@ Sun

f Power (&) PURDUE

OUONIVERSITY.

Java

JavaOne

The Java™ Technology
Memory Model:
the Building Block

of Concurrency

Jeremy Manson, Purdue University
William Pugh, Univ. of Maryland

http://www.cs.umd.edu/~pugh/java/memoryModel/

TS-1630

2006 JavaOne®™ Conference | Session TS-1630 | jaua.sun.com /'ji':IUEIOI'IE.fo

¢ JavaOne

2006 JavaOnes™ Conference | Session TS-1630 | 2 java.sun.com/javaone/sf

@ Sun

Agenda

Scope

The Fundamentals: Happens-Before Ordering
Using Volatile

Thread Safe Lazy Initialization

Final Fields

Recommendations

2006 JavaOne®™ Conference | Session TS-1630 | 3 iava .sun.com/iavaone/sf

Java™ Technology
Thread Specification

Revised as part of JSR 133

Part of Tiger and later releases

Goals
Clear and easy to understand
Foster reliable multithreaded code
Allow for high performance JVM™ machines

Not all of these ideas are guaranteed to work in
previous versions

Previous thread spec was broken
Forbid optimizations performed by many JVM machines

@Sun 2006 JavaOne®" Conference | Session TS-1630 | 4 java.sun.com/javaone/sf

Java

Safety Issues in
Multithreaded Systems

Many intuitive assumptions do not hold

Some widely used idioms are not safe
Original double-checked locking idiom
Checking non-volatile flag for
thread termination

Can’t depend on testing to check for errors

Some anomalies will occur only on
some platforms

e.g., multiprocessors
Anomalies will occur rarely and non-repeatedly

@::”’SMW 2006 JavaOne®™ Conference | Session TS-1630 | 5 iava.sun.com/iavaone/sf

>,

This Talk

Describe building blocks of synchronization and
concurrent programming in Java language
Both language primitives and util.concurrent
abstractions

Explain what it means for code to be correctly
synchronized

Try to convince you that clever reasoning about
unsynchronized multithreaded code is almost
certainly wrong

And not needed for efficient and reliable programs

2006 JavaOne®™ Conference | Session TS-1630 | 6 iava.sun.com/iavaone/sf

This Talk

* We will be talking mostly about

* Synchronized methods and blocks
* Volatile fields

* Same principles apply to JSR 166 classes
* Will also talk about final fields and immutability

2006 JavaOnes Conference | Session TS-1630 | 7 java.sun.com/javaone/sf

Taxonomy

High level concurrency abstractions
JSR 166 and java.util.concurrent

Low level locking
synchronized () blocks and util.concurrent.locks

Low level primitives
Volatile variables, java.util.concurrent.atomic classes
Allows for non-blocking synchronization

Data races: deliberate undersynchronization
Avoid!
Not even Doug Lea can get it right

”%:”fSZﬂ’l 2006 JavaOne® Conference | Session TS-1630 | 8 java .sun.com/javaone/sf

Agenda

Scope

The Fundamentals: Happens-Before Ordering
Using Volatile

Thread Safe Lazy Initialization

Final Fields

Recommendations

2006 JavaOne®™ Conference | Session TS-1630 | 9 iava .sun.com/iavaone/sf

Java

Synchronization Is Needed for
Blocking and Visibility

Synchronization isn’t just about mutual
exclusion and blocking

It also regulates when other threads must see
writes by other threads

When writes become visible

Without synchronization, compiler and
processor are allowed to reorder memory
accesses in ways that may surprise you

And break your code

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 10 java.sun.com/javaone/sf

Don’t Try To Be Too Clever

* People worry about the cost of synchronization

* Try to devise schemes to communicate between
threads without using synchronization

* Locks, volatiles, or other concurrency abstractions

* Nearly impossible to do correctly

* Interthread communication without synchronization is
not intuitive

@Sun 2006 JavaOnes™ Conference | Session TS-1630 | 11 java.sun.com/javaone/sf

Thread 1~~~ Starttre ads.._ ~ Thread 2

X 1

I
<
I

I
]

J =Y i

Can thisresultini=0and =07

2006 JavaOnes Conference | Session TS-1630 | 12 java.sun.com/javaone/sf

Answer: Yes!

