
2006 JavaOneSM Conference | Session 1904 |

TS-1904

Real-Time Java™ Technology:
Why It Matters to You and What
You Should Do About It
Greg Bollella, Distinguished Engineer
Dave Hofert, Group Marketing Manager
Sun Microsystems
http://java.sun.com/j2se/realtime/

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.

2006 JavaOneSM Conference | Session 1904 | 2

Goal

Learn a bit about the Real-Time
Specification for Java™ (JSR-01), how
easy it is to convert a ‘normal’ Java-
based program to a real-time Java-based
program, and enjoy descriptions of three
actual, industrial case studies of the use
of real-time Java technology

2006 JavaOneSM Conference | Session 1904 | 3

Agenda

Why Real-Time Java Technology at All?
Brief Introduction to the Real-Time Specification
for Java Technology
Real-Time Garbage Collection
Converting Java technology to Real-Time
Java Technology
Case Studies

1: An autonomous ground vehicle
2: A real-time CORBA ORB
3: An autonomous aircraft

Summary

2006 JavaOneSM Conference | Session 1904 | 4

Why Real-Time Java?

● Predictability
● “Real-Time” in this context does not mean “super-fast”

—rather, it means “respond within a predictable time”
● Better design/architecture choices

● Instead of a flat topology for requests, discriminate
between more and less important events

● Handle most important events first, allow others to
complete when possible—all on one system

● Dealing with the Real-World
● Stuff happens—RTJ helps you deal with it

2006 JavaOneSM Conference | Session 1904 | 5

Where You Might—and Might Not—Expect it

Where Is Real-Time Java
Technology Used?

● Military
● It’s handy to know when there’s a missile inbound—

even if you are garbage collecting
● Telecommunications infrastructure

● Excellent call handling, but occasionally a line is broken
and must be addressed within a narrow time slice

● Banking
● In some situations the value of a position can change

by $1M/second…
● Industrial automation, automotive, etc.

Source: Customer and Analyst conversations

2006 JavaOneSM Conference | Session 1904 | 6

Real-Time Specification for Java
Technology Overview

● The Real-Time Specification for Java, JSR-001
● The only real-time Java technology
● Not a silver bullet—but a sharper tool
● Higher level RT abstractions, portable

● 100% Java technology
● Started in 1998 and developed by a team of

experts from these communities
● RT-sched, embedded systems design, Ada design,

Java-based design, embedded processor design, real-
time systems design, academia, RTOS design, etc.

Source: Customer and Analyst conversations

2006 JavaOneSM Conference | Session 1904 | 7

RT Application Development

 Requires an API set and semantics which allow
developers to correctly reason about and
control the temporal behavior of applications

 Real-Time Specification for Java technology and
Sun’s implementation provide:
 An API set, semantic Java VM enhancements, and

Java VM-to-OS layer modifications which allow
developers of Java-based application to correctly
reason about and control the temporal behavior of
Java-based applications

2006 JavaOneSM Conference | Session 1904 | 8

How Does the Application Need to Respond to Events?
Core Requirement Definitions

● Real-time requirement
● An application requirement which includes temporal

correctness conditions (TCC)
● Hard real-time requirement

● Requirements state that the TCC always be met
● Soft real-time requirement

● Requirements state that the TCC can be missed in
well-defined ways

● Not just “well, whatever”
● Non real-time requirement—No TCC

Source: Customer and Analyst conversations

2006 JavaOneSM Conference | Session 1904 | 9

Real-Time Specification for Java
Technology Features
● New system model
● Scheduling Abstractions
● Feasibility as a first-class abstraction
● Separation of hard real-time and everything else
● Priority inversion control
● New memory management abstractions
● New asynchronous event handling
● New, correct, asynchronous transfer of control
● Physical memory access methods

