
2006 JavaOneSM Conference | Session TS-1315 |

How to Build a Scalable
Multiplexed Server With NIO

Ron Hitchens
Senior Engineer
Mark Logic Corporation
http://marklogic.com

TS-1315

President
Ronsoft Technologies
http://ronsoft.com

2006 JavaOneSM Conference | Session TS-1315 | 2

Learn to use New I/O (NIO) effectively to
build a scalable, multiplexed server with
Java™ technology

Sockets, Sockets and More Sockets
Think Big

2006 JavaOneSM Conference | Session TS-1315 | 3

Building an NIO Server

Introduction
Understanding the problem
Defining a solution
NIO implementation
Summary

2006 JavaOneSM Conference | Session TS-1315 | 4

Ron Hitchens
Years spent hacking UNIX® internals

Device drivers, I/O streams, etc.

Wrote a small performance tuning
book in 1995
Got into Java technology in a big
way in 1997
Java NIO published August 2002
Wrote an NIO-based chat server that
manages 1000s of connections 24x7
Been at Mark Logic since 2004

Lots of XML, XQuery and Java
technology, not so much NIO lately

Pig Footed Bandicoot

2006 JavaOneSM Conference | Session TS-1315 | 5

Building an NIO Server

Introduction
Understanding the problem
Defining a solution
NIO implementation
Summary

2006 JavaOneSM Conference | Session TS-1315 | 6

What Does a Server Do?

• A server processes requests:
• Receive a client request
• Perform some request-specific task
• Return a response

• Multiple requests run concurrently
• Client requests correspond to connections

• Sequential requests may be sent on a single socket
• Requests may contend for resources
• Tolerates slow, misbehaving or

unresponsive clients

2006 JavaOneSM Conference | Session TS-1315 | 7

Multiplexing Strategies

• Poll each socket in turn
• Impractical without non-blocking sockets
• Inefficient, not very fair and scales poorly

• Thread-per-socket
• Only practical solution for blocking sockets
• Stresses the thread scheduler, which limits scalability

• Thread scheduler does readiness selection—inefficiently

• Readiness selection
• Efficient, but requires OS and Java VM support
• Scales well, especially for many slow clients

Approaches to Managing Many Sockets Concurrently

2006 JavaOneSM Conference | Session TS-1315 | 8

Other Considerations
• Multi-threading issues are magnified

• Concurrent access controls may become a bottleneck
• Non-obvious example: formatting text messages for logging
• Potential for deadlocks

• Per-thread overhead
• Diminishing returns as threads/CPU ratio increases

• Quality-of-service policy under load
• Define acceptable performance criteria
• Define what happens when threshold(s) are reached

• Do nothing different, prioritize requests, queue new requests, reject
new requests, redirect to another server, and so on and so on...

• Client profile
• Ratio of connected clients to running requests
• Can (or must) you tolerate malfunctioning or malicious clients?

Things to Think About When Thinking Big

2006 JavaOneSM Conference | Session TS-1315 | 9

Building an NIO Server

Introduction
Understanding the problem
Defining a solution
NIO implementation
Summary

2006 JavaOneSM Conference | Session TS-1315 | 10

The Reactor Pattern

• Published in Pattern Languages of Program
Design, 1995, ISBN 0-201-6073-4

• Paper by Prof. Douglas C. Schmidt
• http://www.cs.wustl.edu/~schmidt/patterns-ace.html
• Google for: Reactor Pattern

• Describes the basic elements of a server
• Gives us a vocabulary for this discussion

AKA: Dispatcher, Notifier

2006 JavaOneSM Conference | Session TS-1315 | 11

Reactor Pattern UML

2006 JavaOneSM Conference | Session TS-1315 | 12

Reactor Pattern Participants
• Handle

• A reference to an event source, such as a socket
• Event

• A state change that can occur on a Handle
• Demultiplexer

• Reacts to and interprets Events on Handles
• Dispatcher

• Invokes Handlers for Events on Handles
• Handler

• Invoked to process an Event on a Handle

The Moving Parts

http://www.cs.wustl.edu/~schmidt/patterns-ace.html

2006 JavaOneSM Conference | Session TS-1315 | 13

• A server processes requests:
• Receive a client request
• Perform some request-specific task
• Return a response

