripting can increase your
productivity and help you build and test
solutions faster on the Java™ Platform,
Enterprise Edition

Simplifying Enterprise Development with Scripting
Groovy Goal of This Talk

2006 JavaOneSM Conference | Session TS-1246 | 3

Agenda

Scripting back on rails

What is Groovy, and why it matters?

Groovy syntax, APIs and beyond

SOA scripting

JSR 223, an API to rule them all

Conclusion

2006 JavaOneSM Conference | Session TS-1246 | 4

Agenda

Scripting back on rails
What is Groovy, and why it matters?

Groovy syntax, APIs and beyond

SOA scripting

JSR 223, an API to rule them all

Conclusion

2006 JavaOneSM Conference | Session TS-1246 | 5

Full Steam Ahead on Scripting!

• Scripting languages are in fashion (again?)
• AJAX with JavaScript™ technology, and Ruby on

Rails with Ruby
• Java SE 6 integrates JSR 223 with Rhino
• JCPSM agreed to standardize Groovy (JSR 241)

and BeanShell (JSR 274)
• Upcoming bytecode invokeDynamic (JSR 292)
• Microsoft also believe in dynamic languages

and hire IronPython lead
• Need simplicity to overcome enterprise

development complexity  Groovy can help!

2006 JavaOneSM Conference | Session TS-1246 | 6

Scripting Integration Patterns

“Super-glue” Pattern
• Glue together isolated

components or applications
to make them interact and
bring value through the
combination

“Liquid Center” Pattern
• Customize, externalize

business rules, presentation
logic to make applications
evolve with more agility

2006 JavaOneSM Conference | Session TS-1246 | 7

Three Main Use Cases of Integration

• Prototyping/testing/scripting
• Shell or build scripting, data manipulation, unit

testing, code generation, driving native applications

• Building standalone applications
• Small to mid-sized non-critical applications

• Integrating scripting in Java EE applications
• Programmatic configuration (less XML)
• Business rules externalization
• UI or application customizations

2006 JavaOneSM Conference | Session TS-1246 | 8

Java Technology and Scripting

• Leverage Java Platform
• Use scripts inside Java SE and Java EE
• Reuse existing Java technology skills and components

• Many existing languages on the Java VM
• Groovy, Rhino (JavaScript), BeanShell,

Jython, JRuby, Pnuts, Scala…

• Current standardization effort around scripting
languages and Java technology
• JSR 223, JSR 241, JSR 274, JSR 292

• Let’s dive in Groovy as an example…

2006 JavaOneSM Conference | Session TS-1246 | 9

Agenda

Scripting back on rails

What is Groovy, and why it matters?
Groovy syntax, APIs and beyond

SOA scripting

JSR 223, an API to rule them all

Conclusion

2006 JavaOneSM Conference | Session TS-1246 | 10

Why Groovy Is Relevant?
• Groovy is a dynamic and agile

scripting language for the Java VM
• OSS project hosted by Codehaus
• Inspired by Ruby and Python
• Generates bytecode for the Java VM:

integrates well with Java libraries
• However, Groovy differentiates itself

• GDK: additional libraries
to simplify complex APIs

• MOP: advanced
meta-programming features

Meta
Programming

Powerful
Libraries

Expressive
Language

+

+

=

2006 JavaOneSM Conference | Session TS-1246 | 11

Groovy in Production
• Finance/Insurance: risk or rate computation

• Mutual of Omaha (Fortune 500)
• Aspect Capital (Finance, London)

• Collaborative software:
• eXo Platform (eXo SARL), XWiki (XpertNet)

• Web sites: PepsiCo, UUZone.com
• Frameworks:

• Spring, RIFE, NanoContainer, Drools, ServiceMix

• E-Learning: Maxim Learning (Grails’ lead)
• Testing: Canoo Web Test

2006 JavaOneSM Conference | Session TS-1246 | 12

Agenda

Scripting back on rails

What is Groovy, and why it matters?

