@ Sun

What’s Hot in BEA JRockit

Marcus Lagergren and Staffan Larsen

Java Runtime Products Group
BEA Systems

1S-3484

2006 JavaOne®™ Conference | Session TS-3484 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

¢ JavaOne

2006 JavaOnes™ Conference | Session TS-3484 | 2 java.sun.com/javaone/sf

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management

Profiling and Management Tools
Q&A

2006 JavaOne®M Conference | Session TS-3484 | 3

java.sun.com/javaone/sf

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management

Profiling and Management Tools
Q&A

2006 JavaOne®™ Conference | Session TS-3484 | 4

java.sun.com/javaone/sf

>,

Quick JRockit Facts

A Java™ VM for enterprise-wide usage

100% compatible with all applicable Java
technology standards

Available for J2SE™ 1.4.2 and Java EE 5
Windows (1A32, x64, |1A64)
Linux (IA32, x64, 1A64)
Solaris (SPARCG4)

Java SE 6 coming
Fast, manageable, and free (as in beer)

2006 JavaOnes" Conference | SessionTS-3484 | 5 java.sun.com/javaone/sf

>,

JRockit: Optimizing Java Technology

Challenge and opportunity: Java technology is
a runtime system, not a static environment

The keyword is adaptivity

The entire runtime system does lots of data collection
for free. Use it!

Adaptive Optimization and GC

Creative use of data that is collected “for free”
Near zero sampling overhead
Memory leak detection tools
JRA recordings/runtime analyses

2006 JavaOnes" Conference | SessionTS-3484 | 6 java.sun.com/javaone/sf

Java

JRockit: Optimizing Java Technology

How to optimize an object-oriented language
Getters and setters
Virtual methods
Exceptions

Need to make aggressive assumptions and
“‘gamble” that they are correct
Take performance hits if assumptions are invalidated
e.g., Revirtualization, undoing optimizations

Don’t hand optimize code, leave it to the
Java VM

@Sun 2006 JavaOnes" Conference | Session TS-3484 | 7 java.sun.com/javaone/sf

>,

JRockit: Optimizing Java Technology

Optimizing a garbage collected language

Adaptive garbage collection
Runtime strategy changes

Need concurrent garbage collection

Might even need real-time demands
Deterministic GC
Service Level Agreements

Good out-of-the-box behavior
“Type ‘java’ and it works”

2006 JavaOneS™ Conference | Session TS-3484 | 8

java.sun.com/javaone/sf

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management

Profiling and Management Tools
Q&A

2006 JavaOneS™ Conference | Session TS-3484 | 9

java.sun.com/javaone/sf

A Deterministic Java VM
Definition

* In this presentation, we use the term
“Deterministic GC”

* This is means a GC with guaranteed upper
bound for pause times

* “Deterministic GC” should not be confused with
the behavior of a pure real-time system where
no randomness exists

@Sun 2006 JavaOnes" Conference | Session TS-3484 | 10 java.sun.com/javaone/sf

Java

>,

A Deterministic Java VM

Java platform is a runtime system
This is inherently non-deterministic

There isn’t (and shouldn’t be) an exact way to control
when GC happens

The hard part: The runtime system needs to handle
GC optimally

The easy part: Well, it has all the data

Throughput vs. response time
Keeping reponse times down

Deterministic behavior
“No interruptions”

2006 JavaOnes Conference | Session TS-3484 | 11 java.sun.com/javaone/sf

A Deterministic Java VM
Java technology is moving towards “real-time” applications

* SIP Server—Telecom (VOIP)

* 50-100 ms response times
* Maximize # calls set up per second

* Longer response times means dropped calls
(busy signal)

* Trading Processing—Financial Services
* 10-20 ms response times
* Maximize trades per seconds
* Lower response times means more trade wins

@Sun 2006 JavaOnes" Conference | Session TS-3484 | 12 java.sun.com/javaone/sf

g microsystems

Traditional VM—Non-Deterministic

GC spikes cause occasional timeouts

N

0

120 -

105 -

90

75

60 -

45 -

30

15

4 N

_ J
WMW v JW\'MM M)l
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

2006 JavaOneS™ Conference

Session TS-3484 | 13

java.sun.com/javaone/sf

Traditional VM—Non-Deterministic
Collapses under strain when load increases

GC pauses cause unacceptable response times

/

120 + /
4)

