@ Sun

Eight Ways to Be More
Productive Developing
Swing Applications

Ben Galbraith

Swing Consultant

TS-1913

2006 JavaOne®™ Conference | Session TS-1913 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

N

Presentation Goal

Learn how to become more productive
with Swing in eight easy steps!

While this talk focuses on ideas, open-
source code you can use in your projects
will accompany this talk.

2006 JavaOnes" Conference | Session TS-1913 | 2 java.sun.com/javaone/sf

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel

Use a GUI Builder

Avoid Swing’s Default Layout Managers
Externalize Widget Styling

Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action

Introduce a Form Concept

@::”’SMW 2006 JavaOneSM Conference Session TS-1913 3 iava .sun.com/iavaone/sf

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel

Use a GUI Builder

Avoid Swing’s Default Layout Managers
Externalize Widget Styling

Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action

Introduce a Form Concept

”%:”’SMTZ 2006 JavaOneSM Conference Session TS-1913 4 java .sun.com/iavaone/sf

Use a Cross-Platform Look-and-Feel

* Complex applications often employ tricky
layouts and require custom widget and
painting tweaks

* Do you really want to do that two or more times?
* Customizing the OS X “plaf” is a big pain

@Sun 2006 JavaOnes" Conference | Session TS-1913 | 5 java.sun.com/javaone/sf

Which Look-and-Feel?

Three reasonably slick looks
JGoodies Plastic family (starting to look dated)
Incors Alloy (also starting to look dated)
Synthetica, especially the “Moon” themes

Rolling your own isn’t very hard, but can
be a lot of work

Synth (and Synthetica) helps lower the curve
quite a bit

If you must use a “plaf”, check out
WinLAF for Windows
Quaqua for OS X

%%Sun 2006 JavaOne®™ Conference | Session TS-1913 | 6 iava.sun.com/iavaone/sf

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel

Use a GUI Builder

Avoid Swing’s Default Layout Managers
Externalize Widget Styling

Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action

Introduce a Form Concept

%%Sun 2006 JavaOne®™ Conference | Session TS-1913 7 java .sun.com/iavaone/sf

Use a GUI Builder

* Swing GUI builders have traditionally
been sub-par

* That's changed over the past two years

At least three high-quality GUI builders exist
* JFormDesigner

* Sun’s NetBeans™ software
- JetBrains’ IDEA

@f@Sun 2006 JavaOne® Conference | Session TS-1913 | 8 java .sun.com/javaone/sf

Decouple Your App
From Your GUI Builder

Practice code-centric GUI building

Load Ul definitions at run-time and bind
behaviors to them

Decoupling Ul definitions from a specific GUI builder
IS a good idea but impractical

Dynamic and static GUI building can be
mixed easily

Very easy to tweak a visually built GUI

@Sun 2006 JavaOnes" Conference | Session TS-1913 | 9 java.sun.com/javaone/sf

Runtime Form Loading API

public abstract class RuntimeForm ({
public JComponent getRootComponent() ;
public JComponent getComponent (String name) ;

}

public class RuntimeFormFactory ({
public RuntimeForm getRuntimeForm(String key) { ... }

// for eager caching of key forms
public void cacheRuntimeForm(String key) { ... }

@Sun 2006 JavaOnes" Conference | Session TS-1913 | 10 java.sun.com/javaone/sf

JFormDesigner Runtime Form
Loading Implementation

// exception handling hidden
// JFormDesigner-specific API in green
public class RuntimeFormJFormDesigner
extends RuntimeForm {
private FormCreator creator;

public RuntimeFormJFormDesigner (FormCreator fc) {
creator = fc;

}

public JComponent getRootComponent() {
return (JComponent) creator.create();

}

public JComponent getComponent (String name) {
return (JComponent) create.getComponent (name) ;

}

@Sun 2006 JavaOnes™ Conference | Session TS-1913 | 11 java.sun.com/javaone/sf

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel

Use a GUI Builder

Avoid Swing's Default Layout Managers
Externalize Widget Styling

Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action

Introduce a Form Concept

@Sun 2006 JavaOnes" Conference | Session TS-1913 | 12 java.sun.com/javaone/sf

>,

Avoid Swing’s Default
Layout Managers

* Save yourself the trouble of learning how all the
default layout managers work and how to
combine them, etc.