Source: Customer and Analyst conversations

2006 JavaOneSM Conference | Session 1904 | 10

Key Schedulable Classes

javax.realtime.RealtimeThread
// for ‘soft’ real-time
// can use the Heap, Immortal, and ScopedMemory
// program just like a regular Java thread
// all libraries available
// depends on the use of the real-time GC

javax.realtime.NoHeapRealtimeThread
// for ‘hard’ real-time
// can use ONLYONLY Immortal, and ScopedMemory
// need care when using library methods
// necessary for only very small, well-defined logic
// application managed real-time garbage collection

2006 JavaOneSM Conference | Session 1904 | 11

Real-Time Specification for Java
Technology System Model

Non-Real-Time Thread
Garbage Collection

Total Available Memory

Hard Real-Time
No-Heap RT
Thread Scoped
Memory

Data TransferSoft Real-Time
Real-Time Thread
Real-Time GC

2006 JavaOneSM Conference | Session 1904 | 12

Real-Time Specification for Java
Technology System Model

Non-Real-Time Thread
Garbage Collection

Total Available Memory

Hard Real-Time
No-Heap RT
Thread Scoped
Memory

Data TransferSoft Real-Time
Real-Time Thread
Real-Time GC

2006 JavaOneSM Conference | Session 1904 | 13

Real-Time Specification for Java Technology
Solutions for Real-Time Java Technology

● Two main approaches
● Use scoped memory and NHRT/RT threads
● Use real-time garbage collector

● Real-Time GC
● Essentially a “garbage collector with knobs”
● Core concept: memory allocation and collection rates

are assessed, and the minimum set of GC occurs
every period

● Assuming enough GC, large interrupts are avoided at
the cost of small, regular, and predictable collections

2006 JavaOneSM Conference | Session 1904 | 14

RTGC Designs: Work-Based GC

● Benefits
● Predictable “payment”, but “cost” may vary depending

on memory allocations of non-RT threads
● Only mutators/threads that allocate memory pay cost
● Easier to implement VM

● Costs
● Must budget enough room for possible GC or miss

deadlines
● Example: Aicas—Jamaica VM

Each Thread Pays “Cost” of GC at Allocation Time

2006 JavaOneSM Conference | Session 1904 | 15

Work-Based GC

P1

P2

P3

Time

Priority

GC based on allocation
Thread pause—higher priority interruption
Thread doing work

No GC

P1

P2

P3

Time

Priority

Work-based GC

Allocations, followed by GC work

Deadline miss? May need
to redesign solution to
work around allocation

2006 JavaOneSM Conference | Session 1904 | 16

RTGC Designs: Time-Based GC

● Benefits
● Deterministic GC for each period
● Spreads cost of GC across all periods—thus avoiding

any one large GC interrupt
● Costs

● Cost of GC in all periods
● All threads are impacted (because GC still runs at

highest priority)
● Example: IBM—Metronome

Allocate Cost of GC Across All Periods; GC Is Top Priority

2006 JavaOneSM Conference | Session 1904 | 17

P1

P2

P3

Time

Priority

Work-Based GC

Time-Based GC

GC based on allocation
Thread pause—priority interruption
Thread doing work

P1

P2

P3

Time

Priority

Work-Based GC

Missed Deadlines?

Garbage Collection allocation
spread across each period
and run at highest priority

2006 JavaOneSM Conference | Session 1904 | 18

RTGC Designs: Henriksson’s GC

● Benefits
● Higher priority threads unaffected by GC
● Thus they are more deterministic and can have

lower latencies
● Costs

● No silver bullet: GC cost remains same and must fit
into overall schedule (e.g., Lower priority threads have
to run some time)

● Lower-priority and non-RT threads carry GC load

Don’t Interrupt Highest Priority Threads; GC Cost Paid Elsewhere

2006 JavaOneSM Conference | Session 1904 | 19

Henriksson GC

Critical NHRTs

Time

Priority

Henriksson GC

Protected, High
Priority RT Threads

Delayed GC Work

Low-Priority RT
and Non-RT Threads

GC based on allocation
Thread pause—priority interruption
Thread doing work

Garbage
Collection

Memory
Allocation
Occurs
Here

Note that high priority thread allocations
are collected before low-priority threads
and that low-priority threads essentially
perform work-based GC