• Multiple requests run concurrently
• Client requests correspond to connections

• Multiple requests may be sent on a single socket
• Requests may contend for resources
• Tolerates slow or unresponsive clients

What Does a Server Do?
Dispatcher

Handler

Demultiplexer

Scalability

Handle

Event

2006 JavaOneSM Conference | Session TS-1315 | 14

Scalability and Robustness [1]

• The Demultiplexer must:
• React quickly and reliably to new Events
• Promptly notify the Dispatcher of new Events
• Efficiently manage large numbers of Handles (sockets)
• Never delay or block while doing any of the above

• The Dispatcher must:
• Efficiently map an Event on a Handle to a Handler
• Tell Demultiplexer how to treat Handle while Handler is running
• Implement Quality of Service policies
• Schedule Handlers for execution, usually in different threads
• Gracefully cope with all possible Handler errors
• Efficiently manage large numbers of running Handler threads
• Never delay or block while doing any of the above

In Order to Scale Well…

2006 JavaOneSM Conference | Session TS-1315 | 15

Scalability and Robustness [2]

• Handlers must:
• Be well-behaved
• Run concurrently with other handlers
• Stick to their defined responsibilities
• Avoid or minimize resource contention
• Not impede other handlers unnecessarily
• Finish promptly
• Never block indefinitely while doing any of the above

In Order to Scale Well…

2006 JavaOneSM Conference | Session TS-1315 | 16

Dispatcher Flow (Single Threaded)
Register handler(s) for event(s)

...

Do forever

Ask demultiplexer for current events on registered
handles (may block indefinitely)

For each current event*

Invoke handler for event

Clear the event for the handle

*Events should “latch on” until handled

Dispatch stops
while handler
is running

2006 JavaOneSM Conference | Session TS-1315 | 17

Dispatcher Flow (Multi-Threaded)
Do forever

Ask demultiplexer for current events on registered handles
(may block indefinitely)

For each current event

Ask demultiplexer to stop notification of the event

Note that the handler for this event is running

Schedule handler for execution in a worker thread

Clear the event for the handle

<some time later, in some other (handler) thread>

Tell dispatcher the handler has finished running

Tell demultiplexer to resume notification of the event

Synchronize perfectly, don’t clobber or miss anything

This is the
tricky bit

2006 JavaOneSM Conference | Session TS-1315 | 18

A Quick Diversion…

• Network connections are streams
• If your code assumes structured reads, it’s broken

• When reading:
• You may only get some (or none) of the data
• Structured messages will be fragmented
• You must buffer bytes and reconstitute the structure

• When writing:
• The channel may not accept all you want to send
• You must queue output data
• Don’t spin in a handler waiting for output to drain

Don’t Forget—The Channels Are Non-Blocking

2006 JavaOneSM Conference | Session TS-1315 | 19

Observations

• Handling ready-to-write is just buffer draining
• Handlers shouldn’t wait for their output to be sent
• Generic code should handle output queue draining

• Reads are non-blocking and may fragment
• Generic code should do input queue handling

• Client handlers process complete “messages”
• Generic code should queue data for reassembly

• Handler threads must interact with Dispatcher
• Dispatcher needs to know when threads finish
• Handler may want to disable reads, unregister, etc.

2006 JavaOneSM Conference | Session TS-1315 | 20

Hey, That Sounds Like a Framework

• Yep. Inversion of Control—it’s all the rage
• Make it once, make it solid, make it reusable

Carbon60 BuckyBall
(Buckminsterfullerene)

2006 JavaOneSM Conference | Session TS-1315 | 21

Building an NIO Server

Introduction
Understanding the problem
Defining a solution
NIO implementation
Summary

2006 JavaOneSM Conference | Session TS-1315 | 22

Assumptions

• The server is to be multi-threaded
• Using the java.util.concurrent package (Java SE 5)

• One select loop (Dispatcher)
• Accepting new sockets is done elsewhere
• We only care about configurable input handlers