Groovy syntax, APIs and beyond
SOA scripting

JSR 223, an API to rule them all

Conclusion

2006 JavaOneSM Conference | Session TS-1246 | 13

Groovy at a Glance

• Expressive Java language-like syntax
• Same OO model as Java technology
• Can be used in a shell or embedded
• Supports “duck typing”, and strong typing
• Native syntax constructs for Lists, Maps, regex
• Permits operator overloading
• GStrings: interpolated strings
• Closures: reusable and assignable code blocks

2006 JavaOneSM Conference | Session TS-1246 | 14

class Speaker {
 @Property String name
 @Property age
 String toString() {
 "My name is $name and I'm $age"
 }
}
def speakers = [

new Speaker(name:'Tim Gleason', age:30),
new Speaker(name:'Guillaume Laforge', age:28)

]
def upper = { it.toString().toUpperCase() }
speakers.findAll { name -> name =~ /.*Tim.*/ }
 .collect(upper).each { println it }

Groovy Syntax Basics
Groovy version of a JavaBean

Getter/setters generated

Weakly
typed

GString

Native syntax for lists: [a, b, c]
For maps: [a:1, b:2, c:3] Default ctor with

call of setters

Closure with implicit parameter
Regex and

matcher

Named closure Inline closure

2006 JavaOneSM Conference | Session TS-1246 | 15

Groovy Development Kit

• JDK™ software class extensions,
and write your own!
• String  each(), execute(), center(), reverse()
• Collection  collect(), join(), findAll(), inject()
• File  eachFile(), eachLine(), getText()

• Powerful APIs
• Easy to play with JDBC™ software
• GString powered template engine
• Handy XML parsers and GPath
• Manipulating JMX™ MBeans API as local objects
• Additional modules: SOAP, scripting ActiveX/COM

2006 JavaOneSM Conference | Session TS-1246 | 16

JDBC Software

• Easy to use JDBC software thanks to closures
• def sql = Sql.newInstance(url, usr, pwd, driver)

sql.execute("insert into table values ($foo, $bar)")
sql.execute("insert into table values(?,?)", [a, b])
sql.eachRow("select * from USER") { print it.name }
def list = sql.rows("select * from USER")

• DataSet notion: poor-man ORM
• def set = sql.dataSet("USER")

set.add(name: "Johnny", age: 33)
set.each { user -> println user.name }
set.findAll { it.age > 22 && it.age < 42 } // LINQ 

2006 JavaOneSM Conference | Session TS-1246 | 17

Template Engine

• Dear $fname ${lname.toUpperCase()},
nice to meet you in <%= city %>.
${signed}

• def binding = [fname:"Joe", lname: "Bar",
 city: "Paris", signed:"MrG"]
def engine = new SimpleTemplateEngine()
def template =
 engine.createTemplate(text).make(binding)
println template.toString()

2006 JavaOneSM Conference | Session TS-1246 | 18

Parsing XML and GPath Expressions

• XML’s never been that fun to parse!
• def xml = """<languages> <language name="Groovy"> <feature coolness="low">SQL</feature> <feature coolness="high">Template</feature> </language> <language name="Perl"/></languages>"""
• XML nodes are mere properties!
• def root = new XmlParser().parseText(xml)println root.language.feature[1].text()

root.language.feature .findAll{ it['@coolness'] == "low" }.each{ println it.text() }

2006 JavaOneSM Conference | Session TS-1246 | 19

Groovy’s MOP

• What’s that MOP $#@??
  Meta Object Protocol

• At runtime, allows you to
• Intercept method calls (even non-existing ones)
• Intercept property accesses
• Inject new methods or new properties

• You can create Domain Specific Languages
• With the MOP, come the…builders

• Builder pattern at the syntax level!
• MarkupBuilder, SwingBuilder, AntBuilder…

2006 JavaOneSM Conference | Session TS-1246 | 20

• Creating XHTML markup programmatically

• new MarkupBuilder().html {
 head { title "Groovy in Action" }
 body {
 ['red', 'green', 'blue'].each {
 p(style:"color:$it", "Groovy rocks!")
 }
 }
}

MarkupBuilder

Intercepting the
html() method call

Mix in normal
Groovy code

Node attributes as
a map parameter

Parentheses can
be omitted

2006 JavaOneSM Conference | Session TS-1246 | 21

SwingBuilder

• Composition and nesting of Swing
components

• def theMap = [color: "green", object: "pencil"]def swing = new SwingBuilder()def frame = swing.frame(title: 'A Groovy Swing', location: [240,240], defaultCloseOperation:WindowConstants.EXIT_ON_CLOSE) { panel { for (entry in theMap) { label(text: entry.key) textField(text: entry.value) } button(text: 'About', actionPerformed: { def pane = swing.optionPane(message: 'SwingBuilder') def dialog = pane.createDialog(null, 'About') dialog.show() }) button(text:'Quit', actionPerformed:{ System.exit(0) }) }}frame.pack()frame.show()

