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Goal

To explore the inner workings of the 
graphics API and demonstrate strategies 
for optimizing the performance of a 
graphical user interface
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Solid Performance Is Possible 
in Java™ Technology

Maple 10 Worksheet
M
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Agenda

Overview of the Graphics API
Graphics Pipeline
Graphics Primitives and Tools
Optimization
Demo
Summary
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Overview of the Graphics API
Your Application

Swing

AWT

• Interact with 
several layers of 
the graphics API

• Design choices at 
higher levels can affect 
performance at 
lower levels

• Bottom two layers are 
vendor specific

Java2D

SunGraphics

Native Layer
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Overview of the Graphics API

• At what level should I be focusing my 
optimization efforts?
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Overview of the Graphics API

• At what level should I be focusing my 
optimization efforts?
• Depending on the application, all levels 

may be important
• Swing:     Optimize object creation

Set rendering flags

• AWT:       Optimize event handling

• Java2D:   Direct control over object rendering
Graphical underpinnings to Swing
and AWT
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Agenda

Overview of the Graphics API
Graphics Pipeline
Graphics Primitives and Tools
Optimization
Demo
Summary
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Graphics Pipeline

• Graphics and Graphics2D are interfaces
• Vendor specific implementations for 

onscreen rendering
• Some optimizations are not cross-platform

• Notable differences in Sun and Apple implementation 
of text and antialiasing support
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Evolution of the Graphics Pipeline

• J2SE™ 1.4
• Improved data sharing 

across pipelines
• Hardware acceleration 

for offscreen images
• Pluggable image I/O 

framework
• OpenType fonts

• Java™ SE 6
• Improved text antialiasing
• Single-threaded rendering
• Curved primitive 

rasterization

• J2SE™ 1.5
● Hardware acceleration 

using OpenGL
● Text rendering 

performance
● Improved font handling
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Graphics Pipeline

• Ideally, built-in optimizations would provide 
necessary performance

• In reality, further optimizations are 
sometimes required to reduce the burden 
on the graphics pipeline
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Agenda

Overview of the Graphics API
Graphics Pipeline
Graphics Primitives and Tools
Optimization
Demo
Summary
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Graphics Primitives and Tools

• Graphics
• Lines
• Polylines
• Circles
• Arcs
• Text
• Image
• Clipping
• Affine transforms

• Graphics2D
• Shape
• Composite
• Rendering hints
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Graphics Primitives and Tools

• Graphics2D offers more flexibility 

• Greater choice → More ways to address
performance issues

→  More potential for 
suboptimal solutions

• “Ockham’s Razor” 
• Given a choice of two equally valid alternatives, 

take the simpler one
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Ockham’s Razor: Example

• How many ways are there to draw rectangles?
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Ockham’s Razor: Example

• How many ways are there to draw rectangles?
• 1) Use java.awt.Rectangle

• Advantages 

● Simple

● Fast

● Flexibility of shape API

• Disadvantage 

● Possible loss of precision 
under transformation
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Ockham’s Razor: Example

• How many ways are there to draw rectangles?
• 2) Use java.awt.geom.Rectangle2D

• Advantages 

● Maintain floating point precision

● Fast

● Flexibility of Shape API
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Ockham’s Razor: Example

• How many ways are there to draw rectangles?
• 3) Use java.awt.geom.GeneralPath

• Advantage

● Very general solution

• Disadvantages

● Computational complexity

● Filling a general polynomial is much more expensive 
than filling a rectangle: often requires vertex sorting, 
winding rules…
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Ockham’s Razor: Example

• How many ways are there to draw a rectangle?
• 4) Use java.awt.BasicStroke

• WARNING: Kludge alert!!!