• One input Handler per channel
• No handler chains
• Input and output processing are not directly coupled

• Queuing is done by the framework
• Input handlers do not enforce queuing policies

2006 JavaOneSM Conference | Session TS-1315 | 23

Let’s Quickly Review
• Selector (Demultiplexer)

• Determines which registered channels are ready
• Holds a set of keys representing ready channels

• A ready channel had at least one event occur in the past
• Events are added but never removed from a key in this set

• SelectionKey (Handle)
• Associates one Selector with one SelectableChannel
• Tells Selector which events to monitor for the channel

• Events not in the interest set are ignored
• Contains the set of events as-of last select() call

• Ready ops persist until key is removed from the selected set
• May hold an opaque Object reference for your use

Readiness Selection with NIO

2006 JavaOneSM Conference | Session TS-1315 | 24

Reactor Pattern Mapped to NIO
• Handle

• SelectionKey
• Event

• SelectionKey.OP_READ, etc
• Demultiplexer

• Selector
• Dispatcher

• Selector.select() + iterate Selector.selectedKeys()
• Handler

• In a multi-threaded world, an instance of Runnable

2006 JavaOneSM Conference | Session TS-1315 | 25

NIO Reactor UML

2006 JavaOneSM Conference | Session TS-1315 | 26

Dispatcher Framework Architecture
• The core Dispatcher invokes an internal adapter class
• Client code registers an InputHandler for a channel
• Adapter instances manage the channel and its queues

• When new data arrives, adapter asks InputHandler to determine
if a full message has arrived yet

• If so, the message is dequeued and passed to the handler
• The client handler is passed a Façade interface through which it

may interact with the channel and/or queues

• The client InputHandler is decoupled from NIO and
Dispatcher implementation details

• The Dispatcher framework is decoupled from any
semantics of the data it processes

Decouple I/O Grunt Work From the Client Handler Logic

2006 JavaOneSM Conference | Session TS-1315 | 27

NIO Reactor as a Framework

2006 JavaOneSM Conference | Session TS-1315 | 28

Dispatcher Interface

public interface Dispatcher

{

 void dispatch() throws IOException;

 Object registerChannel (SelectableChannel channel,
 InputHandler handler)
 throws ClosedChannelException;

 void unregisterChannel (Object key);

}

2006 JavaOneSM Conference | Session TS-1315 | 29

Wrangling Threads
• java.util.concurrent.Executor

• Backport to 1.4 is available
• Based on Doug Lea’s EDU.oswego.cs.dl.util.concurrent library

• Executor takes a Runnable
• Runnable takes no arguments

• The framework’s HandlerAdapter class will:
• Serve as the Runnable instance submitted to Executor
• Encapsulate Event state for the worker thread
• Coordinate hand-off and rendezvous with the Dispatcher
• Contain the input and output queues
• Present a Façade through which the InputHandler may interact

with the framework (Dispatcher and queues)

Don’t Even Think About Writing Your Own Thread Pool

2006 JavaOneSM Conference | Session TS-1315 | 30

Core Framework Dispatch Loop
public void dispatch()

{

 while (true) {

 synchronized (guard) { /* empty */ }

 selector.select();

 Set<SelectionKey> keys = selector.selectedKeys();

 for (SelectionKey key : keys) {

 HandlerAdapter adapter = (HandlerAdapter)key.attachment();

 invokeHandler (adapter, key);

 }

 }

}

2006 JavaOneSM Conference | Session TS-1315 | 31

Another Quick Diversion…

• While a thread is sleeping in select(), many
Selector and SelectionKey methods can block
indefinitely if invoked from another thread

• The trick is to use a guard object to handshake
• Selection thread locks then releases the guard
• Other threads wishing to change Selector state

• Obtain a lock on the guard object
• Wakeup the selector
• Do whatever (ex: key.interestOps())
• Release the lock on the guard object

The Selector Class is Kind of Cranky About Threads

2006 JavaOneSM Conference | Session TS-1315 | 32

Registering an InputHandler
public Object registerChannel (SelectableChannel channel,

InputHandler handler)

