
2006 JavaOneSM Conference | Session TS-3484 |

What’s Hot in BEA JRockit
Marcus Lagergren and Staffan Larsen
Java Runtime Products Group
BEA Systems

TS-3484

2006 JavaOneSM Conference | Session TS-3484 | 2

Understanding and being able to take
advantage of some of the key technical
innovations in JRockit.

Goal

2006 JavaOneSM Conference | Session TS-3484 | 3

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management
Profiling and Management Tools
Q&A

2006 JavaOneSM Conference | Session TS-3484 | 4

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management
Profiling and Management Tools
Q&A

2006 JavaOneSM Conference | Session TS-3484 | 5

Quick JRockit Facts

• A Java™ VM for enterprise-wide usage
• 100% compatible with all applicable Java

technology standards
• Available for J2SE™ 1.4.2 and Java EE 5

• Windows (IA32, x64, IA64)
• Linux (IA32, x64, IA64)
• Solaris (SPARC64)

• Java SE 6 coming
• Fast, manageable, and free (as in beer)

2006 JavaOneSM Conference | Session TS-3484 | 6

JRockit: Optimizing Java Technology

• Challenge and opportunity: Java technology is
a runtime system, not a static environment

• The keyword is adaptivity
• The entire runtime system does lots of data collection

for free. Use it!
• Adaptive Optimization and GC
• Creative use of data that is collected “for free”

• Near zero sampling overhead
• Memory leak detection tools
• JRA recordings/runtime analyses

2006 JavaOneSM Conference | Session TS-3484 | 7

JRockit: Optimizing Java Technology

• How to optimize an object-oriented language
• Getters and setters
• Virtual methods
• Exceptions

• Need to make aggressive assumptions and
“gamble” that they are correct
• Take performance hits if assumptions are invalidated
• e.g., Revirtualization, undoing optimizations

• Don’t hand optimize code, leave it to the
Java VM

2006 JavaOneSM Conference | Session TS-3484 | 8

JRockit: Optimizing Java Technology

• Optimizing a garbage collected language
• Adaptive garbage collection

• Runtime strategy changes
• Need concurrent garbage collection
• Might even need real-time demands

• Deterministic GC
• Service Level Agreements

• Good out-of-the-box behavior
• “Type ‘java’ and it works”

2006 JavaOneSM Conference | Session TS-3484 | 9

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management
Profiling and Management Tools
Q&A

2006 JavaOneSM Conference | Session TS-3484 | 10

A Deterministic Java VM

• In this presentation, we use the term
“Deterministic GC”
• This is means a GC with guaranteed upper

bound for pause times
• “Deterministic GC” should not be confused with

the behavior of a pure real-time system where
no randomness exists

Definition

2006 JavaOneSM Conference | Session TS-3484 | 11

A Deterministic Java VM

• Java platform is a runtime system
• This is inherently non-deterministic
• There isn’t (and shouldn’t be) an exact way to control

when GC happens
• The hard part: The runtime system needs to handle

GC optimally
• The easy part: Well, it has all the data

• Throughput vs. response time
• Keeping reponse times down

• Deterministic behavior
• “No interruptions”

2006 JavaOneSM Conference | Session TS-3484 | 12

A Deterministic Java VM

• SIP Server—Telecom (VOIP)
• 50–100 ms response times
• Maximize # calls set up per second
• Longer response times means dropped calls

(busy signal)
• Trading Processing—Financial Services

• 10–20 ms response times
• Maximize trades per seconds
• Lower response times means more trade wins

Java technology is moving towards “real-time” applications

2006 JavaOneSM Conference | Session TS-3484 | 13

Traditional VM—Non-Deterministic

0

15

30

45

60

75

90

105

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

GC spikes cause occasional timeouts

2006 JavaOneSM Conference | Session TS-3484 | 14

Traditional VM—Non-Deterministic

GC pauses cause unacceptable response times

0

15

30

45

60

75

90

105

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Collapses under strain when load increases

2006 JavaOneSM Conference | Session TS-3484 | 15

JRockit—Deterministic GC

Low load: More frequent, but very short
GC pauses, no timeouts

0

15

30

45

60

75

90

105

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

2006 JavaOneSM Conference | Session TS-3484 | 16

Frequent, slightly longer GC pauses,
very few timeouts

0

15

30

45

60

75

90

105

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Artifact

JRockit—Deterministic GC
Handles the increased load just fine

2006 JavaOneSM Conference | Session TS-3484 | 17

Deterministic Java VM
Response time histograms

2006 JavaOneSM Conference | Session TS-3484 | 18

Deterministic Java VM

• Yes!
• Previous results are data from a real SIP Server
• Even a fraction of this gain means large cost

savings
• Predictability is much better, giving better QoS

(less busy calls)

Can it really be this good?