Thread 1 “start threads .

Thread 2

X

I
<
I

1

J =Y i

Howcani=0and =07

2006 JavaOneSM™ Conference | Session TS-1630 | 13

java.sun.com/javaone/sf

>,

How Can This Happen?

Compiler can reorder statements
Or keep values in registers

Processor can reorder them

On multi-processor, values not synchronized to
global memory

The memory model is designed to allow
aggressive optimization

Including optimizations no one has implemented yet

Good for performance

Bad for your intuition about insufficiently
synchronized code

2006 JavaOneS Conference | Session TS-1630 | 14 java.sun.com/javaone/sf

When Are Actions Visible

to Other Threads?

Everything before Thread 2
refl.x =1 an unlock (release) l
lock M lock M
glo = refl ref2 = glO
unlock M unlock M
Thread 1 Is visible to everything) = EE o
after a later lock (acquire) l

on the same Object

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 15 java.sun.com/javaone/sf

Release and Acquire

* All memory accesses before a release
* Are ordered before and visible to
* Any memory accesses after a matching acquire

* Unlocking a monitor/lock is a release

* That is acquired by any following lock of that
monitor/lock

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 16 java.sun.com/javaone/sf

Happens-Before Ordering

* A release and a matching later acquire establish
a happens-before ordering

* Execution order within a thread also establishes
a happens-before order

* Happens-before order is transitive

2006 JavaOnes Conference | Session TS-1630 | 17 java.sun.com/javaone/sf

>,

Data Race

* If there are two accesses to a memory location,
* At least one of those accesses is a write, and
* The memory location isn’t volatile, then

* The accesses must be ordered by
happens-before

* Violate this, and you may need a PhD to figure
out what your program can do

* Not as bad/unspecified as a buffer overflow in C

2006 JavaOnes Conference | Session TS-1630 | 18 java.sun.com/javaone/sf

Need Something More Concrete?

* Okay, perhaps this is a little too abstract

* What does entering/leaving a synchronized
block actually do?

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 19 java.sun.com/javaone/sf

Synchronization Actions He's lying
(Approximately)

int z = o.fieldl;
// block until obtain lock
synchronized (o) {

// get main memory value of field1 and field2

This is a gross
oversimplification

int x = o.fieldl;
int y = o.field2; Depend on this
o.field3 = x+y; at your great peril
// commit value of field3 to main memory

}

// release lock

moreCode () ; The figure from five slides earlier is a much

better mental image

2006 JavaOneS Conference | Session TS-1630 | 20 java.sun.com/javaone/sf

Ordering

Roach motel ordering

Compiler/processor can move accesses into
synchronized blocks

Can only move them out under special
circumstances, generally not observable
But a release only matters to a matching acquire

Some special cases:
Locks on thread local objects are a no-op
Reentrant locks are a no-op

Java SE 6 (Mustang) does optimizations
based on this

@Sun 2006 JavaOnes™ Conference | Session TS-1630 | 21 java.sun.com/javaone/sf

@ Sun

Agenda

Scope

The Fundamentals: Happens-Before Ordering
Using Volatile

Thread Safe Lazy Initialization

Final Fields

Recommendations

2006 JavaOneS Conference | Session TS-1630 | 22 java.sun.com/javaone/sf

Volatile Fields

If a field could be simultaneously accessed by
multiple threads, and at least one of those

accesses is a write

Two choices:
Use synchronization to prevent simultaneous access

Make the field volatile

Serves as documentation
Gives essential JVM machine guarantees

Can be tricky to get volatile right, but nearly
iImpossible without volatile or synchronization

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 23 java.sun.com/javaone/sf

What Does Volatile Do?