{

 HandlerAdapter adapter =
 new HandlerAdapter (this, queueFactory, handler);

 synchronized (guard) {

 selector.wakeup();

 return channel.register (selector,
 SelectionKey.OP_READ, adapter);

 }

}

class HandlerAdapter implements Runnable, ChannelFacade

{ . . . }

2006 JavaOneSM Conference | Session TS-1315 | 33

Unregistering an InputHandler
public void unregisterChannel (Object key)

{

 if (! (key instanceof SelectionKey)) {

 throw new IllegalArgumentException (”bad key…");

}

SelectionKey selectionKey = (SelectionKey) key;

synchronized (guard) {

selector.wakeup ();

selectionKey.cancel();

}

}

2006 JavaOneSM Conference | Session TS-1315 | 34

Invoking a Handler in Another Thread
private Map<SelectionKey,HandlerAdapter> runningHandlers;

private void invokeHandler (HandlerAdapter adapter,
SelectionKey key)

{

 synchronized (runningHandlers) {

 adapter.prepareToRun (key);

 key.interestOps (0); // stop selection on channel

 runningHandlers.put (key, adapter);

 }

 executor.execute (adapter); // returns immediately

}

2006 JavaOneSM Conference | Session TS-1315 | 35

While a Thread Is Running

• Channel’s interest ops are all disabled
• Handler cannot be allowed to re-enable them

• Selector would fire and spawn another thread
• HandlerAdapter class mediates and buffers changes

• Other threads also must not change interest ops
• Dispatcher tracks which handlers are running
• Changes delegated to adapter if handler is running

• Handler could block if it accesses channel or key
• Relevant Event information is buffered in adapter
• Handler is never passed a real channel or key

2006 JavaOneSM Conference | Session TS-1315 | 36

Preparing a Thread to Run
class HandlerAdapter implements Runnable, ChannelFacade

{

 . . .

 public void prepareToRun (SelectionKey key)

 {

 this.key = key;

 this.channel = key.channel();

 this.interestOps = key.interestOps();

 this.readyOps = key.readyOps();

 }

}

This runs in the Dispatcher thread
before the Handler thread starts,
safe to access key object.

2006 JavaOneSM Conference | Session TS-1315 | 37

Handler Thread Life-Cycle
public void run() // entered by Executor-managed thread

{

 try {

 drainOutput (readyOps);

 fillInput();

 ByteBuffer message = clientHandler.nextMessage (this);

 if (message != null) {

 clientHandler.handleInput (message, this);

 }

 dispatcher.resumeSelection (key, interestOps);

 } catch (Throwable e) {

 dispatcher.unregisterChannel (key);

 }

}

2006 JavaOneSM Conference | Session TS-1315 | 38

First: Drain Any Queued Output
private void drainOutput (int readyOps)

{

 if (((readyOps & SelectionKey.OP_WRITE) == 0)

 || outputQueue.isEmpty())

 {

 return; // cannot write now, or queue is empty

 }

 outputQueue.drainTo (this.channel);

 if (outputQueue.isEmpty()) { // turn off write selection

 interestOps &= ~SelectionKey.OP_WRITE;

 }

}

2006 JavaOneSM Conference | Session TS-1315 | 39

Second: Invoke Client InputHandler
public void run()

{

 try {

 drainOutput (readyOps);

 fillInput();

 ByteBuffer message = clientHandler.nextMessage (this);

 if (message != null) {

 clientHandler.handleInput (message, this);

 }

 dispatcher.resumeSelection (key, interestOps);

 } catch (Throwable e) {

 key.cancel();

 }

}

2006 JavaOneSM Conference | Session TS-1315 | 40

A Handler’s View of the World
interface InputHandler

{

 ByteBuffer nextMessage (ChannelFacade channelFacade);

 void handleInput (ByteBuffer message, ChannelFacade

 channelFacade);

}

interface ChannelFacade

{

 InputQueue inputQueue();

 OutputQueue outputQueue();

 void setHandler (InputHandler handler);

 int getInterestOps();

 void modifyInterestOps (int opsToSet, int opsToReset);

}

2006 JavaOneSM Conference | Session TS-1315 | 41

Last: Cleanup and Resume
public void resumeSelection (SelectionKey key, int interestOps)