105 -

90 -

75 -

e

30 -

<]

15

0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

@Sun 2006 JavaOnes" Conference | Session TS-3484 | 14 java.sun.com/javaone/sf

JRockit—Deterministic GC

Low load: More frequent, but very short
GC pauses, no timeouts

120

105 +

90 -

75 +

60 -

45 -

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

@Sun 2006 JavaOnes Conference | Session TS-3484 | 15 java.sun.com/javaone/sf

sssssssssssss

@ Sun

JRockit—Deterministic GC

Handles the increased load just fine

Frequent, slightly longer GC pauses,

very few timeouts

120

105

90

75 A

60 -

45 -

30

15

0 T T T T T T T T T 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

2006 JavaOneS™ Conference | Session TS-3484 | 16

_— Artifact

java.sun.com/javaone/sf

¢ JavaOne

Deterministic Java VM
Response time histograms

Message Response Time Current

2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 7,000 7,500 G,000 8,500
Time (s)

Message Response Time Current

2,500 3,000 3,500 4,000 4,500 5,000 5.500 6,000 6,000
Time (s

X8un 2006 JavaOnes Conference | Session TS-3484 | 17 java.sun.com/javaone/sf

microsystems

Deterministic Java VM
Can it really be this good?

* Yes!

* Previous results are data from a real SIP Server

* Even a fraction of this gain means large cost
savings

* Predictability is much better, giving better QoS
(less busy calls)

2006 JavaOnes Conference | Session TS-3484 | 18 java.sun.com/javaone/sf

Deterministic Java VM
How does it work?

* Any modern GC is mostly concurrent
* But sometimes it needs to stop the world

* Basic idea: postpone stopping the world until
we know that it will be a very short pause
* How?
* Runtime analysis, collect data

* Load measurements
* Where is the GC activity?

@Sun 2006 JavaOnes" Conference | Session TS-3484 | 19 java.sun.com/javaone/sf

Deterministic Java VM
How does it work?

* Continuously free up resources
* Interrupt jobs that take too long, e.g., compaction

* Load balancing
* Mutating threads assist GC
* Again: sampling based

2006 JavaOnes Conference | Session TS-3484 | 20 java.sun.com/javaone/sf

>,

What About Near Real-Time Java
Technology?

Definitions vary, but usually ~10 ms is
upper bound

Current implementation

Low response times

Average pause time much shorter than for
existing solutions

Good enough for most applications (80/20 rule)

Planned improvements
Lower, even more predictable pause times
Less severe GC spikes
Higher throughput

2006 JavaOnes Conference | Session TS-3484 | 21 java.sun.com/javaone/sf

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management

Profiling and Management Tools
Q&A

2006 JavaOne®M Conference | Session TS-3484 | 22

java.sun.com/javaone/sf

The 64-bit World
Why is the world going to 64-bits?
Performance, performance, performance
The need for performance drives the change

It's all about data sets

4 GB is your average heap size nowadays

A science fiction number in 1998, when
JRockit started

...And data bandwidth

More data processed at the same time, 64-bit
and 128-bit registers

BEA has been doing 64-bit Java VM research since
2001, resulting in an excellent 64-bit Java VM

@Sun 2006 JavaOnes" Conference | Session TS-3484 | 23 java.sun.com/javaone/sf

The 64-bit World
Challenges

Data set size is the most generic problem

Java technology is particularly sensitive, since it's
a garbage collecting language

We need to maintain fast GC for huge heaps and
keep pause times down

Access time to objects on heap is also critical

Even if GC throughput is good when “stopping the
world”, we can't let pause times get too long

Real-time systems—Qo0S

2006 JavaOnes" Conference | Session TS-3484 | 24 java.sun.com/javaone/sf

>,

The 64-bit World
Challenges

Pointer size also matters

A 64-bit pointer is 2x a 32-bit pointer

An app with a certain size on a 32-bit system will
automatically get bigger on a 64-bit system
Larger data structures

