
2006 JavaOneSM Conference | Session TS-1630 |

The Java™ Technology
Memory Model:
the Building Block
of Concurrency
Jeremy Manson, Purdue University
William Pugh, Univ. of Maryland

http://www.cs.umd.edu/~pugh/java/memoryModel/

TS-1630

2006 JavaOneSM Conference | Session TS-1630 | 2

Learn the building blocks of
concurrency and how to design clever
but correct concurrent abstractions
and design patterns.

Goal

2006 JavaOneSM Conference | Session TS-1630 | 3

Agenda

Scope
The Fundamentals: Happens-Before Ordering
Using Volatile
Thread Safe Lazy Initialization
Final Fields
Recommendations

2006 JavaOneSM Conference | Session TS-1630 | 4

Java™ Technology
Thread Specification

• Revised as part of JSR 133
• Part of Tiger and later releases

• Goals
• Clear and easy to understand
• Foster reliable multithreaded code
• Allow for high performance JVM™ machines

• Not all of these ideas are guaranteed to work in
previous versions
• Previous thread spec was broken

• Forbid optimizations performed by many JVM machines

2006 JavaOneSM Conference | Session TS-1630 | 5

Safety Issues in
Multithreaded Systems

• Many intuitive assumptions do not hold
• Some widely used idioms are not safe

• Original double-checked locking idiom
• Checking non-volatile flag for

thread termination
• Can’t depend on testing to check for errors

• Some anomalies will occur only on
some platforms

• e.g., multiprocessors
• Anomalies will occur rarely and non-repeatedly

2006 JavaOneSM Conference | Session TS-1630 | 6

This Talk

• Describe building blocks of synchronization and
concurrent programming in Java language
• Both language primitives and util.concurrent

abstractions
• Explain what it means for code to be correctly

synchronized
• Try to convince you that clever reasoning about

unsynchronized multithreaded code is almost
certainly wrong
• And not needed for efficient and reliable programs

2006 JavaOneSM Conference | Session TS-1630 | 7

This Talk

• We will be talking mostly about
• Synchronized methods and blocks
• Volatile fields

• Same principles apply to JSR 166 classes
• Will also talk about final fields and immutability

2006 JavaOneSM Conference | Session TS-1630 | 8

Taxonomy

• High level concurrency abstractions
• JSR 166 and java.util.concurrent

• Low level locking
• synchronized() blocks and util.concurrent.locks

• Low level primitives
• Volatile variables, java.util.concurrent.atomic classes
• Allows for non-blocking synchronization

• Data races: deliberate undersynchronization
• Avoid!
• Not even Doug Lea can get it right

2006 JavaOneSM Conference | Session TS-1630 | 9

Agenda

Scope
The Fundamentals: Happens-Before Ordering
Using Volatile
Thread Safe Lazy Initialization
Final Fields
Recommendations

2006 JavaOneSM Conference | Session TS-1630 | 10

Synchronization Is Needed for
Blocking and Visibility

• Synchronization isn’t just about mutual
exclusion and blocking

• It also regulates when other threads must see
writes by other threads
• When writes become visible

• Without synchronization, compiler and
processor are allowed to reorder memory
accesses in ways that may surprise you
• And break your code

2006 JavaOneSM Conference | Session TS-1630 | 11

Don’t Try To Be Too Clever

• People worry about the cost of synchronization
• Try to devise schemes to communicate between

threads without using synchronization
• Locks, volatiles, or other concurrency abstractions

• Nearly impossible to do correctly
• Interthread communication without synchronization is

not intuitive

2006 JavaOneSM Conference | Session TS-1630 | 12

Quiz Time
x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

Can this result in i = 0 and j = 0?

start threads

2006 JavaOneSM Conference | Session TS-1630 | 13

Answer: Yes!
x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

How can i = 0 and j = 0?

start threads

2006 JavaOneSM Conference | Session TS-1630 | 14

How Can This Happen?
• Compiler can reorder statements

• Or keep values in registers
• Processor can reorder them
• On multi-processor, values not synchronized to

global memory
• The memory model is designed to allow

aggressive optimization
• Including optimizations no one has implemented yet

• Good for performance
• Bad for your intuition about insufficiently

synchronized code

2006 JavaOneSM Conference | Session TS-1630 | 15

When Are Actions Visible
to Other Threads?

glo = ref1

unlock M

Thread 1

lock M

ref2 = glo

Thread 2

lock M

ref1.x = 1

unlock M

j = ref2.x

Everything before
an unlock (release)