* Everything you need is in two modern layout
managers
* JGoodies FormLayout

* Sun’s GroupLayout (new)

2006 JavaOnes" Conference | Session TS-1913 | 13 java.sun.com/javaone/sf

DEMO

* The first three tips in action

*Cross-platform look and feels; WinlAF and Quaqua
*GUI builders
‘Better layout

@Sun 2006 JavaOne® Conference | Session TS-1913 | 14 java.sun.com/javaone/sf

sssssssssssss

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel

Use a GUI Builder

Avoid Swing’s Default Layout Managers
Externalize Widget Styling

Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action

Introduce a Form Concept

”%:”’SMTZ 2006 JavaOneSM Conference Session TS-1913 15 java .sun.com/iavaone/sf

Java

Externalize Widget Styling

Manually styling widgets leads to
Inconsistencies

And, frankly, is a pain
Manual widget styling can be almost
Impossible to get right

e.g., setting a font to bold in most GUI builders results
in hard-coding the font family/type

Think CSS (Cascading Style Sheets) for Swing

2006 JavaOnes" Conference | Session TS-1913 | 16 java.sun.com/javaone/sf

CSS Review

* CSS provides simple and powerful
styling for the Web

* HTML

<div id="foo"> Ajax sucks, Swing rocks ;-)
</div>

<div class="bar"> .. </div>
<p class="bar"> .. </p>

* CSS

#foo { font-family: Arial,sans-serif;
border: 1lpx solid black }

.bar { margin: 4pt }

@Sun 2006 JavaOnes" Conference | Session TS-1913 | 17 java.sun.com/javaone/sf

CSS for Swing

Why not do the same for Swing?

Use client properties to assign selectors

org.galbraiths.clarity.styleClass
org.galbraiths.clarity.stylelId (or use Swing's name property)

Use a syntax like CSS to do styling

* Via external file

JTextField.mySyleClass ({
font-size: -2pt;
font-weight: bold;
font-family: Courier New;Courier;

* Via code

JComponent.putClientProperty ('"style", "font-size:
-2pt; ..");

2006 JavaOnes Conference | Session TS-1913 | 18 java.sun.com/javaone/sf

Applying Styles to Swing Components

JFrame frame = new JFrame ("My Frame') ;

RuntimeForm form =
RuntimeFormFactory.getRuntimeForm("Foo") ;
frame.getContentPane () .add (form.getRootComponent()) ;

FormDecorator.decorate (frame.getContentPane()) ;

frame.setVisible (true) ;

2006 JavaOnes Conference | Session TS-1913 | 19 java.sun.com/javaone/sf

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel

Use a GUI Builder

Avoid Swing’s Default Layout Managers
Externalize Widget Styling

Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action

Introduce a Form Concept

”%:”fSZﬂ’l 2006 JavaOne® Conference | Session TS-1913 | 20 java .sun.com/javaone/sf

>,

Employ Declarative
Widget Configuration

Performing common configuration on widgets
can be needlessly tedious
Tables are the best example: consider the amount of

code required to center the contents of a column
A declarative widget configuration system helps

dramatically

DSL, XML, a properties file, or whatever else
you prefer

2006 JavaOnes Conference | Session TS-1913 | 21 java.sun.com/javaone/sf

DEMO

* The next two tips in action
* Externalized widget styling
* Declarative widget configuration

@Sun 2006 JavaOnes™ Conference | Session TS-1913 | 22 java.sun.com/javaone/sf

sssssssssss

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel

Use a GUI Builder

Avoid Swing’s Default Layout Managers
Externalize Widget Styling

Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action

Introduce a Form Concept

”%:”fSZﬂ’l 2006 JavaOne® Conference | Session TS-1913 | 23 java .sun.com/javaone/sf

Use Binding and
Validation Frameworks

Getting/setting values on widgets and
converting them to the appropriate
type is tedious

So is displaying meaningful error messages
to the user

Binding and validation frameworks perform
all of this plumbing for you

@Sun 2006 JavaOnes™ Conference | Session TS-1913 | 24 java.sun.com/javaone/sf

Binding Frameworks

The key architectural decision for binding
frameworks

When are values copied from the widgets to the beans?

