
2006 JavaOneSM Conference | Session TS-1913 |

Eight Ways to Be More
Productive Developing
Swing Applications
Ben Galbraith
Swing Consultant
http://www.galbraiths.org/

TS-1913

2006 JavaOneSM Conference | Session TS-1913 | 2

Learn how to become more productive
with Swing in eight easy steps!
While this talk focuses on ideas, open-
source code you can use in your projects
will accompany this talk.

Presentation Goal

2006 JavaOneSM Conference | Session TS-1913 | 3

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel
Use a GUI Builder
Avoid Swing’s Default Layout Managers
Externalize Widget Styling
Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action
Introduce a Form Concept

2006 JavaOneSM Conference | Session TS-1913 | 4

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel
Use a GUI Builder
Avoid Swing’s Default Layout Managers
Externalize Widget Styling
Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action
Introduce a Form Concept

2006 JavaOneSM Conference | Session TS-1913 | 5

Use a Cross-Platform Look-and-Feel

• Complex applications often employ tricky
layouts and require custom widget and
painting tweaks
• Do you really want to do that two or more times?
• Customizing the OS X “plaf” is a big pain

2006 JavaOneSM Conference | Session TS-1913 | 6

Which Look-and-Feel?

• Three reasonably slick looks
• JGoodies Plastic family (starting to look dated)
• Incors Alloy (also starting to look dated)
• Synthetica, especially the “Moon” themes

• Rolling your own isn’t very hard, but can
be a lot of work
• Synth (and Synthetica) helps lower the curve

quite a bit
• If you must use a “plaf”, check out

• WinLAF for Windows
• Quaqua for OS X

2006 JavaOneSM Conference | Session TS-1913 | 7

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel
Use a GUI Builder
Avoid Swing’s Default Layout Managers
Externalize Widget Styling
Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action
Introduce a Form Concept

2006 JavaOneSM Conference | Session TS-1913 | 8

Use a GUI Builder

• Swing GUI builders have traditionally
been sub-par
• That’s changed over the past two years

• At least three high-quality GUI builders exist
• JFormDesigner
• Sun’s NetBeans™ software
• JetBrains’ IDEA

2006 JavaOneSM Conference | Session TS-1913 | 9

Decouple Your App
From Your GUI Builder

• Load UI definitions at run-time and bind
behaviors to them
• Decoupling UI definitions from a specific GUI builder

is a good idea but impractical
• Dynamic and static GUI building can be

mixed easily
• Very easy to tweak a visually built GUI

Practice code-centric GUI building

2006 JavaOneSM Conference | Session TS-1913 | 10

Runtime Form Loading API
public abstract class RuntimeForm {
 public JComponent getRootComponent();
 public JComponent getComponent(String name);
}
public class RuntimeFormFactory {
 public RuntimeForm getRuntimeForm(String key) { ... }
 // for eager caching of key forms
 public void cacheRuntimeForm(String key) { ... }
}

2006 JavaOneSM Conference | Session TS-1913 | 11

JFormDesigner Runtime Form
Loading Implementation
// exception handling hidden
// JFormDesigner-specific API in green
public class RuntimeFormJFormDesigner
 extends RuntimeForm {
 private FormCreator creator;
 public RuntimeFormJFormDesigner(FormCreator fc) {
 creator = fc;
 }
 public JComponent getRootComponent() {
 return (JComponent) creator.create();
 }
 public JComponent getComponent(String name) {
 return (JComponent) create.getComponent(name);
 }
}

2006 JavaOneSM Conference | Session TS-1913 | 12

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel
Use a GUI Builder
Avoid Swing’s Default Layout Managers
Externalize Widget Styling
Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action
Introduce a Form Concept

2006 JavaOneSM Conference | Session TS-1913 | 13

Avoid Swing’s Default
Layout Managers

• Save yourself the trouble of learning how all the
default layout managers work and how to
combine them, etc.

• Everything you need is in two modern layout
managers
• JGoodies FormLayout
• Sun’s GroupLayout (new)

2006 JavaOneSM Conference | Session TS-1913 | 14

DEMO

• The first three tips in action
•Cross-platform look and feels; WinlAF and Quaqua
•GUI builders
•Better layout

2006 JavaOneSM Conference | Session TS-1913 | 15

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel
Use a GUI Builder
Avoid Swing’s Default Layout Managers
Externalize Widget Styling
Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action
Introduce a Form Concept

2006 JavaOneSM Conference | Session TS-1913 | 16

Externalize Widget Styling

• Manually styling widgets leads to
inconsistencies
• And, frankly, is a pain

• Manual widget styling can be almost
impossible to get right
• e.g., setting a font to bold in most GUI builders results

in hard-coding the font family/type
• Think CSS (Cascading Style Sheets) for Swing

2006 JavaOneSM Conference | Session TS-1913 | 17

CSS Review

• CSS provides simple and powerful
styling for the Web
• HTML

<div id="foo"> Ajax sucks, Swing rocks ;-)
</div>
<div class="bar"> … </div>
<p class="bar"> … </p>

• CSS
#foo { font-family: Arial,sans-serif;
border: 1px solid black }
.bar { margin: 4pt }