2006 JavaOneSM Conference | Session TS-3484 | 19

Deterministic Java VM

• Any modern GC is mostly concurrent
• But sometimes it needs to stop the world

• Basic idea: postpone stopping the world until
we know that it will be a very short pause

• How?
• Runtime analysis, collect data
• Load measurements
• Where is the GC activity?

How does it work?

2006 JavaOneSM Conference | Session TS-3484 | 20

Deterministic Java VM

• Continuously free up resources
• Interrupt jobs that take too long, e.g., compaction
• Load balancing

• Mutating threads assist GC
• Again: sampling based

How does it work?

2006 JavaOneSM Conference | Session TS-3484 | 21

What About Near Real-Time Java
Technology?

• Definitions vary, but usually ~10 ms is
upper bound

• Current implementation
• Low response times
• Average pause time much shorter than for

existing solutions
• Good enough for most applications (80/20 rule)

• Planned improvements
• Lower, even more predictable pause times
• Less severe GC spikes
• Higher throughput

2006 JavaOneSM Conference | Session TS-3484 | 22

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management
Profiling and Management Tools
Q&A

2006 JavaOneSM Conference | Session TS-3484 | 23

The 64-bit World
• Performance, performance, performance

• The need for performance drives the change
• It’s all about data sets

• 4 GB is your average heap size nowadays
• A science fiction number in 1998, when

JRockit started
• ...And data bandwidth

• More data processed at the same time, 64-bit
and 128-bit registers

• BEA has been doing 64-bit Java VM research since
2001, resulting in an excellent 64-bit Java VM

Why is the world going to 64-bits?

2006 JavaOneSM Conference | Session TS-3484 | 24

The 64-bit World

• Data set size is the most generic problem
• Java technology is particularly sensitive, since it’s

a garbage collecting language
• We need to maintain fast GC for huge heaps and

keep pause times down
• Access time to objects on heap is also critical
• Even if GC throughput is good when “stopping the

world”, we can’t let pause times get too long
• Real-time systems—QoS

Challenges

2006 JavaOneSM Conference | Session TS-3484 | 25

The 64-bit World

• Pointer size also matters
• A 64-bit pointer is 2x a 32-bit pointer
• An app with a certain size on a 32-bit system will

automatically get bigger on a 64-bit system
• Larger data structures
• We need to optimize data structure size, considering

different types of pointers
• Larger amounts of data are shuffled

• Cache misses
• Pointer loads and store are slower, generally

speaking, than on 32-bit systems

Challenges

2006 JavaOneSM Conference | Session TS-3484 | 26

The 64-bit World

• Intelligent address management
• Common structures always use 4-byte pointers
• Compressed references

• 32-bit objects
• Objects are always aligned, just ignore low zero bits
• Use offsets from heap start as references instead of

absolute pointers
• Address space isn’t necessarily limited to 32-bits,

but intelligently used

Solutions

2006 JavaOneSM Conference | Session TS-3484 | 27

The 64-bit World

• Porting
• Your 32-bit Java-based app should ideally

need no porting effort
• Issues with native code and Java Native Interface

• Solutions
• JRockit uses Mixed Mode Execution (MME)

● Enables 32-bit Java Native Interface libs on
a 64-bit system

● Good for transition

Challenges

2006 JavaOneSM Conference | Session TS-3484 | 28

Results

• Sun and IBM runs
use 32-bit JVMs

• JRockit runs use
64-bit Java VM

• All runs use 2x
DualCore Intel Xeon
2.8 GHz

• All runs use a single
Java VM

Disclaimer: SPEC and the benchmark name SPECjbb2005 are
trademarks of the Standard Performance Evaluation Corporation.
Competitive benchmark results stated above reflect results
published on http://www.spec.org as of April 19, 2006. For the
latest SPECjbb2005 benchmark results, visit
http://www.spec.org/osg/jbb2005.

0

10000

20000

30000

40000

50000

SP
EC

jb
b2

00
5

bo
ps

IBM JDK 5.0, Intel Xeon
2.8 GHz

Sun JDK 1.5.0_06, Intel
Xeon 2.8 GHz

BEA JRockit 5.0 P26.0,
Intel Xeon 2.8 GHz

64-bit vs. 32-bit Java VMs, SPECjbb2005

2006 JavaOneSM Conference | Session TS-3484 | 29

Results

Middle bar – data CMH

What does this mean?

• Sun and Fujitsu runs use
32-bit JVMs

• JRockit run uses 64-bit JVM
• SGI: 128 x Itanium 2
• Sun: 72-chip/144-core

UltraSPARC IV+
• Fujitsu: 128 x SPARC64V
• All runs use multi-Java VM

configurations
Disclaimer: Sun Fire E25K 1164995 SPECjbb2005 bops, 32361 SPECjbb2005
bops/Java VM, Fujitsu PRIMEPOWER 2500 1251024 SPECjbb2005 bops,
39095 SPECjbb2005 bops/Java VM, SGI Altix 3700 BX2 1828349
SPECjbb2005 bops, 28568 SPECjbb2005 bops/JVM. SPEC and the benchmark
name SPECjbb2005 are trademarks of the Standard Performance Evaluation
Corporation. Competitive benchmark results stated above reflect results
published on http://www.spec.org as of April 19, 2006. For the latest
SPECjbb2005 benchmark results, visit http://www.spec.org/osg/jbb2005.

