@ Sun

Superpackages:
Development Modules
in Dolphin

Gilad Bracha

Computational Theologist
Sun Microsystems

TS-3885

Copyright © 2006, Sun Microsystems Inc., All rights reserved.
2006 JavaOne®M Conference | Session TS-3885 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

Agenda

Modules: Development vs. Deployment

Information Hiding
Module Files
Separate Compilation
Conclusions

2006 JavaOneS™ Conference

Session TS-3885 | 2

java.sun.com/javaone/sf

g microsystems

Agenda

Modules: Development vs. Deployment

Information Hiding
Module Files
Separate Compilation
Conclusions

2006 JavaOneS™ Conference

Session TS-3885 | 3

java.sun.com/javaone/sf

Development Modules vs.

Deployment Modules
What's the Distinction?

Development modules
A language construct

Require direct VM support to enforce semantics
(access control)

Deployment modules
Unit of packaging and distribution

Require extensive tool and library support, but not
necessarily language or VM support

Concepts do interact, but the interface between
them is relatively narrow

@%’SM?’I 2006 JavaOneS" Conference | Session TS-3885 | 4 iava.sun.com/iavaone/sf

Deployment Modules
JSR 277: Java" Module System

» Handled by JSR 277, whose concerns include:

= Versioning
* Version number schemes

* How to run several versions of the same module side by side
in the same VM

Distribution and packaging
- JAR files and/or alternative formats

Module interconnect
- Dynamic module connectivity
Repositories
- System administration, security, loading/performance

More ...

@%&Sun 2006 JavaOnesM Conference | Session TS-3885 | 5 java .sun.com/javaone/sf

Deployment Modules
JSR 277

-Hard problems

n ideal world, a comprehensive solution at
anguage and run time levels covers everything

n reality, a longstanding open research issue

Development time issues handled with conservative,
simple language constructs

Deployment issues handled by tools on top of
reflective run time API

”%:%S’Mﬂ 2006 JavaOnesM Conference | Session TS-3885 | 6 iava.sun.com/iavaone/sf

@ Sun

Agenda

Modules: Development vs. Deployment

Information Hiding
Module Files
Separate Compilation
Conclusions

2006 JavaOneS™ Conference

Session TS-3885 | 7

java.sun.com/javaone/sf

Problem #1: Information Hiding
Today, If One Develops a System Made of Several
Subsystems, One Has Two Choices:

- Put all the code in one package
* Unwieldy
* Exposes subsystem internals to each other
» Sometimes necessary
> Often harmful

- Put each subsystem in its own package

« Cannot grant subsystems privileged access without
excess publicity

@i%aSun 2006 JavaOnes" Conference | Session TS-3885 | 8 java .sun.com/javaone/sf

Strawmen

* Don’t document
» Static classes
* A modest proposal

@Sun 2006 JavaOne® Conference | Session TS-3885 | 9 iava .sun.com/iavaone/sf

sssssssssss

Strawmen

* Don’t document
» Static classes
* A modest proposal

@Sun 2006 JavaOnesM Conference | Session TS-3885 | 10 iava .sun.com/iavaone/sf

sssssssssss

>,

Don’t Document
The Ostrich Solution

» Define subpackages as convenient

- Define all APIs needed outside of any package
as public

- Don’t describe them with the Javadoc™ tool

* Pray and repeat

+ All the problems of access and dependence on APls
Intended to be private

* Does not protect from maliciousness or imbecility
* Witness com.sun.”

2006 JavaOnes" Conference | Session TS-3885 | 11 java .sun.com/javaone/sf

Strawmen

 Don’t document
« Static classes
* A modest proposal

@Sun 2006 JavaOneSM Conference | Session TS-3885 | 12 iava .sun.com/iavaone/sf

sssssssssss

>,

Static Classes
The Clever Ostrich Solution

Define one package

Define subsystems as top-level classes in
said package

Define top level classes of each subsystem as
static nested classes of top level classes

Sort of works, but
Only one level deep
Ugly, especially name mangling at the binary level
Very little VM level protection

2006 JavaOnes™ Conference | Session TS-3885 | 13 java .sun.com/javaone/sf

Information Hiding with Static Classes

package superpackage;

class Subsysteml ({

public static class PublicClassl{...}
// Public to the world

private static class PrivateClassl{ ... }
// Private to Subsysteml at language level
// — but at binary level it is
// package private to superpackage

}

class Subsystem2 {
public static class PublicClass2{...}
private static class PrivateClass2{ ... }

2006 JavaOnesM Conference | Session TS-3885 | 14 java .sun.com/iavaone/sf

Information Hiding with Static Classes

package superpackage;

class Subsysteml ({
private static class PrivateClassl({
int subsystemlMethodl (){...}
// Intended to be private to Subsysteml, but really
// package private to superpackage
private int subsystemlMethod2() {...}
// this works, until you want to inherit it

class Subsystem2 ({
public static class PublicClass2{...}
private static class PrivateClass2{ ... }

@f@Sun 2006 JavaOne®™ Conference | Session TS-3885 | 15 java .sun.com/javaone/sf

Information Hiding with Static Classes

package superpackage;

class Subsysteml ({

public static class SubSubsystemll{...}
private static class SubSubsysteml2{

private static class PrivateClassl2{...}
// Still accessible to SubSubystemll
// Still in the same compilation unit