Is visible to everything
after a later lock (acquire)
on the same Object

2006 JavaOneSM Conference | Session TS-1630 | 16

Release and Acquire

• All memory accesses before a release
• Are ordered before and visible to
• Any memory accesses after a matching acquire

• Unlocking a monitor/lock is a release
• That is acquired by any following lock of that

monitor/lock

2006 JavaOneSM Conference | Session TS-1630 | 17

Happens-Before Ordering

• A release and a matching later acquire establish
a happens-before ordering

• Execution order within a thread also establishes
a happens-before order

• Happens-before order is transitive

2006 JavaOneSM Conference | Session TS-1630 | 18

Data Race

• If there are two accesses to a memory location,
• At least one of those accesses is a write, and
• The memory location isn’t volatile, then

• The accesses must be ordered by
happens-before

• Violate this, and you may need a PhD to figure
out what your program can do
• Not as bad/unspecified as a buffer overflow in C

2006 JavaOneSM Conference | Session TS-1630 | 19

Need Something More Concrete?

• Okay, perhaps this is a little too abstract
• What does entering/leaving a synchronized

block actually do?

2006 JavaOneSM Conference | Session TS-1630 | 20

Synchronization Actions
(Approximately)
int z = o.field1;
// block until obtain lock
synchronized(o) {
 // get main memory value of field1 and field2
 int x = o.field1;int y = o.field2;
 o.field3 = x+y;

// commit value of field3 to main memory
}
// release lock
moreCode();

He’s lying

This is a gross
oversimplification

Depend on this
at your great peril

The figure from five slides earlier is a much
better mental image

2006 JavaOneSM Conference | Session TS-1630 | 21

Ordering

• Roach motel ordering
• Compiler/processor can move accesses into

synchronized blocks
• Can only move them out under special

circumstances, generally not observable
• But a release only matters to a matching acquire
• Some special cases:

• Locks on thread local objects are a no-op
• Reentrant locks are a no-op
• Java SE 6 (Mustang) does optimizations

based on this

2006 JavaOneSM Conference | Session TS-1630 | 22

Agenda

Scope
The Fundamentals: Happens-Before Ordering
Using Volatile
Thread Safe Lazy Initialization
Final Fields
Recommendations

2006 JavaOneSM Conference | Session TS-1630 | 23

Volatile Fields

• If a field could be simultaneously accessed by
multiple threads, and at least one of those
accesses is a write

• Two choices:
• Use synchronization to prevent simultaneous access
• Make the field volatile

• Serves as documentation
• Gives essential JVM machine guarantees

• Can be tricky to get volatile right, but nearly
impossible without volatile or synchronization

2006 JavaOneSM Conference | Session TS-1630 | 24

What Does Volatile Do?

• Reads and writes go directly to memory
• Not cached in registers

• Volatile longs and doubles are atomic
• Not true for non-volatile longs and doubles

• Volatile reads/writes cannot be reordered
• Reads/writes become acquire/release pairs

2006 JavaOneSM Conference | Session TS-1630 | 25

Volatile Happens-Before Edges

• A volatile write happens-before all following
reads of the same variable

• A volatile write is similar to a unlock or
monitor exit
• In terms of the happens-before edges it creates

• A volatile read is similar to a lock or
monitor enter

2006 JavaOneSM Conference | Session TS-1630 | 26

class Animator implements Runnable {
 private volatile boolean stop = false;
 public void stop() { stop = true; }
 public void run() {
 while (!stop)
 oneStep();
 try { Thread.sleep(100); } …;
 }
 private void oneStep() { /*...*/ }
}

Volatile Guarantees Visibility
• stop must be declared volatile

• Otherwise, compiler could keep in register

2006 JavaOneSM Conference | Session TS-1630 | 27

class Future {
private volatile boolean ready;
private Object data;
public Object get() {

if (!ready)
 return null;

return data;
}

Volatile Guarantees Ordering

• If a thread reads data, there is a happens-before
edge from write to read of ready that
guarantees visibility of data

 public synchronized
 void setOnce(Object o) {

if (ready) throw … ;
data = o;
ready = true;
}

}

2006 JavaOneSM Conference | Session TS-1630 | 28

More Notes on Volatile

• Incrementing a volatile is not atomic
• If threads threads try to increment a volatile at the

same time, an update might get lost
• Volatile reads are very cheap

• Volatile writes cheaper than synchronization
• No way to make elements of an array be volatile
• Consider using util.concurrent.atomic package