Reads and writes go directly to memory

* Not cached in registers

Volatile longs and doubles are atomic
* Not true for non-volatile longs and doubles

Volatile reads/writes cannot be reordered
Reads/writes become acquire/release pairs

2006 JavaOne®M Conference | Session TS-1630 | 24

java.sun.com/javaone/sf

>,

Volatile Happens-Before Edges

* A volatile write happens-before all following
reads of the same variable

* A volatile write is similar to a unlock or
monitor exit

* In terms of the happens-before edges it creates

* A volatile read is similar to a lock or
monitor enter

2006 JavaOnes Conference | Session TS-1630 | 25 java.sun.com/javaone/sf

Volatile Guarantees Visibility

* stop must be declared volatile
* Otherwise, compiler could keep in register

class Animator implements Runnable {
private volatile boolean stop = false;
public void stop() { stop = true; }
public void run() ({
while (!stop)
oneStep () ;
try { Thread.sleep(100); } ..;

}
private void oneStep() { /*...*/ }

}

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 26 java.sun.com/javaone/sf

Volatile Guarantees Ordering

* If a thread reads data, there is a happens-before
edge from write to read of ready that
guarantees visibility of data

class Future {
private volatile boolean ready;
private Object data;
public Object get () {
if ('ready
return null;
return data;

}

public synchronized
void setOnce (Object o) {
if (ready) throw .. ;
data = o;
ready = true;

s
}

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 27 java.sun.com/javaone/sf

More Notes on Volatile

Incrementing a volatile is not atomic

If threads threads try to increment a volatile at the
same time, an update might get lost

Volatile reads are very cheap
Volatile writes cheaper than synchronization

No way to make elements of an array be volatile

Consider using util.concurrent.atomic package
Atomic objects work like volatile fields

But support atomic operations such as increment and
compare and swap

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 28 java.sun.com/javaone/sf

Java

Other Happens-Before Orderings

Starting a thread happens-before the run
method of the thread

The termination of a thread happens-before a
join with the terminated thread

Many util.concurrent methods set up happens-
before orderings

Placing an object into any concurrent collection
happens-before the access or removal of that
element from the collection

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 29 java.sun.com/javaone/sf

g microsystems

Agenda

Scope

The Fundamentals: Happens-Before Ordering
Using Volatile

Thread Safe Lazy Initialization

Final Fields

Recommendations

2006 JavaOne®™ Conference | Session TS-1630 | 30 iava .sun.com/iavaone/sf

Thread Safe Lazy Initialization

* Want to perform lazy initialization of something
that will be shared by many threads

* Don’t want to pay for synchronization after
object is initialized

2006 JavaOnes Conference | Session TS-1630 | 31 java.sun.com/javaone/sf

Original Double Checked Locking

// FIXME: THIS CODE IS BROKEN!

Helper helper;

Helper getHelper () ({
if (helper == null)
synchronized (this) {
if (helper == null)
helper = new Helper() ;

}

return helper;

}

@f@Sun 2006 JavaOne®" Conference | Session TS-1630 | 32

java.sun.com/javaone/sf

Correct Double Checked Locking

// THIS CODE WORKS
volatile Helper helper;

Helper getHelper () {
if (helper == null)
synchronized (this) {
if (helper == null)

helper = new Helper();

}

return helper;

}

of’f@SZﬂ’l 2006 JavaOne®" Conference | Session TS-1630 | 33

java.sun.com/javaone/sf

>,

We Don’t Want to Hear Your Solution

Frankly, we don’t want to hear your solution
on how to “fix” double checked locking
without using any kind of synchronization
or volatile fields