}

2006 JavaOnes™ Conference | Session TS-3885 | 16 iava .sun.com/iavaone/sf

Information Hiding with Static Classes

- Too complex
- Doesn’t nest
* VM protection not exactly what you expect

2006 JavaOnes™ Conference | Session TS-3885 | 17 iava .sun.com/javaone/sf

Strawmen

* Don’t document
» Static classes
* A modest proposal

@Sun 2006 JavaOnes™ Conference | Session TS-3885 | 18 iava .sun.com/iavaone/sf

sssssssssss

Defining a Superpackage

super package com.sun.myModule ({

export com.sun.myModule.myStuff.*;
export com.sun.myModule.yourStuff.Interface;

com. sun.myModule.myStuff;

com. sun.myModule.yourStuff;

com. sun.SomeOtherModule. theirStuff;
org.someOpenSource.someCoolStuff;

2006 JavaOnes™ Conference | Session TS-3885 | 19 iava .sun.com/iavaone/sf

Superpackages May Nest

super package mySystem {
export mySubsubsystemll.PublicTypelll;

mySubsysteml ;
mySubsystem2 ;
}

super package mySubsysteml ({
export mySubsubsystemll.PublicTypelll,
mySubsubsystemll.SemiPublicTypell2,
mySubsubsysteml2.SemiPublicTypel2l;

mySubsubsystemll;
mySubsubsysteml2;

@@Sun 2006 JavaOne®™ Conference | Session TS-3885 | 20 java .sun.com/iavaone/sf

@ Sun

Agenda

Modules: Development vs. Deployment

Information Hiding
Separate Compilation
Module Files

Conclusions

2006 JavaOneS™ Conference

Session TS-3885 | 21

java.sun.com/javaone/sf

Module Files
Don’t Take “File” Too Literally

» The authoritative binary definition of a module
* Membership
> Imports
* Exports
- Metadata

» Class files can claim membership in a module
» Claims must be cross checked with module file

* VM uses membership and export info to enforce
access control

@%Sun 2006 JavaOnes" Conference | Session TS-3885 | 22 java .sun.com/javaone/sf

Module Files (cont.)

» Other information is useful for JSSR 277

* For example, import information can be used to
validate configurations

- A module file corresponds to (part of) a JSR 277
module definition

= Multiple module instances can coexist at runtime

@f@Sun 2006 JavaOnesM Conference | Session TS-3885 | 23 java .sun.com/javaone/sf

@ Sun

Agenda

Modules: Development vs. Deployment

Information Hiding
Module files

Separate Compilation
Conclusions

2006 JavaOneS™ Conference

Session TS-3885 | 24

java.sun.com/javaone/sf

Problem #2: Separate Compilation
Compilation Units Today Consist of Implementations

- Sometimes one doesn’t have the
Implementation handy
- Haven't built it yet
* Another developer hasn’t handed it to me yet

- Needed to be able to compile against the
Interface of another “module”’

* Workaround is ugly and tedious: declare phony
Implementation

”%:%S’M?’l 2006 JavaOnes™ Conference | Session TS-3885 | 25 java .sun.com/javaone/sf

Separate Compilation

package fully.qualified.packageName;

public class C implements fully.qualified.interface ({
public String someMethod(){ // fake body
return nil; // fake return statement

}
public C(int i){}; // fake body

protected Object aFieldName;

‘%%SM?} 2006 JavaOne®™ Conference | Session TS-3885 | 26 java.sun.com/javaone/sf

@ Sun

Separate Compilation: Definition

package interface fully.qualified.packageName;

// implicitly public types and members

class C implements fully.qualified.interface {
String someMethod() ;
C(int 1i);
protected Object aFieldName;

2006 JavaOnes™ Conference | Session TS-3885 | 27 iava .sun.com/iavaone/sf

Separate Compilation: Usage

package another.packageName;

import fully.qualified.packageName;

}

2006 JavaOne®sM™ Conference | Session TS-3885 | 28

// Code as usual - exactly as if imported package exists

java.sun.com/javaone/sf

Superpackages May Nest: Revised

package interface mySystem ({
public class mySubsubsystemll.PublicTypelll;

}

package interface mySubsysteml ({
public class mySubsubsystemll.PublicTypelll;
public class mySubsubsystemll.SemiPublicTypell2;
public class mySubsubsysteml2.SemiPublicTypel2l;

of’f@SZﬂ’l 2006 JavaOne®™ Conference | Session TS-3885 | 29 iava .sun.com/iavaone/sf

@ Sun

Superpackages May Nest: Revised

super package mySystem {

export mySystem. *;
mySubsysteml;

mySubsystem2 ;
}

super package mySubsysteml ({
export mySubsystem. *;

mySubsubsystemll;
mySubsubsysteml2;

2006 JavaOnes™ Conference | Session TS-3885 | 30 iava .sun.com/iavaone/sf

@ Sun

Agenda

Modules: Development vs. Deployment

Information Hiding
Module Files
Separate Compilation
Conclusions

2006 JavaOneS™ Conference

Session TS-3885 | 31

java.sun.com/javaone/sf

Summary

» Java Platform 7 will:
* Provide flexible information hiding
 Likely provide true separate compilation

» Language level module constructs (JSR 294)
* Deployment level module system (JSR 277)

@@Sun 2006 JavaOne® Conference | Session TS-3885 | 32 java .sun.com/iavaone/sf

For More Information
Useful Links

- gilad.bracha@sun.com

» http://jcp.org/en/jsr/detail?id=294
* http://jcp.org/en/jsr/detail?id=277
* http://blogs.sun.com/gbracha/

@Sun 2006 JavaOnes" Conference | Session TS-3885 | 33

ssssssssssss

java.sun.com/javaone/sf

2006 JavaOne®™ Conference | Session TS-3885 | 34 jaua.sun.comfjauaone{sf

@ Sun

Superpackages:
Development Modules
in Dolphin

Gilad Bracha

Computational Theologist
Sun Microsystems

TS-3885

2006 JavaOne®M Conference | Session TS-3885 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

