
2006 JavaOneSM Conference | Session TS-1297 |

TS-1297

Filthy Rich Clients:
Animated Effects in
Swing Applications
Chet Haase
Kenneth Russell
Romain Guy

Sun Microsystems, Inc.

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-1297 | 2

Goal

Learn how to use 2D, 3D, Swing, and
animation to create more compelling,
dynamic, and effective GUI applications

2006 JavaOneSM Conference | Session TS-1297 | 3

Agenda

Animation fundamentals
Into the third dimension
Putting it all together

2006 JavaOneSM Conference | Session TS-1297 | 4

Agenda

Animation fundamentals
Into the third dimension
Putting it all together

2006 JavaOneSM Conference | Session TS-1297 | 5

Animation: It’s About Time

● Animations should be based on time
● Not successive steps
● Accounts for variable machine performance
● Works the same across all environments

● Determine appropriate speed for animation
● For every animation frame

● Calculate time delta from last time
● Calculate change to object from time and speed
● Render object with appropriate change

2006 JavaOneSM Conference | Session TS-1297 | 6

Timers: Wakeup Calls

● Timers are utilities for knowing when to render
the next frame

● Create Timer with “resolution”
● Determines frame rate (frames per second)

● Timer will call your code at this frame rate
● Assuming your frame rate is achievable

● Timers in core JDK
● java.util.Timer: for general usage
● javax.swing.Timer: GUI specific, calls your code

on Event Dispatch Thread

2006 JavaOneSM Conference | Session TS-1297 | 7

javax.swing.Timer

// Create and start timer
startTime = System.currentTime();
timer = new Timer(msBetweenCallbacks, actionListener);
timer.start();

// timer callbacks in actionPerformed() method
public void actionPerformed(ActionEvent ae) {
 // Get elapsed time
 long currentTime = ae.getWhen();
 long elapsedTime = currentTime - startTime;
 // Now do whatever you want with this information
 // ...
}

2006 JavaOneSM Conference | Session TS-1297 | 8

Beyond the Built-Ins

● Key functionality lacking in core timers for typical
animation requirements
● Duration: when to stop the animation?
● Elapsed time: why not have the system tell you how

much time has passed?
● Repeat: what if you want the animation to repeat,

or reverse?
● Advanced

● Property setters
● Non-linear interpolation
● Triggers

2006 JavaOneSM Conference | Session TS-1297 | 9

Timing Framework

● http://timingframework.dev.java.net
● Project in development over a year now

● Core concepts:
● Cycle: basic animation loop

● Duration, resolution
● Envelope: contains one or more Cycles

● Number of cycles, start delay, repeat behavior, end behavior
● TimingTarget: Callback target

● begin(), end(), timingEvent(fraction)
● TimingController:

● Cycle, Envelope, one or more TimingTarget objects

2006 JavaOneSM Conference | Session TS-1297 | 10

Timing Framework: Basics

Cycle
Envelope

(contains one or more Cycles)

2006 JavaOneSM Conference | Session TS-1297 | 11

Timing Framework: Class Diagram

TimingController
ObjectModifier (Implements TimingTarget)

Cycle

Envelope

2006 JavaOneSM Conference | Session TS-1297 | 12

Timing Framework: Basics

// MyTarget implements begin/end/timingEvent methods
TimingTarget target = new MyTarget();

// duration = 5 seconds, resolution = 30 ms
Cycle cycle = new Cycle(5000, 30);

// repeats twice, begins after 1/2 second delay,
// reverses after each Cycle, holds final value at end
Envelope envelope = new Envelope(2, 500,

RepeatBehavior.REVERSE, EndBehavior.HOLD);

// Now create and start timer with the given parameters
TimingController timer = new TimingController(cycle,

envelope, target);
timer.start();