2006 JavaOneSM Conference | Session TS-1913 | 18

CSS for Swing
• Why not do the same for Swing?
• Use client properties to assign selectors

org.galbraiths.clarity.styleClass
org.galbraiths.clarity.styleId (or use Swing's name property)

• Use a syntax like CSS to do styling
• Via external file

JTextField.mySyleClass {
 font-size: -2pt;
 font-weight: bold;
 font-family: Courier New;Courier;
}

• Via code
JComponent.putClientProperty("style", "font-size:
-2pt; …");

2006 JavaOneSM Conference | Session TS-1913 | 19

Applying Styles to Swing Components
JFrame frame = new JFrame("My Frame");
RuntimeForm form =
 RuntimeFormFactory.getRuntimeForm("Foo");
frame.getContentPane().add(form.getRootComponent());
FormDecorator.decorate(frame.getContentPane());
frame.setVisible(true);

2006 JavaOneSM Conference | Session TS-1913 | 20

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel
Use a GUI Builder
Avoid Swing’s Default Layout Managers
Externalize Widget Styling
Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action
Introduce a Form Concept

2006 JavaOneSM Conference | Session TS-1913 | 21

Employ Declarative
Widget Configuration

• Performing common configuration on widgets
can be needlessly tedious
• Tables are the best example: consider the amount of

code required to center the contents of a column
• A declarative widget configuration system helps

dramatically
• DSL, XML, a properties file, or whatever else

you prefer

2006 JavaOneSM Conference | Session TS-1913 | 22

DEMO

• The next two tips in action
• Externalized widget styling
• Declarative widget configuration

2006 JavaOneSM Conference | Session TS-1913 | 23

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel
Use a GUI Builder
Avoid Swing’s Default Layout Managers
Externalize Widget Styling
Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action
Introduce a Form Concept

2006 JavaOneSM Conference | Session TS-1913 | 24

Use Binding and
Validation Frameworks

• Getting/setting values on widgets and
converting them to the appropriate
type is tedious
• So is displaying meaningful error messages

to the user
• Binding and validation frameworks perform

all of this plumbing for you

2006 JavaOneSM Conference | Session TS-1913 | 25

Binding Frameworks

• The key architectural decision for binding
frameworks
• When are values copied from the widgets to the beans?

• Options
• Use PropertyChangeListeners and Swing listeners

● Manually invoke "firePropertyChanged" in all setters
● Use AOP to provide this support automatically

• Copy values at explicit moments
● e.g., copyValuesFromUI(), copyValuesToUI()

• Hybrid approach
● Use listeners with widgets but explicitly copy from beans

2006 JavaOneSM Conference | Session TS-1913 | 26

Binding Frameworks

• Key binding frameworks
• JGoodies Bindings
• SwingLabs Bindings

• Key validation frameworks
• JGoodies Validation

2006 JavaOneSM Conference | Session TS-1913 | 27

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel
Use a GUI Builder
Avoid Swing’s Default Layout Managers
Externalize Widget Styling
Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action
Introduce a Form Concept

2006 JavaOneSM Conference | Session TS-1913 | 28

Enhance Swing’s Action

• Event handling in Swing has a few weaknesses
• Disabling components properly is tricky
• Threading can be painful and tedious
• Reusing event handling logic across multiple

event types is tedious
• Action can be subclassed and enhanced to

solve these problems
• You can also add a lot of convenience functionality to

action in the process

2006 JavaOneSM Conference | Session TS-1913 | 29

Simplified Listener API

• SWT introduced a generic listener API
• Enhanced Actions can emulate this approach

• bindAction(action, component, Event.MouseClicked)
• You can define a sensible, default event

mapping for components that don’t natively
support actions
• e.g., bindAction on a JTable binds to

selection changing

2006 JavaOneSM Conference | Session TS-1913 | 30

Agenda: The Eight Tips

Use a Cross-platform Look-and-feel
Use a GUI Builder
Avoid Swing’s Default Layout Managers
Externalize Widget Styling
Employ Declarative widget Configuration
Use Binding and Validation Frameworks
Enhance Swing’s Action
Introduce a Form Concept

2006 JavaOneSM Conference | Session TS-1913 | 31

Introduce a Form Concept

• The act of creating a “screen”, displaying it,
handling navigation, etc. involves a lot of
concerns

• Standardizing how these are resolved
increases development speed and productivity

2006 JavaOneSM Conference | Session TS-1913 | 32

DEMO

• The final three tips in action
• Binding/validation
• Enhanced Actions
• Forms

2006 JavaOneSM Conference | Session TS-1913 | 33

Summary

• You can achieve tremendous productivity
with Swing by
• Focusing on a single look-and-feel
• Using a GUI builder and new layout managers
• Reducing API complexity—and the amount of code

you need to write—by externalizing styling and
configuration, automating binding/validation, and
standardizing forms

2006 JavaOneSM Conference | Session TS-1913 | 34

For More Information

• The source code for this presentation
is online at
• http://www.galbraiths.org/javaone2006

• Use it in your own projects

2006 JavaOneSM Conference | TS-1913 | 35

Q&A

2006 JavaOneSM Conference | Session TS-1913 |

Eight Ways to Be More
Productive Developing
Swing Applications
Ben Galbraith
Swing Consultant
http://www.galbraiths.org/

TS-1913