2006 JavaOneSM Conference | Session 1904 | 20

RTGC Designs: Sun’s RTGC

● Goal: Smallest latencies for high priority
GC’d threads

● Defer GC work thanks to Henriksson’s approach
● Minimize mutator overhead (read/write barriers)

● Advantages
● Scalable (no issues with multi-processor support)
● Flexible (Henriksson’s approach works with different

policies for low priority RT threads)
● GC overhead can be paid by these threads if total memory

consumption goes up
● More efficient policies possible (could pause certain threads)
● Simpler policies like running the GC on a dedicated CPU

Apply Concept of Policy to Henriksson’s Approach

2006 JavaOneSM Conference | Session 1904 | 21

Base Policy, Sun RTGC

Time

Priority

Base Policy RTGC

GC active/running
Thread pause—priority interruption
Thread doing work

Critical NHRTs

Protected, High
Priority RT Threads

'Run-to-Block'
GC Work

Threads Without
Deadline Constraints

Note that if other CPUs are available,
then GC and non-critical threads can
run in parallel

Run-to-block
GC

Could run
concurrently
on another
CPU

2006 JavaOneSM Conference | Session 1904 | 22

Real-Time GC Summary
Comparison Point Work-Based Time-Based Sun RT 2.0

NHRT support Yes

None None

None

All other threads Flexible policy

Multi-processor support

?
(could be done)

?
(1)

Non-allocating High
Priority Thread overhead

Pre-empted
(2)

Allocating High Priority
Thread overhead

Overhead
(2)

Pre-empted
(2)

Same as High
Priority

Same as High
Priority

OK ?
(Should be fully

concurrent)

???
(1)

OK
(Fully

concurrent)
(1) : Likely requires all threads to be suspended during each small GC work... on all CPUs
(2) : overhead/preemption time depends on the allocation behavior of non RT threads

2006 JavaOneSM Conference | Session 1904 | 23

Myth Busting
● Myth: Programming in RTSJ is hard and/or weird
● Truth: Getting started in RTSJ is easy!
● Myth: Most libraries don’t work in a NoHeap context
● Truth: Wrong!! Most libraries work fine in a

NoHeap context
● Myth: LowLatency requires ScopedMemory
● Truth: Sun’s Real-Time GC can get down to about

300 µseconds latency

Don’t Believe Everything You Hear!

2006 JavaOneSM Conference | Session 1904 | 24

Converting Java Code
to Real-Time Java Code

● Essentially just a syntax change to start
● With this you’ll get lots of predictability
● Real-time garbage collection
● 28+ priorities which actually work (60 in Java

technology RTS)
● Priority inheritance protocol
● Lots of internal Java VM changes to enhance

predictability
● Initialization-time compilation

● Can also use scoped memory for more precise
control of memory usage

2006 JavaOneSM Conference | Session 1904 | 25

Step One

● Industrial-strength, real-time garbage collection
● 28+ priorities that actually work, and work

precisely
● Priority inheritance protocol
● And everything else, AEH, physical memory, etc.

Thread T = new java.lang.Thread();

RealtimeThread RT = new javax.realtime.RealtimeThread();

Replace:

with

and you get:

2006 JavaOneSM Conference | Session 1904 | 26

Step Two

● Ha—there is no step two…

2006 JavaOneSM Conference | Session 1904 |

Case Study: A Robotic
Vehicle Named Tommy
Paul J. Perrone
CEO
Perrone Robotics, Inc.
www.perronerobotics.com

2006 JavaOneSM Conference | Session 1904 | 28

Robotics Applications
● Sense-Plan-Act

● Acquire data from sensors
● Formulate some plan of action
● Actuate motors for movements

● Timeliness is good for robots
● Feedback control of motors
● PWM of a motor
● Counting time between events

● Tardiness is bad for robots
● Sloppy control
● Inefficient control
● Loss of control

2006 JavaOneSM Conference | Session 1904 | 29

Tommy

2006 JavaOneSM Conference | Session 1904 | 30

J2SE

Tommy’s Software Architecture
● MAX Standard Profile

● J2SE™ technology-based
● All main processing/decisions
● GPS/INS/Laser/Radar sensing
● Navigation and obstacle avoidance
● Actuate commands to MAX micro

● MAX Micro Profile
● J2ME technology-based
● Low-level feedback controls
● Commands received
● Feedback and vehicle state sensing
● Actuate steering/throttle/brake/shift

MAX Standard Profile
Sense Plan Act

…….