2006 JavaOneSM Conference | Session TS-1297 | 13

DEMO
BasicRace

2006 JavaOneSM Conference | Session TS-1297 | 14

BasicRace: The Code
// Starts/stops timer based on Go/Stop action events
public void actionPerformed(ActionEvent ae) {
 if (ae.getActionCommand().equals("Go")) {
 timer = new TimingController(RACE_TIME, this);
 timer.start();
 } else if (ae.getActionCommand().equals(“Stop”)) {
 timer.stop();
 }
}
// Callback: Linearly interpolate car position according
// to fraction of animation elapsed thus far
public void timingEvent(long cycleTime, long totalTime,

 float fraction) {
 current.x = (int)(start.x + (end.x-start.x) * fraction);
 current.y = (int)(start.y + (end.y-start.y) * fraction);
 track.setCarPosition(current);
}

2006 JavaOneSM Conference | Session TS-1297 | 15

Timing Framework: Advanced

● Property Setters
● Built-in TimingTargets that animate JavaBeans™

specification properties
● Triggers

● Animations auto-fired based on various events
● Non-Linear Interpolation

● More realistic movement
● Multi-step Animations

● Not just “from -> to”
● More like “from here…to there1…to there2…to there3…”
● Or just “to”; animate from current position

2006 JavaOneSM Conference | Session TS-1297 | 16

Property Setters

● Built-in facility to animate JavaBeans
specification properties of Objects
● “location” of button

● Works for any property name (e.g., “prop”)
that has related setter (e.g., “setProp”)
● Component.size, Component.foreground,

Component.location,…
● Custom components or delegators when no

appropriate property exists
● Opacity, rotation, scale

2006 JavaOneSM Conference | Session TS-1297 | 17

Property Setters: Class Diagram

TimingController
ObjectModifier (Implements TimingTarget)

PropertyRange

values property
name

Java
Object

Cycle

Envelope

2006 JavaOneSM Conference | Session TS-1297 | 18

Property Setters: The Classes

● PropertyRange
● range=createPropertyRangePoint(“location”, from, to);

● Defines JavaBean property to be modified
● Range of values for property

● ObjectModifier
● modifier = new ObjectModifier(object, range);

● Declares object to be modified with range
● Implements TimingTarget interface

● TimingController
● new TimingController(duration, modifier);

● Defines animation characteristics

2006 JavaOneSM Conference | Session TS-1297 | 19

SetterRace: The Code
// instead of manually calculating the car position
// during the animation, set up an ObjectModifier at
// construction time to handle it for us
public SetterRace() {
 PropertyRange range = PropertyRange.
 createPropertyRangePoint("carPosition", start, end);
 ObjectModifier modifier =
 new ObjectModifier(track, range);
 timer = new TimingController(RACE_TIME, modifier);
}

public void actionPerformed(ActionEvent ae) {
 // Same as in BasicRace: start/stop the timer
}

2006 JavaOneSM Conference | Session TS-1297 | 20

Triggers

● Idea: Make it easier to have canonical effects
for rich components
● Hover effect for buttons
● Pulsating effect for focus events

● Also, simplify sequencing multiple animations
● For example: Timer B should start when Timer A ends

● Triggers encapsulate EventListeners
● And save your code the hassle

2006 JavaOneSM Conference | Session TS-1297 | 21

TriggerRace: The Code

// Constructor code is the same as in SetterRace, but
// this time we set up Triggers to handle the button
// events for us; no ActionListener required
public TriggerRace() {
 PropertyRange range = PropertyRange.
 createPropertyRangePoint("carPosition", start, end);
 ObjectModifier modifier =
 new ObjectModifier(track, range);
 timer = new TimingController(RACE_TIME, modifier);
 new ActionTrigger(timer, goButton, TriggerAction.START);
 new ActionTrigger(timer, stopButton, TriggerAction.STOP);
}

2006 JavaOneSM Conference | Session TS-1297 | 22

Non-Linear Interpolation

● We live in a non-linear world
● Gravity, acceleration, deceleration, friction

● …As well as tripping, stumbling, falling, crashing, settling
● …So our eyes expect to see non-linear movement
● Linear movement

● Looks unnatural
● Emphasizes rendering artifacts

● Easy to track mistakes and hiccups when we are tracking
linear movement

2006 JavaOneSM Conference | Session TS-1297 | 23

Non-Linear Interpolation: The Classes
● Acceleration/Deceleration: Simplest approach