2006 JavaOneSM Conference | Session TS-1246 | 22

AntBuilder
• Reuse hundreds of Ant tasks as simple

method calls
• Even create your own build system!
• def ant = new AntBuilder()

def patterns = ["**/*.groovy", "**/*.java"]
ant.sequential {
 mkdir(dir: "dir1")
 copy(todir: "dir1") {
 fileset(dir: "dir2") {
 for(pattern in patterns)
 include(name: pattern)
 }
 }
 echo("done")
}

2006 JavaOneSM Conference | Session TS-1246 | 23

DEMO
Administer an Application Server by
Manipulating JMX-Based Beans with
Groovy

2006 JavaOneSM Conference | Session TS-1246 | 24

Status

• Groovy RC-1 released recently
• Next month: release of Groovy 1.0 final!
• JSR 241 will standardize Groovy 1.0
• Groovy already JSR 223 compliant
• First version of Grails
• Two books soon on the shelves, including

• “Groovy in Action”, Manning

2006 JavaOneSM Conference | Session TS-1246 | 25

Agenda

Scripting back on rails

What is Groovy, and why it matters?

Groovy syntax, APIs and beyond

SOA scripting
JSR 223, an API to rule them all

Conclusion

2006 JavaOneSM Conference | Session TS-1246 | 26

Simplify SOA With JavaScript
Technology

• Generating JavaScript-based stub
using Web Services metadata (WSDL)
• Leverage the simplicity of JavaScript technology
• Leverage Objects programming

• Use JavaScript
• In the browser for AJAX applications
• In the Java VM (Rhino/Java SE 6)

2006 JavaOneSM Conference | Session TS-1246 | 27

Browser OracleAS 10g

Service Endpoint

Script IncludeJavascript Objects
and Methods

HTML Object /
 Ajax Component

WSDL

Web Services Stub

SOAP

AJAX Web Services
Consume Web Services Directly From the Client

service.js

Javascript
Stub

2006 JavaOneSM Conference | Session TS-1246 | 28

DEMO
Generate and Use Web Services Stubs
for AJAX

2006 JavaOneSM Conference | Session TS-1246 | 29

Agenda

Scripting back on rails

What is Groovy, and why it matters?

Groovy syntax, APIs and beyond

SOA scripting

JSR 223, an API to rule them all
Conclusion

2006 JavaOneSM Conference | Session TS-1246 | 30

JSR 223—Scripting
for the Java™ Platform
• One API to rule them all!
• JSE™ 6 includes JSR 223

and embeds JavaScript™ (Rhino)
• RI already usable starting from JDK 1.4

• With Groovy, PHP, and Rhino

• ScriptEngines provide a common way to
integrate stateful interpreters into Java

• Invocable and Compilable interfaces extend
ScriptEngines to support generic function
invocations and compilation of scripts

2006 JavaOneSM Conference | Session TS-1246 | 31

Chatting With Scripts

Jabber Server

Java SE 6

chat.js

Javascript

JRuby

PHP

Groovy

Stock Quote
Web Service

Jabber
Jabber

SOAP

JSR 223

2006 JavaOneSM Conference | Session TS-1246 | 32

DEMO
Java SE 6 and Scripting

2006 JavaOneSM Conference | Session TS-1246 | 33

Chatting With Scripts

ScriptEngineManager manager =
 new ScriptEngineManager();

ScriptEngine engine =
 manager.getEngineByExtension(
 getExtension(args[0]));

2006 JavaOneSM Conference | Session TS-1246 | 34

Chatting With Scripts

Once:

engine.eval(new InputStreamReader(
 new FileInputStream(args[0])));

For Each Message:

invocableEngine.invoke("onMessage",
 new Object[]{chat, msgBody});

2006 JavaOneSM Conference | Session TS-1246 | 35

Chatting With Scripts: JavaScript
var SOAPScript = new Packages.soapscript.SOAPGen();
var namespace = SOAPScript.useWSDL("http://localhost:8888/…");
var service = SOAPScript.makeStub(namespace, "StockQuote");
var count = 0;
function onMessage (chat, message) {
 var params = message.split(" ");
 if (params[0] == "echo") {
 chat.sendMessage(params[1]);
 } else if (params[0] == "count") {
 count = count + 1;
 chat.sendMessage ("Count: " + count);
 } else if (params[0] == "quote") {
 var quote = service.StockQuotePort.getQuote(params[1]);
 chat.sendMessage(quote.name + ": $" + quote.price);
 }
}

2006 JavaOneSM Conference | Session TS-1246 | 36

Dynamic Java Objects in Scripts

• When you want to code in Java without a fixed
interface

• Different for every language:
• Groovy:

• GroovyObject interface
• Object invokeMethod (String name, Object args)

• JavaScript (Rhino):
• Scriptable and Function interfaces
• Object call(Context cx, Scriptable scope,
Scriptable thisObj, Object[] args)

2006 JavaOneSM Conference | Session TS-1246 | 37

Agenda
Scripting back on rails

Integration patterns and use cases

What is Groovy, and why it matters?