Sensors Conduct Actuator
s

J2ME
MAX Micro Profile

Sense Plan Act

…….

Sensors Conduct Actuator
s

2006 JavaOneSM Conference | Session 1904 | 31

Java RTS

Java Technology RTS to the Rescue
● Pros of current approach

● Can do lots in standard J2SE/J2ME
technology

● Very fast micro latencies (1 mSec)
● Faster latencies with hardware controls

(<< 1 mSec)
● Cons of current approach

● Excise real-time behavior to
J2ME technology

● Much care to not generate garbage
● Need more rigor for industrial-grade

● Java technology RTS Advantage
● Alleviates pains of current approach
● Provides faster industrial grade path for

the most time critical operations

MAX Real Time Profile
Sense Plan Act

…….

Sensors Conduct Actuator
s

2006 JavaOneSM Conference | Session 1904 |

Case Study: PrismTech
RTOrb: Real-Time Java
Technology-Based ORB
David Atkinson
Product Marketing
PrismTech
www.prismtech.com

2006 JavaOneSM Conference | Session 1904 | 33

Why Real-Time CORBA?

● CORBA is well-established as a technology for
integrating diverse systems

● Used extensively for mission and business critical
applications in areas such as defense,
telecommunications, and manufacturing

● OMG’s Real-Time CORBA Specification extends
the benefits of CORBA to the Real-Time domain

● RT CORBA addresses end-to-end predictability across
CORBA systems and provides a solution in terms of
priority control, synchronization, and resource control

2006 JavaOneSM Conference | Session 1904 | 34

RT CORBA in the Field

● Large scale defense integration
● C4i—wide range of Command Control Computers

Communication and Intelligence Systems
● Telecommunications and networking

● Business management applications
● Operations support systems/call control
● Intelligent networking
● STN/Internet convergence

● Aerospace
● Air traffic management

● Manufacturing—Controllers/Robotics

2006 JavaOneSM Conference | Session 1904 | 35

Key Benefits of RTOrb on
Java Technology RTS
● RT system developers can use Java technology,

CORBA
● Write once run anywhere portability, ease of use and

security, enterprise scalability, full CORBA functionality
● Excellent performance (latency and throughput)

● Low jitter (< 1ms), performance better than other
Java ORBs

● Use as RT ORB, general Enterprise ORB, or both
● Single ORB solution for systems with a mix of uses

(both RT and non-RT)
● Single ORB solution minimizes ORB interoperability

issues and requires less training/support for developers

2006 JavaOneSM Conference | Session 1904 |

Case Study: Mission
Control for an Unmanned
Autonomous Aircraft
Edward Pla
Real-Time Java Researcher
Boeing Phantom Works
www.boeing.com

2006 JavaOneSM Conference | Session 1904 | 37

RTSJ Demonstration

Benchmarking, lab
demonstrations, and mission

qualification testing performed
to validate Real­Time Java

technologies

3.48

3.50

3.52

3.54

3.56

3.58

No Contention Contention

Test Case

Ex
ec

ut
io

n
Ti

m
e

(m
se

c)

0
0.25

0.5
0.75

1
1.25

1 2 3 4 5 6
Samples (1=4bytes, 2=8bytes, 3=64bytes, 4=512bytes,

5=4096bytes, 6=16384bytes)

Ti
m

e
(m

ic
ro

se
co

nd
s)

Immortal
LT Mem
VT Mem

 Heap

0

1

2

3

4

5

6

7

8

1 23

45

67

89

11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

20 Hz Samples

N
or

m
al

iz
ed

 S
te

ad
y

St
at

e
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

ds
)