● TimingController.setAcceleration(float);
● TimingController.setDeceleration(float);

● Fraction of total time spent speeding up, slowing down
● Spline

● Bezier curve that defines interpolation used between
endpoints of animation

Linear Fast Start Ease In, Ease Out

2006 JavaOneSM Conference | Session TS-1297 | 24

DEMO
Non-Linear Interpolation

2006 JavaOneSM Conference | Session TS-1297 | 25

NonLinearRace: The Code

// The simplest variant of non-linear movement; use the
// acceleration property of TimingController. This class
// subclasses the earlier SetterRace class but
// sets the acceleration property to change the timer
// behavior
public class NonLinearRace extends SetterRace {
 public NonLinearRace() {
 // Car will accelerate through the
 // first 70% of the total animation
 timer.setAcceleration(.7f);
 }
}

2006 JavaOneSM Conference | Session TS-1297 | 26

Multi-Step Animations

● May need more than simple “from here to there”
movement
● Objects may follow a complex path

● A -> B -> C
● Non-linearity applies: more realistic movement

● Some movement inherently curve-based
● Steps in walking,…

● May need simpler model: move “to” destination
from wherever object is now
● Useful for stringing together multiple animations
● Or animating back from current position

● When stopping and reversing a running animation

2006 JavaOneSM Conference | Session TS-1297 | 27

Multi-Step: Class Diagram (KeyFrames)

KeyValues
value 0
value 1
...
value n

KeySplines
spline 0
...
spline n-1

InterpolationType
LINEAR,
DISCRETE, or
NONLINEAR

KeyFrames

KeyTimes
time 0 (=0)
time 1
...
time n (=1)

2006 JavaOneSM Conference | Session TS-1297 | 28

Multi-Step: Class Diagram (Everything)

TimingController
ObjectModifier (Implements TimingTarget)

PropertyRange

KeyFrames property
name

Java
Object

Cycle

Envelope

2006 JavaOneSM Conference | Session TS-1297 | 29

Multi-Step Animations: The Classes

● KeyFrames hold information about:
● values an animation can take during an animation

● KeyValues.createKeyValues(Point... values);

● times at which these values are assigned
● new KeyTimes(float... times);

● interpolation between the values
● new KeySplines(Spline... splines)
● enum InterpolationType {

LINEAR, DISCRETE, NONLINEAR};
● new KeyFrames(keyValues, keySplines, keyTimes,

interpolationType);

2006 JavaOneSM Conference | Session TS-1297 | 30

Multi-Step Animations: More Classes

● PropertyRange can take KeyFrames
● PropertyRange range =

createPropertyRange(prop, keyFrames);

● ...or can implictly create KeyFrames for you
● createPropertyRangeFloat(prop, 5.0, 6.6, 9.7);

● will create:
● new KeyTimes(0.0f, 0.5f, 1.0f);
● new KeyValuesDouble(5.0, 6.6, 9.7);
● InterpolationType.LINEAR
● no KeySplines (not needed for LINEAR interpolation)

2006 JavaOneSM Conference | Session TS-1297 | 31

DEMO
Multi-Step Animations

2006 JavaOneSM Conference | Session TS-1297 | 32

MultiStepRace: The Code
// We use Points at the corners of the track for values
KeyValues keyValues = KeyValues.createKeyValues(...);
// We use times that will give us a constant travel time
// over each track segment
KeyTimes keyTimes = new KeyTimes(...);
// We use Splines for each segment which will make the
// car accelerate/decelerate appropriately
KeySplines keySplines = new KeySplines(...);
// We can now create KeyFrames from the above variables
KeyFrames keyFrames = new KeyFrames(keyValues, keySplines,
 keyTimes, KeyFrames.InterpolationType.NONLINEAR);
PropertyRange range =
 new PropertyRange("carPosition", keyFrames);
ObjectModifier modifier =
 new ObjectModifier(track, range);
timer = new TimingController(RACE_TIME, modifier);