• Bookkeeping to determine intersection with the clip boundary 
is more complex

• Rendering algorithm is less efficient

• Coordinates become awkward
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Managing Graphics Complexity

• Rendering text 
is a complex affair

• Many built-in 
optimizations for 
text processing
• Caching of bitmaps 

for individual glyphs
• Caching of metrics

Control Points
for a quadratic
Bezier curve
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Caching Tips

• Consider using cached images for repetitive 
non-trivial glyphs

• Consider caching size information to avoid 
unnecessary recalculation
• General path iterates over the path to construct 

the bounds 
• Expensive if done repeatedly

• Cache = Managed Memory Leak
• Avoid overuse
• MRU cache
• Weak reference
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Tips for Repainting

• Consider one of the following approaches to 
facilitate tracking “dirty” shapes
• Apply transform to shape rather than graphics context
• Maintain rectangle for bookkeeping which is inverse 

transform applied to clip region
• Quick mechanism for testing overlap with clip region
• Bookkeeping in same coordinate space as shapes

• Painting a shape outside the clip region 
is not free

• Don’t paint what you don’t have to!
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Computing the Inverse Transform

• Transform

• Inverse
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Rendering Hints

• Control over rendering behavior
• Antialiasing on/off

• Choice of interpolation algorithms

• Render speed versus quality

• Tips
• Consider turning off anti-aliasing for a moving object

(e.g., scrolling or animation)
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Agenda

Overview of the Graphics API
Graphics Pipeline
Graphics Primitives and Tools
Optimization
Demo
Summary
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Optimization

• Best strategy is application dependent

• Some are very easy to implement

• More detailed optimizations include
• Intermediate Image

• Spatial partitioning

• Dynamic algorithms
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Intermediate Image

Repaint

Image
Copy

• Speed versus 
memory tradeoff

• Often faster to render an image 
than a collection of objects

• Used by one of the scroll modes built 
into JViewport 
(BACKINGSTORE_SCROLL_MODE)

• Note: There is a more efficient mode 
based on copyArea 
(BLIT_SCROLL_MODE)



2006 JavaOneSM Conference   |   Session TS-1305   | 28

Using Intermediate Images

• Also useful in editing operations

• Create an intermediate image
• Component without object 

being edited

• Component’s paint renders 
image and overlays object

Dragging an object
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Creating the Image
GraphicsConfiguration config =   

component.getGraphicsConfiguration();
image = config.createCompatibleImage( w, h );
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Paint Implementation
public void paint( Graphics g) {

if( image == null && useImage ) {
image = createImage(); 
Graphics imageg = image.createGraphics();
drawContents( imageg );
imageg.dispose();

}
if( image != null ) {

g.drawImage( image, 0, 0, w, h, 
0, 0, w, h, Color.WHITE, null );

} else {
drawContents( g );

}
// additional painting not in drawContents

}
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Bookkeeping

• Set image to null on a component resize to force 
recreation in next paint call

• For large documents, it may be necessary to 
discard offscreen images to save memory

• MRU and weak references may be used to help 
manage memory consumption
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Spatial Partitioning

• Hierarchal organization of objects based on 
onscreen position

• Paint only what is necessary
Set N = root node
if N intersects clip region

if N is a branch node
for each child in N

recurse into child
else

paint leaf node
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Spatial Partitioning
R1 …

R2 R3 …

R4 R5 … R6 R7 …

R*-tree decomposition

R1R2

R3

R4

R5

R6

R7
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DEMO
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Summary

• Solid performance is achievable for a graphics 
rich Java™ based application

• Optimization strategies built into the graphics 
API offer hints at how to solve related 
performance problems

• Useful strategies include
• Intermediate Images
• Spatial decomposition
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For More Information

• A Scrolly, Clippy Swing Optimization
• http://www.oreillynet.com/pub/wlg/9144?wlg=yes

• R*-Tree decompositions
• http://www.sai.msu.su/~megera/postgres/gist/papers/

Rstar3.pdf
• TS-3690 Handwriting recognition
• Demo

• http://www.desktopjava.com
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Q&A
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