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

Sun Fire E25K,
Sun JDK 1.5.0_06

(32-bit)

Fujitsu
PRIMEPOWER
2500, Sun JDK

1.5.0_06 (32-bit)

SGI Altix 3700
BX2, BEA JRockit
5.0 P26.0 (64-bit)

SPECjbb2005 bops

SPECjbb2005—1,828,349 bops—World Record!

2006 JavaOneSM Conference | Session TS-3484 | 30

Summary—64-bit

• There is some overhead involved in moving
to a 64-bit system

• We have minimized that overhead
• Now it’s your job to utilize the benefits of a

much larger address space
• All Future JRockit ports will be 64-bit

2006 JavaOneSM Conference | Session TS-3484 | 31

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management
Profiling and Management Tools
Q&A

2006 JavaOneSM Conference | Session TS-3484 | 32

Resource Management and Java VMs

• Resource Management has been poor
• Java EE 5: Ability to measure how much resources

the Java VM is using
• JRockit is extending Resource Management

• To control how much resources that are used
• To measure resources usage at the thread-level
• To make sure JRockit works well with hypervisors

(VMware and Xen)
• JSR 284 will standardize resource consumption

2006 JavaOneSM Conference | Session TS-3484 | 33

Hypervisor Aware Java VM

• Get resource control from the hypervisor
• Optimize performance on hypervisor

• Communication hypervisor/Java VM to make
Java technology operations faster

• Communication Java VM/hypervisor to make
hypervisor operations faster

• Avoid the OS overhead
• VMware/Xen

Hypervisor

JRockit

Bare Metal

Java
Proxy

Java
Proxy

Server Machine

os

JRockit

Bare Metal

2006 JavaOneSM Conference | Session TS-3484 | 34

Agenda

Introduction to JRockit
Deterministic VM/“Real-Time” GC
Delivering 64-bit Performance
Resource Management
Profiling and Management Tools
Q&A

2006 JavaOneSM Conference | Session TS-3484 | 35

JRockit Mission Control
Profiling and Management Tools

• Production-time monitoring
• Extremely low-performance cost

• Unique JRockit architecture
• Open to third parties

JRockit Runtime

Management
Console

Memory Leak
Detector

Runtime
Analyzer

Memory Leak
Detector

Runtime
Analyzer

2006 JavaOneSM Conference | Session TS-3484 | 36

Management Console

• Monitor
• CPU and memory usage

• Real-time data feed
• Notify

• OutOfMemory
• CPU usage

• Manage
• Heap size
• CPU affinity

2006 JavaOneSM Conference | Session TS-3484 | 37

Memory Leak Detector

• Designed for use in production systems
• Close to zero overhead (memory and performance)
• Can be enabled at runtime, online

• Tight GC coupling
• Use existing GC information

• GUI Tool + JRockit “server”

2006 JavaOneSM Conference | Session TS-3484 | 38

Memory Leak Detector

• Questions
• Is this program leaking?
• What is leaking?
• Where/why is it leaking?
• How do I fix it?

• Features
• Trend Analysis
• Referring Types
• Referring Instances
• Allocation Sites

2006 JavaOneSM Conference | Session TS-3484 | 39

Runtime Analyzer (JRA)

• Application and Java VM Profiler
• Detailed heap information
• Method profiler
• Optimizations
• Lock profiling

• Exposes data already collected
• Low overhead

• Off-line analysis
• Java VM built-in recorder
• Separate analyzing tool

Analyzer GUI

Recording

JRockit

2006 JavaOneSM Conference | Session TS-3484 | 40

Summary of Tools

• Monitoring
• Memory leak detection
• Runtime profiling

• Available in production with low overhead!
• No overhead before and after usage

2006 JavaOneSM Conference | Session TS-3484 | 41

Summary

• Deterministic Java VM—near real time
• 64-bit computing—already here
• Resource management—utilize your hardware
• Monitor and profile—in production systems

2006 JavaOneSM Conference | Session TS-3484 | 42

For More Information

• “Bare Metal”: No Need for an OS in a Virtualized
Server Environment? An Alternative to MVM?
• TS-3792

• http://dev2dev.bea.com
• http://forums.bea.com
• http://www.spec.org

• SPECjbb2005
• SPECjAppServer2004

2006 JavaOneSM Conference | Session TS-3484 | 43

Q&A

2006 JavaOneSM Conference | Session TS-3484 |

What’s Hot in BEA JRockit
Marcus Lagergren and Staffan Larsen
Java Runtime Products Group
BEA Systems

TS-3484