2006 JavaOneSM Conference | Session TS-1297 | 33

Animation: Summary
● Animation is about varying values over time
● Possible with existing Java classes

● java.util.Timer
● javax.swing.Timer

● Easier with Timing Framework
● Callbacks give more information (elapsed fraction)
● Desirable animation behaviors built into framework

● Repetition, duration, non-linear interpolation, multi-step
● Natural tie-in to GUI animations

● ObjectModifier for setting properties, Triggers for events
● API still in development; use it and let me know

what changes you would like to see

2006 JavaOneSM Conference | Session TS-1297 | 34

Agenda

Animation fundamentals
Into the third dimension
Putting it all together

2006 JavaOneSM Conference | Session TS-1297 | 35

JOGL

● Development version of JSR-231 implementation
(JavaTMBinding for the OpenGL® API)
● Not official reference implementation
● http://jogl.dev.java.net/

● Supplies GLJPanel class supporting 100%
correct Swing and 3D interaction
● Performance not great, especially with large windows

http://jogl.dev.java.net/

2006 JavaOneSM Conference | Session TS-1297 | 36

Mixing Swing and 3D

● Historical problems
● Highest 3D performance required heavyweight widget
● Lightweight/heavyweight mixing issues

● 100% correct Swing integration expensive
● Render to off-screen buffer (“pbuffer”)
● Read back frame buffer into byte[]
● Render BufferedImage using Java 2D™ API

2006 JavaOneSM Conference | Session TS-1297 | 37

Mixing Swing and 3D

2006 JavaOneSM Conference | Session TS-1297 | 38

New Experimental Work in Java SE 6
(“Mustang”)

● Allow third-party libraries some access to
internals of Java 2D/OpenGL® pipeline

● Access to OpenGL drawable, context,
rendering thread

● Highly experimental; APIs not yet finalized
● More work to be done in Java SE 7 to

standardize these APIs

2006 JavaOneSM Conference | Session TS-1297 | 39

Java 2D/JOGL Bridge

● GLJPanel now bridges to Java 2D/OpenGL
pipeline when enabled
● Much higher performance
● Basically same speed as using

heavyweight components
● 100% correct Swing integration
● No application changes
● Windows and X11 support now; Mac OS X coming

● Implementation uses both experimental Java 2D
APIs as well as new JSR 231 functionality
● Interoperability with other OpenGL-based libraries

2006 JavaOneSM Conference | Session TS-1297 | 40

New GLJPanel: Cut Out the Middleman

● Render directly to Swing buffer

2006 JavaOneSM Conference | Session TS-1297 | 41

Demo

2006 JavaOneSM Conference | Session TS-1297 | 42

Agenda

Animation fundamentals
Into the third dimension
Putting it all together

2006 JavaOneSM Conference | Session TS-1297 | 43

Bring Life to Your Applications

● Life is restless
● Transitions
● Highlights
● Progress Indicators
● Motion

● Life is not flat
● 3D visualization

2006 JavaOneSM Conference | Session TS-1297 | 44

Transitions

● When a value is changed
● A label’s text
● A screen

● Fade in/out
● Fade from/to a color (e.g., Fade to black)
● Opacity change

● Cross-fade
● Current value fades out
● New value fades in

2006 JavaOneSM Conference | Session TS-1297 | 45

Fade to Black, Timing Code

cycle = new Cycle(1200, 10);
envelope = new Envelope(1, 0,
 RepeatBehavior.FORWARD, EndBehavior.HOLD);
fadeRange =
 PropertyRange.createPropertyRangeFloat(
 "fadeOut", 0.0f, 1.0f);
modifier = new ObjectModifier(this, fadeRange);
timer = new TimingController(cycle,
 envelope, modifier);
timer.setAcceleration(0.7f);
timer.setDeceleration(0.3f);
timer.start();