{

 synchronized (guard) {

 selector.wakeup();

 if (key.isValid()) {

 key.interestOps (interestOps);

 }

 synchronized (runningHandlers) {

 runningHandlers.remove (key);

 }

 }

}

This method lives
in the Dispatcher
object but runs in
the Handler thread

2006 JavaOneSM Conference | Session TS-1315 | 42

A Trivial Echo-Back Handler Example
public ByteBuffer nextMessage (ChannelFacade channelFacade)

{

 InputQueue inputQueue = channelFacade.inputQueue();

 int nlPos = inputQueue.indexOf ((byte) '\n');

 if (nlPos == -1) return (null);

 return (inputQueue.dequeueBytes (nlPos));

}

public void handleInput (ByteBuffer message, ChannelFacade channelFacade)

{

 channelFacade.outputQueue().enqueue (message);

}

2006 JavaOneSM Conference | Session TS-1315 | 43

A Few Words About Queues

• The framework need only see trivial interfaces
• Handlers will need more, and perhaps

specialized, API methods
• Use Abstract Factory or Builder pattern to

decouple queue creation (dependency injection)
• Output queues (usually) must be thread-safe

• A handler for one channel may need to enqueue data
to a different channel

• Input queues usually don’t need to be
• Buffer factories need to be thread-safe

2006 JavaOneSM Conference | Session TS-1315 | 44

Basic Queue Interfaces
interface InputQueue

{

 int fillFrom (ReadableByteChannel channel);

}

interface OutputQueue

{

 boolean isEmpty();

 int drainTo (WriteableByteChannel channel);

 // enqueue() is not referenced by the framework, but

 // it must enable write selection when data is added

 // write selection is disabled when the queue becomes empty

}

2006 JavaOneSM Conference | Session TS-1315 | 45

Danger! Danger, Will Robinson!

• Never let the Dispatcher thread die
• Everything will go very quiet
• Be sure to catch and handle all possible throwables

• Beware Executor thread pool policies
• If “caller runs” is enabled, the Dispatcher thread can

execute the handler code—beware alien code
• Put sensible limits on queue sizes

• Not too small, especially for output
• Don’t statically allocate per-channel, use factories
• Don’t over-use direct buffers

2006 JavaOneSM Conference | Session TS-1315 | 46

Tuning
• Too big a subject to cover here
• Use the knobs in java.util.concurrent

• Optimal thread count is dependent on CPU count
• Backlog vs. caller runs vs. discard, etc.

• Use buffer factories to obtain space for queues
• Pool direct buffers, if used, they’re expensive to create
• Heap buffers probably shouldn’t be pooled

• Limit policies may be different for input vs.
output queues
• Output limits are typically higher
• Input limits can be small, network layer queues too

2006 JavaOneSM Conference | Session TS-1315 | 47

Building an NIO Server

Introduction
Understanding the problem
Defining a solution
NIO implementation
Summary

2006 JavaOneSM Conference | Session TS-1315 | 48

A Picture Is Worth…

2006 JavaOneSM Conference | Session TS-1315 | 49

Summary

• The core of the problem is generic boilerplate
• Decouple application-specific code from generic
• Keep the critical parts lean, efficient and robust

• Lock appropriately, but sparingly
• Delegate work to handler threads
• Protect the framework from alien handler code

• Use good object design and leverage patterns
• Keep it simple

2006 JavaOneSM Conference | Session TS-1315 | 50

For More Information

Sample Code and Information
• http://javanio.info

Books
• Java NIO, Ron Hitchens (O’Reilly)
• Java Concurrency In Practice, Brian Goetz, et al (AW)
• Concurrent Programming in Java, Doug Lea (AW)

2006 JavaOneSM Conference | Session TS-1315 | 51

Q&A
Ron Hitchens

2006 JavaOneSM Conference | Session TS-1315 |

How to Build a Scalable Multiplexed
Server With NIO

Ron Hitchens
Senior Engineer
Mark Logic Corporation
http://marklogic.com

TS-1315

President
Ronsoft Technologies
http://ronsoft.com