Options

Use PropertyChangelListeners and Swing listeners
Manually invoke "firePropertyChanged" in all setters
Use AOP to provide this support automatically

Copy values at explicit moments
e.g., copyValuesFromUI(), copyValuesToUI()

Hybrid approach
Use listeners with widgets but explicitly copy from beans

@Sun 2006 JavaOnes" Conference | Session TS-1913 | 25 java.sun.com/javaone/sf

Binding Frameworks

* Key binding frameworks
* JGoodies Bindings
* SwingLabs Bindings

* Key validation frameworks
* JGoodies Validation

@Sun 2006 JavaOnes" Conference | Session TS-1913 | 26 java.sun.com/javaone/sf

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel

Use a GUI Builder

Avoid Swing’s Default Layout Managers
Externalize Widget Styling

Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action

Introduce a Form Concept

%%Sun 2006 JavaOne®™ Conference | Session TS-1913 | 27 java .sun.com/iavaone/sf

Enhance Swing’s Action

Event handling in Swing has a few weaknesses
Disabling components properly is tricky
Threading can be painful and tedious
Reusing event handling logic across multiple
event types is tedious

Action can be subclassed and enhanced to
solve these problems

You can also add a lot of convenience functionality to
action in the process

@Sun 2006 JavaOnes" Conference | Session TS-1913 | 28 java.sun.com/javaone/sf

>,

Simplified Listener API

SWT introduced a generic listener API

Enhanced Actions can emulate this approach
bindAction(action, component, Event.MouseClicked)

You can define a sensible, default event
mapping for components that don’t natively
support actions

e.g., bindAction on a JTable binds to
selection changing

2006 JavaOneS Conference | Session TS-1913 | 29 java.sun.com/javaone/sf

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel

Use a GUI Builder

Avoid Swing’s Default Layout Managers
Externalize Widget Styling

Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action

Introduce a Form Concept

%%Sun 2006 JavaOneSM Conference Session TS-1913 | 30 java .sun.com/iavaone/sf

Introduce a Form Concept

* The act of creating a “screen”, displaying it,
handling navigation, etc. involves a lot of
concerns

* Standardizing how these are resolved
Increases development speed and productivity

2006 JavaOnes Conference | Session TS-1913 | 31 java.sun.com/javaone/sf

DEMO

* The final three tips in action
* Binding/validation
* Enhanced Actions
* Forms

@Sun 2006 JavaOnes™ Conference | Session TS-1913 | 32 java.sun.com/javaone/sf

sssssssssss

Summary

* You can achieve tremendous productivity
with Swing by
* Focusing on a single look-and-feel
* Using a GUI builder and new layout managers

* Reducing APl complexity—and the amount of code
you need to write—by externalizing styling and
configuration, automating binding/validation, and
standardizing forms

@Sun 2006 JavaOnes" Conference | Session TS-1913 | 33 java.sun.com/javaone/sf

For More Information

* The source code for this presentation
IS online at

* http://www.galbraiths.org/javaone2006
* Use it in your own projects

@Sun 2006 JavaOne® Conference | Session TS-1913 | 34 java.sun.com/javaone/sf

sssssssssssss

2006 JavaOnes" Conference | TS-1913 | 35 java.sun.com/javaone/sf

@ Sun

Eight Ways to Be More
Productive Developing
Swing Applications

Ben Galbraith

Swing Consultant

TS-1913

2006 JavaOne®™ Conference | Session TS-1913 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