2006 JavaOneSM Conference | Session TS-1297 | 46

Fade to Black, Painting Code

public void setFadeOut(float fadeOut) {
 this.fadeOut = fadeOut;
 repaint();
}

protected void paintComponent(Graphics g) {
 g.setColor(
 new Color(0.0f, 0.0f, 0.0f, fadeOut));
 Rectangle r = g.getClipBounds();
 g.fillRect(r.x, r.y, r.width, r.height);
 // ...
}

2006 JavaOneSM Conference | Session TS-1297 | 47

Highlights

● Outline an interactive element
● Canonical effects

● Brightness increase
● Glow, Pulse
● Spring

● Usually triggered by a user input

2006 JavaOneSM Conference | Session TS-1297 | 48

Highlights, Timing Code

public void mouseEntered(MouseEvent e) {
 if (timer != null && timer.isRunning()) {
 timer.stop();
 }
 range = PropertyRange.createPropertyRangeColor(

"foreground", Color.WHITE);
 modifier = new ObjectModifier(button, range);
 timer =

new TimingController(cycle, envelope, modifier);
 timer.start();
}

2006 JavaOneSM Conference | Session TS-1297 | 49

Progress Indicators

● Show that your UI is still alive
● Otherwise the user might poke it with a stick

● Indeterminate progress indicators
● Rotation
● Glow/Pulse

● Short, repeated animations

2006 JavaOneSM Conference | Session TS-1297 | 50

Progress, Timing Code

cycle = new Cycle(800, 30);
envelope = new Envelope(
 TimingController.INFINITE, 0,
 RepeatBehavior.REVERSE, EndBehavior.RESET);
range = PropertyRange.createPropertyRangeFloat(
 "glow", 0.0f, 1.0f);
modifier = new ObjectModifier(this, range);
timer = new TimingController(cycle,
 envelope, modifier);

2006 JavaOneSM Conference | Session TS-1297 | 51

Progress, Painting Code

protected void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D) g;

 Composite composite = g2.getComposite();
 g2.setComposite(
 AlphaComposite.SrcOver.derive(glow));
 g2.drawImage(javaCupGlow, x, y, null);
 g2.setComposite(composite);

 g2.drawImage(javaCup, x, y, null);
}

2006 JavaOneSM Conference | Session TS-1297 | 52

Motion

● Helps the user understand what happened
● When I miss a drop, the item goes back to its origin
● When items change location, it is obvious

● No more “undo/redo” syndrome
● Realistic motion

● Non-linear movements
● Implementation is simple

● Use property setters
● Use acceleration/deceleration

2006 JavaOneSM Conference | Session TS-1297 | 53

DEMO
Putting It All Together

2006 JavaOneSM Conference | Session TS-1297 | 54

Animated User Interfaces

● Use built-in properties
● Foreground/background colors
● Location, size

● Use advanced components
● JXPanel from the SwingLabs project exposes

an alpha property for easy fade in/out
● Keep animations short and simple

● Do not bore the user!

2006 JavaOneSM Conference | Session TS-1297 | 55

Summary: Make Your Clients Rich

Swing

Animation

3D

Filthy Rich Clients

2006 JavaOneSM Conference | Session TS-1297 | 56

For More Information
● Sessions

● TS-1548: Extreme GUI Makeover: Thursday, 2:45–3:45
● Swing and 2D BOFS: Wednesday, 7:30–9:30
● Desktop Futures Panel: Thursday, 7:30–8:30

● Websites
● JOGL: http://jogl.dev.java.net
● Timing Framework: http://timingframework.dev.java.net
● SwingLabs: http://swinglabs.dev.java.net

● Articles, blogs
● Romain’s blog: http://www.jroller.com/page/gfx
● Chet’s blog: http://weblogs.java.net/blog/chet
● Chris Campbell’s blog: http://weblogs.java.net/blog/campbell
● Timing Articles on java.net: “Timing is Everything”, “Time Again”

2006 JavaOneSM Conference | Session TS-1297 | 57

Q&A

2006 JavaOneSM Conference | Session TS-1297 |

TS-1297

Filthy Rich Clients:
Animated Effects in
Swing Applications
Chet Haase
Kenneth Russell
Romain Guy

Sun Microsystems, Inc.

