
2006 JavaOneSM Conference | Session TS-1305 |

High Performance GUIs
Kevin Ellis
GUI Manager
Maplesoft
www.maplesoft.com

TS-1305

2006 JavaOneSM Conference | Session TS-1305 | 2

Goal

To explore the inner workings of the
graphics API and demonstrate strategies
for optimizing the performance of a
graphical user interface

2006 JavaOneSM Conference | Session TS-1305 | 3

Solid Performance Is Possible
in Java™ Technology

Maple 10 Worksheet
M

2006 JavaOneSM Conference | Session TS-1305 | 4

Agenda

Overview of the Graphics API
Graphics Pipeline
Graphics Primitives and Tools
Optimization
Demo
Summary

2006 JavaOneSM Conference | Session TS-1305 | 5

Overview of the Graphics API
Your Application

Swing

AWT

• Interact with
several layers of
the graphics API

• Design choices at
higher levels can affect
performance at
lower levels

• Bottom two layers are
vendor specific

Java2D

SunGraphics

Native Layer

2006 JavaOneSM Conference | Session TS-1305 | 6

Overview of the Graphics API

• At what level should I be focusing my
optimization efforts?

2006 JavaOneSM Conference | Session TS-1305 | 7

Overview of the Graphics API

• At what level should I be focusing my
optimization efforts?
• Depending on the application, all levels

may be important
• Swing: Optimize object creation

Set rendering flags

• AWT: Optimize event handling

• Java2D: Direct control over object rendering
Graphical underpinnings to Swing
and AWT

2006 JavaOneSM Conference | Session TS-1305 | 8

Agenda

Overview of the Graphics API
Graphics Pipeline
Graphics Primitives and Tools
Optimization
Demo
Summary

2006 JavaOneSM Conference | Session TS-1305 | 9

Graphics Pipeline

• Graphics and Graphics2D are interfaces
• Vendor specific implementations for

onscreen rendering
• Some optimizations are not cross-platform

• Notable differences in Sun and Apple implementation
of text and antialiasing support

2006 JavaOneSM Conference | Session TS-1305 | 10

Evolution of the Graphics Pipeline

• J2SE™ 1.4
• Improved data sharing

across pipelines
• Hardware acceleration

for offscreen images
• Pluggable image I/O

framework
• OpenType fonts

• Java™ SE 6
• Improved text antialiasing
• Single-threaded rendering
• Curved primitive

rasterization

• J2SE™ 1.5
● Hardware acceleration

using OpenGL
● Text rendering

performance
● Improved font handling

2006 JavaOneSM Conference | Session TS-1305 | 11

Graphics Pipeline

• Ideally, built-in optimizations would provide
necessary performance

• In reality, further optimizations are
sometimes required to reduce the burden
on the graphics pipeline

2006 JavaOneSM Conference | Session TS-1305 | 12

Agenda

Overview of the Graphics API
Graphics Pipeline
Graphics Primitives and Tools
Optimization
Demo
Summary

2006 JavaOneSM Conference | Session TS-1305 | 13

Graphics Primitives and Tools

• Graphics
• Lines
• Polylines
• Circles
• Arcs
• Text
• Image
• Clipping
• Affine transforms

• Graphics2D
• Shape
• Composite
• Rendering hints

2006 JavaOneSM Conference | Session TS-1305 | 14

Graphics Primitives and Tools

• Graphics2D offers more flexibility

• Greater choice → More ways to address
performance issues

→ More potential for
suboptimal solutions

• “Ockham’s Razor”
• Given a choice of two equally valid alternatives,

take the simpler one

2006 JavaOneSM Conference | Session TS-1305 | 15

Ockham’s Razor: Example

• How many ways are there to draw rectangles?

2006 JavaOneSM Conference | Session TS-1305 | 16

Ockham’s Razor: Example

• How many ways are there to draw rectangles?
• 1) Use java.awt.Rectangle

• Advantages

● Simple

● Fast

● Flexibility of shape API

• Disadvantage

● Possible loss of precision
under transformation

2006 JavaOneSM Conference | Session TS-1305 | 17

Ockham’s Razor: Example

• How many ways are there to draw rectangles?
• 2) Use java.awt.geom.Rectangle2D

• Advantages

● Maintain floating point precision

● Fast

● Flexibility of Shape API

2006 JavaOneSM Conference | Session TS-1305 | 18

Ockham’s Razor: Example

• How many ways are there to draw rectangles?
• 3) Use java.awt.geom.GeneralPath

• Advantage

● Very general solution

• Disadvantages

● Computational complexity

● Filling a general polynomial is much more expensive
than filling a rectangle: often requires vertex sorting,
winding rules…

2006 JavaOneSM Conference | Session TS-1305 | 19

Ockham’s Razor: Example

• How many ways are there to draw a rectangle?
• 4) Use java.awt.BasicStroke

• WARNING: Kludge alert!!!

• Bookkeeping to determine intersection with the clip boundary
is more complex

• Rendering algorithm is less efficient

• Coordinates become awkward

2006 JavaOneSM Conference | Session TS-1305 | 20

Managing Graphics Complexity

• Rendering text
is a complex affair

• Many built-in
optimizations for
text processing
• Caching of bitmaps

for individual glyphs
• Caching of metrics

Control Points
for a quadratic
Bezier curve

2006 JavaOneSM Conference | Session TS-1305 | 21

Caching Tips

• Consider using cached images for repetitive
non-trivial glyphs

• Consider caching size information to avoid
unnecessary recalculation
• General path iterates over the path to construct

the bounds
• Expensive if done repeatedly

• Cache = Managed Memory Leak
• Avoid overuse
• MRU cache
• Weak reference

2006 JavaOneSM Conference | Session TS-1305 | 22

Tips for Repainting

• Consider one of the following approaches to
facilitate tracking “dirty” shapes
• Apply transform to shape rather than graphics context
• Maintain rectangle for bookkeeping which is inverse

transform applied to clip region
• Quick mechanism for testing overlap with clip region
• Bookkeeping in same coordinate space as shapes

• Painting a shape outside the clip region
is not free

• Don’t paint what you don’t have to!