• Atomic objects work like volatile fields
• But support atomic operations such as increment and

compare and swap

2006 JavaOneSM Conference | Session TS-1630 | 29

Other Happens-Before Orderings

• Starting a thread happens-before the run
method of the thread

• The termination of a thread happens-before a
join with the terminated thread

• Many util.concurrent methods set up happens-
before orderings
• Placing an object into any concurrent collection

happens-before the access or removal of that
element from the collection

2006 JavaOneSM Conference | Session TS-1630 | 30

Agenda

Scope
The Fundamentals: Happens-Before Ordering
Using Volatile
Thread Safe Lazy Initialization
Final Fields
Recommendations

2006 JavaOneSM Conference | Session TS-1630 | 31

Thread Safe Lazy Initialization

• Want to perform lazy initialization of something
that will be shared by many threads

• Don’t want to pay for synchronization after
object is initialized

2006 JavaOneSM Conference | Session TS-1630 | 32

Original Double Checked Locking

// FIXME: THIS CODE IS BROKEN!
Helper helper;
Helper getHelper() {
 if (helper == null)
 synchronized(this) {
 if (helper == null)
 helper = new Helper();
 }
 return helper;
}

2006 JavaOneSM Conference | Session TS-1630 | 33

Correct Double Checked Locking

// THIS CODE WORKS
volatile Helper helper;
Helper getHelper() {
 if (helper == null)
 synchronized(this) {
 if (helper == null)
 helper = new Helper();
 }
 return helper;
}

2006 JavaOneSM Conference | Session TS-1630 | 34

We Don’t Want to Hear Your Solution

• Frankly, we don’t want to hear your solution
on how to “fix” double checked locking
without using any kind of synchronization
or volatile fields
• Unless a happens-before order is established

between the threads, it cannot work
• We’ve seen hundreds of emails with proposed

solutions, none of them work

2006 JavaOneSM Conference | Session TS-1630 | 35

Even Better Static Lazy Initialization

• If you need to initialize a singleton value
• Something that will only be initialized once per

Java VM
• Just initialize it in the declaration of a static

variable
• Or in a static initialization block

• Spec guarantees it will be initialized in a thread
safe way at the first use of that class
• But not before

2006 JavaOneSM Conference | Session TS-1630 | 36

Threadsafe Static Lazy Initialization

class Helper {
static final Helper helper = new Helper();
public static Helper getHelper() {
 return helper;
}
private Helper() {
 …
 }
}

2006 JavaOneSM Conference | Session TS-1630 | 37

Agenda

Scope
The Fundamentals: Happens-Before Ordering
Using Volatile
Thread Safe Lazy Initialization
Final Fields
Recommendations

2006 JavaOneSM Conference | Session TS-1630 | 38

Thread Safe Immutable Objects

• Use immutable objects when you can
• Lots of advantages, including reducing needs for

synchronization
• Can make all fields final

• Don’t allow other threads to see object until
construction complete

• Gives added advantage
• Spec promises immutability, even if malicious code

attacks you with data races

2006 JavaOneSM Conference | Session TS-1630 | 39

Data Race Attack

• Thread 1 creates instance of a class
• Thread 1 hands the instance to thread 2 without

using synchronization
• Thread 2 accesses the object
• It is possible, although unlikely, that thread 2

could access an object before all the writes
performed by the constructor in thread 1 are
visible to thread 2

2006 JavaOneSM Conference | Session TS-1630 | 40

Strings Could Change

• Without the promises made by final fields, it
would be possible for a String to change
• Created as “/tmp/usr”.substring(4,8)
• First seen by thread 2 as “/tmp”
• Later seen by thread 2 as “/usr”

• Since Strings are immutable, they don’t use
synchronization
• Final fields guarantee initialization safety

2006 JavaOneSM Conference | Session TS-1630 | 41

A Hack to Change Final Fields

• There are times when you may need to change
final fields
• Clone()
• Deserialization()

• Only do this for newly minted objects
• Use Field.setAccessible(true)

• Only works in Java version 5.0+
• Be nice to have a better solution in Dolphin

2006 JavaOneSM Conference | Session TS-1630 | 42

Optimization of Final Fields

• New spec allows aggressive optimization of
final fields
• Hoisting of reads of final fields across synchronization

and unknown method calls
• Still maintains immutability

• Should allow for future JVM machines to obtain
performance advantages

2006 JavaOneSM Conference | Session TS-1630 | 43

Agenda

Scope
The Fundamentals: Happens-Before Ordering
Using Volatile
Thread Safe Lazy Initialization
Final Fields
Recommendations