Unless a happens-before order is established
between the threads, it cannot work

We’ve seen hundreds of emails with proposed
solutions, none of them work

2006 JavaOneS Conference | Session TS-1630 | 34 java.sun.com/javaone/sf

Even Better Static Lazy Initialization

If you need to initialize a singleton value

Something that will only be initialized once per
Java VM

Just initialize it in the declaration of a static
variable

Or in a static initialization block

Spec guarantees it will be initialized in a thread
safe way at the first use of that class

But not before

%%Sun 2006 JavaOneSM Conference | Session TS-1630 | 35 iava.sun.com/iavaone/sf

@ Sun

Threadsafe Static Lazy Initialization

class Helper ({
static final Helper helper = new Helper () ;

public static Helper getHelper () {
return helper;

}

private Helper () {
¥
}

2006 JavaOne®™ Conference | Session TS-1630 | 36 java .sun.com/iavaone/sf

@ Sun

Agenda

Scope

The Fundamentals: Happens-Before Ordering
Using Volatile

Thread Safe Lazy Initialization

Final Fields

Recommendations

2006 JavaOnes Conference | Session TS-1630 | 37 java.sun.com/javaone/sf

Thread Safe Immutable Objects

Use immutable objects when you can

Lots of advantages, including reducing needs for
synchronization

Can make all fields final

Don’t allow other threads to see object until
construction complete

Gives added advantage

Spec promises immutability, even if malicious code
attacks you with data races

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 38 java.sun.com/javaone/sf

>,

Data Race Attack

Thread 1 creates instance of a class

Thread 1 hands the instance to thread 2 without
using synchronization

Thread 2 accesses the object

It is possible, although unlikely, that thread 2
could access an object before all the writes
performed by the constructor in thread 1 are
visible to thread 2

2006 JavaOnes" Conference | Session TS-1630 | 39 java.sun.com/javaone/sf

>,

Strings Could Change

Without the promises made by final fields, it
would be possible for a String to change

Created as “/tmp/usr”.substring(4,8)
First seen by thread 2 as “/tmp”
Later seen by thread 2 as “/usr”

Since Strings are immutable, they don’t use
synchronization

Final fields guarantee initialization safety

2006 JavaOnes" Conference | Session TS-1630 | 40 java.sun.com/javaone/sf

A Hack to Change Final Fields

* There are times when you may need to change
final fields

* Cloneg()
* Deserialization()

* Only do this for newly minted objects

* Use Field.setAccessible(true)
* Only works in Java version 5.0+

* Be nice to have a better solution in Dolphin

@Sun 2006 JavaOnes™ Conference | Session TS-1630 | 41 java.sun.com/javaone/sf

Optimization of Final Fields

* New spec allows aggressive optimization of
final fields

* Hoisting of reads of final fields across synchronization
and unknown method calls

+ Still maintains immutability

* Should allow for future JVM machines to obtain
performance advantages

@Sun 2006 JavaOnes™ Conference | Session TS-1630 | 42 java.sun.com/javaone/sf

@ Sun

Agenda

Scope

The Fundamentals: Happens-Before Ordering
Using Volatile

Thread Safe Lazy Initialization

Final Fields

Recommendations

2006 JavaOneS Conference | Session TS-1630 | 43 java.sun.com/javaone/sf

>,

These Are Building Blocks

If you can solve your problems using the high
level concurrency abstractions provided by
util.concurrent

Do so
Understanding the memory model, and what
release/acquire means in that context, can help

you devise and implement your own
concurrency abstractions

And learn what not to do

2006 JavaOneS Conference | Session TS-1630 | 44 java.sun.com/javaone/sf

Mostly, It Just Works

* If you aren'’t trying to be clever, the memory
model just works and doesn’t surprise

* No change from previous generally recommended
programming practice

* Knowing the details can
* Reassure those whose obsess over details
* Clarify the fine line between clever and stupid

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 45 java.sun.com/javaone/sf

Synchronize When Needed

Places where threads interact
Need synchronization
May need careful thought
Don’t need clever hacks
May need documentation

Cost of required synchronization not significant
For most applications
No need to get tricky