2006 JavaOneSM Conference | Session TS-1305 | 23

Computing the Inverse Transform

• Transform

• Inverse

2006 JavaOneSM Conference | Session TS-1305 | 24

Rendering Hints

• Control over rendering behavior
• Antialiasing on/off

• Choice of interpolation algorithms

• Render speed versus quality

• Tips
• Consider turning off anti-aliasing for a moving object

(e.g., scrolling or animation)

2006 JavaOneSM Conference | Session TS-1305 | 25

Agenda

Overview of the Graphics API
Graphics Pipeline
Graphics Primitives and Tools
Optimization
Demo
Summary

2006 JavaOneSM Conference | Session TS-1305 | 26

Optimization

• Best strategy is application dependent

• Some are very easy to implement

• More detailed optimizations include
• Intermediate Image

• Spatial partitioning

• Dynamic algorithms

2006 JavaOneSM Conference | Session TS-1305 | 27

Intermediate Image

Repaint

Image
Copy

• Speed versus
memory tradeoff

• Often faster to render an image
than a collection of objects

• Used by one of the scroll modes built
into JViewport
(BACKINGSTORE_SCROLL_MODE)

• Note: There is a more efficient mode
based on copyArea
(BLIT_SCROLL_MODE)

2006 JavaOneSM Conference | Session TS-1305 | 28

Using Intermediate Images

• Also useful in editing operations

• Create an intermediate image
• Component without object

being edited

• Component’s paint renders
image and overlays object

Dragging an object

2006 JavaOneSM Conference | Session TS-1305 | 29

Creating the Image
GraphicsConfiguration config =

component.getGraphicsConfiguration();
image = config.createCompatibleImage(w, h);

2006 JavaOneSM Conference | Session TS-1305 | 30

Paint Implementation
public void paint(Graphics g) {

if(image == null && useImage) {
image = createImage();
Graphics imageg = image.createGraphics();
drawContents(imageg);
imageg.dispose();

}
if(image != null) {

g.drawImage(image, 0, 0, w, h,
0, 0, w, h, Color.WHITE, null);

} else {
drawContents(g);

}
// additional painting not in drawContents

}

2006 JavaOneSM Conference | Session TS-1305 | 31

Bookkeeping

• Set image to null on a component resize to force
recreation in next paint call

• For large documents, it may be necessary to
discard offscreen images to save memory

• MRU and weak references may be used to help
manage memory consumption

2006 JavaOneSM Conference | Session TS-1305 | 32

Spatial Partitioning

• Hierarchal organization of objects based on
onscreen position

• Paint only what is necessary
Set N = root node
if N intersects clip region

if N is a branch node
for each child in N

recurse into child
else

paint leaf node

2006 JavaOneSM Conference | Session TS-1305 | 33

Spatial Partitioning
R1 …

R2 R3 …

R4 R5 … R6 R7 …

R*-tree decomposition

R1R2

R3

R4

R5

R6

R7

2006 JavaOneSM Conference | Session TS-1305 | 34

DEMO

2006 JavaOneSM Conference | Session TS-1305 | 35

Summary

• Solid performance is achievable for a graphics
rich Java™ based application

• Optimization strategies built into the graphics
API offer hints at how to solve related
performance problems

• Useful strategies include
• Intermediate Images
• Spatial decomposition

2006 JavaOneSM Conference | Session TS-1305 | 36

For More Information

• A Scrolly, Clippy Swing Optimization
• http://www.oreillynet.com/pub/wlg/9144?wlg=yes

• R*-Tree decompositions
• http://www.sai.msu.su/~megera/postgres/gist/papers/

Rstar3.pdf
• TS-3690 Handwriting recognition
• Demo

• http://www.desktopjava.com

2006 JavaOneSM Conference | Session TS-1305 | 37

Q&A

2006 JavaOneSM Conference | Session TS-1305 |

High Performance GUIs
Kevin Ellis
GUI Manager
Maplesoft
www.maplesoft.com

TS-1305

	High Performance GUIs
	Goal
	Solid Performance Is Possible in Java™ Technology
	Agenda
	Overview of the Graphics API
	Overview of the Graphics API
	Overview of the Graphics API
	Agenda
	Graphics Pipeline
	Evolution of the Graphics Pipeline
	Graphics Pipeline
	Agenda
	Graphics Primitives and Tools
	Graphics Primitives and Tools
	Ockham’s Razor: Example
	Ockham’s Razor: Example
	Ockham’s Razor: Example
	Ockham’s Razor: Example
	Ockham’s Razor: Example
	Managing Graphics Complexity
	Caching Tips
	Tips for Repainting
	Computing the Inverse Transform
	Rendering Hints
	Agenda
	Optimization
	Intermediate Image
	Using Intermediate Images
	Creating the Image
	Paint Implementation
	Bookkeeping
	Spatial Partitioning
	Spatial Partitioning
	DEMO
	Summary
	For More Information
	Q&A
	High Performance GUIs