We need to optimize data structure size, considering
different types of pointers

Larger amounts of data are shuffled
Cache misses

Pointer loads and store are slower, generally
speaking, than on 32-bit systems

2006 JavaOnes Conference | Session TS-3484 | 25 java.sun.com/javaone/sf

The 64-bit World

Solutions
* Intelligent address management
* Common structures always use 4-byte pointers

* Compressed references
* 32-bit objects
* Objects are always aligned, just ignore low zero bits

* Use offsets from heap start as references instead of
absolute pointers

* Address space isn’'t necessarily limited to 32-bits,
but intelligently used

@Sun 2006 JavaOnes" Conference | Session TS-3484 | 26 java.sun.com/javaone/sf

The 64-bit World
Challenges

* Porting

* Your 32-bit Java-based app should ideally
need no porting effort

* |ssues with native code and Java Native Interface

* Solutions
* JRockit uses Mixed Mode Execution (MME)

* Enables 32-bit Java Native Interface libs on
a 64-bit system

* Good for transition

@Sun 2006 JavaOne®" Conference | Session TS-3484 | 27 java.sun.com/javaone/sf

SPECjbb2005 bops

Results

64-bit vs. 32-bit Java VMs, SPECjbb2005

50000

40000

30000

20000

10000

IBM JDK 5.0, Intel Xeon
2.8 GHz

I
Sun JDK 1.5.0_06, Intel
Xeon 2.8 GHz

BEA JRockit 5.0 P26.0,

Intel Xeon 2.8 GHz

2006 JavaOne®M Conference |

Sun and IBM runs
use 32-bit JVMs

JRockit runs use
64-bit Java VM

All runs use 2x
DualCore Intel Xeon
2.8 GHz

All runs use a single
Java VM

Disclaimer: SPEC and the benchmark name SPECjbb2005 are
trademarks of the Standard Performance Evaluation Corporation.
Competitive benchmark results stated above reflect results
published on http://www.spec.org as of April 19, 2006. For the
latest SPECjbb2005 benchmark results, visit
http://www.spec.org/osg/jbb2005.

Session TS-3484 | 28 java.sun.com/javaone/sf

Results
SPECjbb2005—1,828,349 bops—World Record!

Sun and Fujitsu runs use
32-bit JVMs

JRockit run uses 64-bit JVM
SGI: 128 x Itanium 2

Sun: 72-chip/144-core
UltraSPARC [V+

Fujitsu: 128 x SPARC64V

All runs use multi-dJava VM
configurations

Disclaimer: Sun Fire E25K 1164995 SPECjbb2005 bops, 32361 SPECjbb200
bops/Java VM, Fujitsu PRIMEPOWER 2500 1251024 SPECjbb2005 bops,
39095 SPECjbb2005 bops/Java VM, SGI Altix 3700 BX2 1828349
SPECjbb2005 bops, 28568 SPECjbb2005 bops/JVM. SPEC and the benchm:
name SPECjbb2005 are trademarks of the Standard Performance Evaluation
Corporation. Competitive benchmark results stated above reflect results
published on http://www.spec.org as of April 19, 2006. For the latest
SPECjbb2005 benchmark results, visit http://www.spec.org/osg/jbb2005.

2000000 -

1750000

1500000

1250000

1000000

750000

500000

250000

0

SPECjbb2005 bops

Sun Fire E25K, Fujitsu SGl Altix 3700
Sun JDK1.5.0 06 PRIMEPOWER BX2, BEA JRockit
(32-bit) 2500, Sun JDK 5.0 P26.0 (64-bit)

1.5.0_06 (32-bit)

2006 JavaOneS Conference | Session TS-3484 | 29 java.sun.com/javaone/sf

Summary—64-bit

* There is some overhead involved in moving
to a 64-bit system

* We have minimized that overhead

* Now it's your job to utilize the benefits of a
much larger address space

* All Future JRockit ports will be 64-bit

2006 JavaOnes" Conference | Session TS-3484 | 30 java.sun.com/javaone/sf

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management

Profiling and Management Tools
Q&A

2006 JavaOneS™ Conference | Session TS-3484 | 31

java.sun.com/javaone/sf

Resource Management and Java VMs

Resource Management has been poor

Java EE 5: Ablility to measure how much resources
the Java VM is using

JRockit is extending Resource Management
To control how much resources that are used
To measure resources usage at the thread-level

To make sure JRockit works well with hypervisors
(VMware and Xen)

JSR 284 will standardize resource consumption

@Sun 2006 JavaOnes" Conference | Session TS-3484 | 32 java.sun.com/javaone/sf

Hypervisor Aware Java VM

Get resource control from the hypervisor

Optimize performance on hypervisor

* Communication hypervisor/Java VM to make
Java technology operations faster

* Communication Java VM/hypervisor to make
hypervisor operations faster .