Performance of the util.concurrent abstractions
IS amazing and getting better

@Sun 2006 JavaOnes" Conference | Session TS-1630 | 46 java.sun.com/javaone/sf

>,

Watch Out for
Useless Synchronization

Using a concurrent class in a single threaded
context can generate measurable overhead

Synchronization on each access to a Vector, or on
each 10 operation

Substitute unsynchronized classes when
appropriate
ArrayList for Vector

Perform bulk I/O or use java.nio

2006 JavaOnes Conference | Session TS-1630 | 47 java.sun.com/javaone/sf

Sometimes Synchronization
Isn’t Enough

* Even if you use a concurrent class, your code may not

be thread safe

/| THIS CODE WILL NOT WORK

ConcurrentHashMap<String,ID> h;
ID getID(String name) ({
ID x = h.get (name) ;
if (x == null) {
X = new ID();
h.put (name, x);
}

return x;

}

* Watch out for failures of atomicity

”’f{’SMﬂ 2006 JavaOne®™ Conference | Session TS-1630 | 48

java.sun.com/javaone/sf

>,

Documenting Concurrency

Often the concurrency properties of a class are
poorly documented

Is an 1O stream thread safe?
Not as simple as “this class is thread safe”
Look at util.concurrent documentation

Look at annotations described in Java
Concurrency in Practice GERSIT,

SS NS o,

Some of which are checked by FindBugs -

4RYL§é

FlndBu;&s

because it’s easy

2006 JavaOnes Conference | Session TS-1630 | 49 java.sun.com/javaone/sf

Designing Fast Concurrent Code

Make it right before you make it fast

Reduce synchronization costs
Avoid sharing mutable objects across threads
Avoid old Collection classes (Vector, Hashtable)
Use bulk I/O (or, even better, java.nio classes)

Use java.util.concurrent classes
Designed for speed, scalability and correctness

Avoid lock contention
Reduce lock scopes
Reduce lock durations

@::”’SMW 2006 JavaOneSM Conference | Session TS-1630 | 50 iava.sun.com/iavaone/sf

Wrap-Up

* Cost of synchronization operations can be
significant
* But cost of needed synchronization rarely is
* Thread interaction needs careful thought

* But not too clever

* Don’t want to have to think to hard about reordering

* If you don’t have data races, you don’t have to think about
the weird things the compiler is allowed to do

@Sun 2006 JavaOnes™ Conference | Session TS-1630 | 51 java.sun.com/javaone/sf

Wrap-Up—Communication

* Communication between threads
* Requires a happens-before edge/ordering
* Both threads must participate

* No way for one thread to push information into
other threads

* Final fields allow some guaranteed communications without
a normal happens-before edge, but don’t write code that
depends on this for normal operations

@Sun 2006 JavaOnes™ Conference | Session TS-1630 | 52 java.sun.com/javaone/sf

For More Information

http://www.cs.umd.edu/~pugh/java/memoryModel/
Concurrency Utilities (JSR 166) Interest mailing list
TS-4915: Concurrency Ultilities

Java Concurrency in Practice

* By Brian Goetz, Tim Peierls, Joshua Bloch, Joseph
Bowbeer, David Holmes, Doug Lea

2006 JavaOne®™ Conference | Session TS-1630 | 53 java .sun.com/javaone/sf

JavaOne
=

Q&A

Jeremy Manson
Purdue University
William Pugh

Univ. of Maryland

java.sun.com/javaone/sf

@ Sun

f Power (&) PURDUE

OUONIVERSITY.

Java

JavaOne

The Java™ Technology
Memory Model:
the Building Block

of Concurrency

Jeremy Manson, Purdue University
William Pugh, Univ. of Maryland

http://www.cs.umd.edu/~pugh/java/memoryModel/

TS-1630

2006 JavaOne®™ Conference | Session TS-1630 | jaua.sun.com /'ji':IUEIOI'IE.fo