2006 JavaOneSM Conference | Session TS-1630 | 44

These Are Building Blocks

• If you can solve your problems using the high
level concurrency abstractions provided by
util.concurrent
• Do so

• Understanding the memory model, and what
release/acquire means in that context, can help
you devise and implement your own
concurrency abstractions
• And learn what not to do

2006 JavaOneSM Conference | Session TS-1630 | 45

Mostly, It Just Works

• If you aren’t trying to be clever, the memory
model just works and doesn’t surprise
• No change from previous generally recommended

programming practice
• Knowing the details can

• Reassure those whose obsess over details
• Clarify the fine line between clever and stupid

2006 JavaOneSM Conference | Session TS-1630 | 46

Synchronize When Needed

• Places where threads interact
• Need synchronization
• May need careful thought
• Don’t need clever hacks
• May need documentation
• Cost of required synchronization not significant

• For most applications
• No need to get tricky

• Performance of the util.concurrent abstractions
is amazing and getting better

2006 JavaOneSM Conference | Session TS-1630 | 47

Watch Out for
Useless Synchronization

• Using a concurrent class in a single threaded
context can generate measurable overhead
• Synchronization on each access to a Vector, or on

each IO operation
• Substitute unsynchronized classes when

appropriate
• ArrayList for Vector

• Perform bulk I/O or use java.nio

2006 JavaOneSM Conference | Session TS-1630 | 48

Sometimes Synchronization
Isn’t Enough
• Even if you use a concurrent class, your code may not

be thread safe

 // THIS CODE WILL NOT WORK
ConcurrentHashMap<String,ID> h;
ID getID(String name) {

ID x = h.get(name);
if (x == null) {

x = new ID();
h.put(name, x);

 }
return x;

}

• Watch out for failures of atomicity

2006 JavaOneSM Conference | Session TS-1630 | 49

Documenting Concurrency

• Often the concurrency properties of a class are
poorly documented
• Is an IO stream thread safe?

• Not as simple as “this class is thread safe”
• Look at util.concurrent documentation
• Look at annotations described in Java

Concurrency in Practice
• Some of which are checked by FindBugs

2006 JavaOneSM Conference | Session TS-1630 | 50

Designing Fast Concurrent Code

• Make it right before you make it fast
• Reduce synchronization costs

• Avoid sharing mutable objects across threads
• Avoid old Collection classes (Vector, Hashtable)
• Use bulk I/O (or, even better, java.nio classes)

• Use java.util.concurrent classes
• Designed for speed, scalability and correctness

• Avoid lock contention
• Reduce lock scopes
• Reduce lock durations

2006 JavaOneSM Conference | Session TS-1630 | 51

Wrap-Up

• Cost of synchronization operations can be
significant
• But cost of needed synchronization rarely is

• Thread interaction needs careful thought
• But not too clever
• Don’t want to have to think to hard about reordering

• If you don’t have data races, you don’t have to think about
the weird things the compiler is allowed to do

2006 JavaOneSM Conference | Session TS-1630 | 52

Wrap-Up—Communication

• Communication between threads
• Requires a happens-before edge/ordering
• Both threads must participate
• No way for one thread to push information into

other threads
• Final fields allow some guaranteed communications without

a normal happens-before edge, but don’t write code that
depends on this for normal operations

2006 JavaOneSM Conference | Session TS-1630 | 53

For More Information

• http://www.cs.umd.edu/~pugh/java/memoryModel/
• Concurrency Utilities (JSR 166) Interest mailing list
• TS-4915: Concurrency Utilities
• Java Concurrency in Practice

• By Brian Goetz, Tim Peierls, Joshua Bloch, Joseph
Bowbeer, David Holmes, Doug Lea

2006 JavaOneSM Conference | Session XXXX | 54

Q&A
Jeremy Manson
Purdue University
William Pugh
Univ. of Maryland

2006 JavaOneSM Conference | Session TS-1630 |

The Java™ Technology
Memory Model:
the Building Block
of Concurrency
Jeremy Manson, Purdue University
William Pugh, Univ. of Maryland

http://www.cs.umd.edu/~pugh/java/memoryModel/

TS-1630