20 Hz

5 Hz

1 Hz

Infrastructure

Demonstrated first flight of
RTSJ using ScanEagle

aircraft performing real­time
autonomous auto-routing

Learn details on the RTSJ experimentation configuration that led to
first flight of the RTSJ on a ScanEagle UAV

2006 JavaOneSM Conference | Session 1904 | 38

RTSJ Low-Level Benchmarks
Summary
● Thread throughput (< 1% jitter)

● (NHRT, RT, Java Thread)
with/without contending threads

● Determinism (< 0.1 % jitter)
● Periodic start of frame
● Periodic event determinism

● Latency
● Context switch latency (5 us)
● Priority inheritance latency (5 us)
● Synchronization latency (30 us)
● Event latency (2 us)

● Memory management
● Allocation size (1 byte to 16k bytes)

vs. memory type (heap, immortal,
linear memory, variable memory)

(2 us/byte)
● Throughput (floating point,

logarithmic, No Op) vs. memory
type (< 5% jitter)

● Memory area entry/exit criteria
(20 us)

Acceptable performance in key areas

2006 JavaOneSM Conference | Session 1904 | 39

Application-Level Benchmarks
Component
Instances

Component
Types

Scenario

1604140200X

80470100X

4043550X

1641420X

1271X

Copy
20 Copy

… Copy
2

Independent Sets of
1X Scenarios

Single Physical Device Layer

Single Infrastructure Layer

Copy
1

The 100X scenario configured to size of Boeing
domain-specific single processor platform

2006 JavaOneSM Conference | Session 1904 | 40

RTSJ Flight Experimentation Architecture

ScanEagle
Platform

● Real Time Specification for
Java (RTSJ) Infrastructure

● Multiple priority processing
● High (20 Hz)—Communication

with Flight Controls
● Medium (5 Hz)—Computation of

navigation data
● Low—(1 Hz) Performance

computation
● Event notification protocol

● Push control flow
● Cross thread notification

● Real-time distributed
communication

● Serial I/O Pluggable protocol

Flight Controls
Card

Real-Time
ORB

Event Queues

Frame Controller

Event Channel

Serial I/O Device

Application
Components

Real-Time Java
Virtual Machine

Mission Control
Payload Card

PriorityParameters

BoundAsyncEventHandler

RelativeTime

PeriodicParameters

NoHeapRealtimeThread

ImmortalMemory

AsyncEvent

Ground Station
Threats, No Fly Zones

Performance Data

Navigation

Pass Through

2006 JavaOneSM Conference | Session 1904 | 41

Summary
● JSR-01, the Real-Time Specification for Java technology

gives developers the ability to correctly reason about and
control the temporal behavior of logic

● Getting started using RTS Java technology is really,
really, simple

● Implementations of the RTS Java technology are
available now

● The RTS Java technology is rich and offers a wide range
of APIs and semantics to help developers write code
which behaves “well” with respect to time

● The RTS Java technology is the correct way to do
real-time in Java technology

2006 JavaOneSM Conference | Session 1904 | 42

For More Information

Web Resources:
● Sun’s Real-Time Java technology site:

http://java.sun.com/j2se/realtime/
● RTSJ Specification:

http://www.jcp.org/en/jsr/detail?id=1
Books:

● Real-Time Java Platform Programming, Dibble:
http://www.sun.com/books/catalog/dibble.xml

● Concurrent and Real-Time Programming in Java,
Wellings: http://www.amazon.com

2006 JavaOneSM Conference | Session 1904 | 43

Q&A
Greg Bollella
Dave Hofert
Paul Perrone
David Atkinson
Edward Pla

2006 JavaOneSM Conference | Session 1904 |

TS-1904

Real-Time Java™ Technology:
Why It Matters to You and What
You Should Do About It
Greg Bollella, Distinguished Engineer
Dave Hofert, Group Marketing Manager
Sun Microsystems
http://java.sun.com/j2se/realtime/