Groovy syntax, APIs and beyond

SOA scripting

JSR-223, an API to rule them all

Conclusion

2006 JavaOneSM Conference | Session TS-1246 | 38

Summary

• Scripting simplifies development in the enterprise
• Scripting languages, such as Groovy,

leverage the richness of Java technology
• Scripts can be used in various contexts

• From the client using AJAX to the server

• The Java platform is embracing scripting
with various standards

2006 JavaOneSM Conference | Session TS-1246 | 39

For More Information
to Get the Groove…

• Attend Graeme Rocher’s Grails session

• Web resources:
• http://groovy.codehaus.org
• http://grails.codehaus.org

• Read the upcoming
“Groovy in Action” book
from Manning, written by
Dierk Koenig, Andrew Glover,
and Guillaume Laforge

2006 JavaOneSM Conference | Session TS-1246 | 40

Q&A
With Guillaume, Tugdual, and Tim

2006 JavaOneSM Conference | Session TS-1246 |

Simplify Enterprise
Development With Scripting
Guillaume Laforge
Software Architect
OCTO Technology
http://www.octo.com

TS-1246

Tim Gleason/Tugdual Grall
OracleAS Development
Oracle Corporation
http://www.oracle.com

2006 JavaOneSM Conference | Session TS-1246 | 42

Learn how scripting can allow you to
dramatically speed up the development
of Web applications and let you
concentrate on the core parts of your project

Simplifying Web Application Development with Grails
Grails—Groovy on Rails

2006 JavaOneSM Conference | Session TS-1246 | 43

Grails—Groovy on Rails

• New MVC Web Framework:
• “Convention over Configuration”

• Reuses and innovates around standard bricks
• Spring: Spring MVC, Spring WebFlow
• Hibernate
• SiteMesh

• Spiced up with some Groovy
• GSP (Groovy Server Pages) and custom dynamic tags
• Controllers and actions, Services

• But no XML configuration!

2006 JavaOneSM Conference | Session TS-1246 | 44

Grails Domain Classes
• Persistent domain beans

• class Book { @Property Long id @Property Long version @Property String title @Property String author}
• Dynamic methods, thanks to the MOP

• new Book(author: "x", title: "y").save()
• Book.findByAuthor("Rowling").each{…}

• With Grails, it’s possible to
• Reuse existing Hibernate mappings
• Specify validation constraints with a DSL
• Define associations (1-1, 1-n, n-m)

No dependency

2006 JavaOneSM Conference | Session TS-1246 | 45

Grails Services
• Create and injecting dependent services
• class BookService {

 @Property MyService myService
 @Property boolean transactional = true

 def allBooks() {
 Book.findAll()
 }
}

• Possible to
• Reuse existing Spring configuration
• Services implemented in Java technology

Automatic wiring
and injection of
services (No XML)

No
dependency

Manipulate your
domain classes

Transactional demarcation
for atomic method calls

2006 JavaOneSM Conference | Session TS-1246 | 46

• Create controllers and actions
• class BookController {

 @Property BookService service
 @Property list = {
 ["books": service.allBooks()]
 }
}

• Injection of services
• Also integration of Spring WebFlow
• Dynamic CRUD “scaffolding”

for views and controllers

Grails Controllers

Automatic wiring
and injection

of services

Pass the books
to the view

2006 JavaOneSM Conference | Session TS-1246 | 47

Grails Views
• And now a GSP for the view

• <html>
 <head><title>Book list</title></head>
 <body>
 <h1>Book list</h1>
 <table>
 <tr><th>Title</th><th>Author</th> </tr>
 <% books.each { %>
 <tr>
 <td>${it.title}</td>
 <td>${it.author}</td>
 </tr>
 <% } %>
 </table>
 </body>
</html>

• Possibility to use JavaServer Pages™ technology as well
• Grails dynamic tag library (AJAX, links, templates, etc…)