* Avoid the OS overhead Java Java

Proxy Proxy [l

* VMware/Xen

Server Machine

2006 JavaOnes™ Conference | Session TS-3484 | 33 java .sun.com/iavaone/sf

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management

Profiling and Management Tools
Q&A

2006 JavaOneS™ Conference | Session TS-3484 | 34

java.sun.com/javaone/sf

Profiling and Management Tools
JRockit Mission Control

* Production-time monitoring

* Extremely low-performance cost
* Unique JRockit architecture
* Open to third parties

Management Memory Leak Runtime
Console Detector Analyzer

JRockit Runtime

@Sun 2006 JavaOne®™ Conference | Session TS-3484 | 35 iava .sun.com/iavaone/sf

ssssssssssss

Management Console

* Monitor

* CPU and memory usage

* Real-time data feed

* Notify
* OutOfMemory
* CPU usage

* Manage
* Heap size
+ CPU affinity

| Used memory % Used heap % CPU Load

k)
NHAABAABEH

.
- i
80, c
.
g~
2 5o
=l
= 10
N
N
2 1asi00 Arasio 1m0 rasa0 AAsa0 1m0 aei00 rdee Aiaeizo e
i

nnnnn

Secanss|

Hous

2006 JavaOne®M Conference | Session TS-3484 | 36 java .sun.com/javaone/sf

Memory Leak Detector

* Designed for use in production systems
* Close to zero overhead (memory and performance)
* Can be enabled at runtime, online

* Tight GC coupling

* Use existing GC information
* GUI Tool + JRockit “server”

@Sun 2006 JavaOnes" Conference | Session TS-3484 | 37 java.sun.com/javaone/sf

Memory Leak Detector

* Questions
* Is this program leaking? "
* What is leaking? et
* Where/why is it leaking?
* How do | fix it?
* Features
* Trend Analysis
* Referring Types

* Referring Instances
* Allocation Sites

%

45”71 2006 JavaOneSM Conference | Session TS-3484 | 38 java .sun.com/javaone/sf

Runtime Analyzer (JRA)

* Application and Java VM Profiler
* Detailed heap information
* Method profiler

* Optimizations
* Lock profiling

JRockit

* Exposes data already collected
* Low overhead

* Off-line analysis

* Java VM built-in recorder
* Separate analyzing tool

Analyzer GUI

@f@Sun 2006 JavaOne®™ Conference | Session TS-3484 | 39 java .sun.com/javaone/sf

Summary of Tools

Monitoring
Memory leak detection
Runtime profiling

Available in production with low overhead!

No overhead before and after usage

2006 JavaOneS™ Conference | Session TS-3484 | 40

java.sun.com/javaone/sf

Summary

* Deterministic Java VM—near real time

* 64-bit computing—already here

* Resource management—utilize your hardware
* Monitor and profile—in production systems

@Sun 2006 JavaOnes" Conference | Session TS-3484 | 41 java.sun.com/javaone/sf

For More Information

* “Bare Metal”: No Need for an OS in a Virtualized
Server Environment? An Alternative to MVM?

© TS-3792

* http://dev2dev.bea.com
* http://forums.bea.com

* http://www.spec.org
- SPECjbb2005
* SPECjAppServer2004

‘%%SM?} 2006 JavaOneS™ Conference

Session TS-3484 | 42

java.sun.com/javaone/sf

2006 JavaOnes" Conference | Session TS-3484 | 43 java.sun.com/javaone/sf

@ Sun

What’s Hot in BEA JRockit

Marcus Lagergren and Staffan Larsen

Java Runtime Products Group
BEA Systems

1S-3484

2006 JavaOne®™ Conference | Session TS-3484 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

