
2006 JavaOneSM Conference | Session TS-3886 |

TS-3886

Dynamically Typed
Languages on the
Java™ Platform
Gilad Bracha
Computational Theologist
Sun Microsystems

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-3886 | 2

On Freedom of Choice

Any Customer Can Have Any Car
Painted Any Color That He Wants

2006 JavaOneSM Conference | Session TS-3886 | 3

On Freedom of Choice

“Any Customer Can Have Any Car
Painted Any Color That He Wants

So Long As It Is Black”
– Henry Ford

2006 JavaOneSM Conference | Session TS-3886 | 4

We’d Like to Improve on That

● Programmers should be able to choose the right
programming language for the right task

2006 JavaOneSM Conference | Session TS-3886 | 5

Support for Other Languages

● What:
● Some people program in several languages, especially

scripting languages; We want to improve support for
these on the Java™ Virtual Machine (JVM™)

● Why:
● Useful for Java™ platform users for certain tasks
● Broaden community

2006 JavaOneSM Conference | Session TS-3886 | 6

Support for Other Languages

● Today, OL implementations ride existing
Java VMs
● Examples: Jython, Kawa

● Easy for single inheritance, single dispatch,
statically typed OOPLs

● Real interest is in languages that are different
● Scripting languages are all dynamically typed
● Most have multiple inheritance or mix-ins

● This can be challenging to do well

2006 JavaOneSM Conference | Session TS-3886 | 7

Enter JSR 292

● Designed to:
● Make it easier to implement scripting languages

on the JVM software
● Make such implementations much more efficient

● Two goals
● Invokedynamic byte code
● Improved Hotswapping

2006 JavaOneSM Conference | Session TS-3886 | 8

Agenda

Invokedynamic
Hotswapping

2006 JavaOneSM Conference | Session TS-3886 | 9

Agenda

Invokedynamic
Hotswapping

2006 JavaOneSM Conference | Session TS-3886 | 10

A Closer Look at Method Invocation

● JVM software has four bytecodes for method
invocation
● invokevirtual
● invokeinterface
● invokestatic
● invokespecial

2006 JavaOneSM Conference | Session TS-3886 | 11

Invokevirtual

● General form is:
● invokevirtual TargetObjectType.methodDescriptor
● MethodDescriptor → methodName(ArgTypes) ReturnType

● Very close to Java programming language
semantics
● Only overloading (and generics) left to javac
● Single inheritance, single dispatch, statically typed

2006 JavaOneSM Conference | Session TS-3886 | 12

Invokevirtual

● General form is:
● invokevirtual TargetObjectType.methodDescriptor
● MethodDescriptor → methodName(ArgTypes) ReturnType

● Very close to Java programming language
semantics
● Only overloading (and generics) left to javac
● Single inheritance, single dispatch, statically typed

2006 JavaOneSM Conference | Session TS-3886 | 13

Invokevirtual

● General form is:
● invokevirtual TargetObjectType.methodDescriptor
● MethodDescriptor → methodName(ArgTypes) ReturnType

● Very close to Java programming language
semantics
● Only overloading (and generics) left to javac
● Single inheritance, single dispatch, statically typed

● Verifier will ensure that types are correct

2006 JavaOneSM Conference | Session TS-3886 | 14

And Here My Troubles Began

newSize(c)
// Collection has grown; figure out the next increment
// in size
{

return c.size() * c.growthFactor();
}

Consider a trivial snippet of code in a
dynamically typed language:

2006 JavaOneSM Conference | Session TS-3886 | 15

How to Compile This to the
Java Virtual Machine?

newSize(c)
// Collection has grown; figure out the next increment
// in size
{

return c.size() * c.growthFactor();
}

In particular, how to compile the method
invocations?

2006 JavaOneSM Conference | Session TS-3886 | 16

How to Compile This to the
Java Virtual Machine?

newSize(c)
// Collection has grown; figure out the next increment
// in size
{

return c.size() * c.growthFactor();
}

In particular, how to compile the method
invocations?

invokevirtual
 IdontKnowWhatType.growthFactor() UnknownReturnType

2006 JavaOneSM Conference | Session TS-3886 | 17

How to Compile This to the
Java Virtual Machine?

newSize(c)
// Collection has grown; figure out the next increment
// in size
{

return
 ((Interface91)((Interface256) c).size()) *
 (Interface91) ((Interface42) c).growthFactor();
}

Solutions are complex, involving many
synthetic interfaces and casts.

invokeinterface
 Interface42.growthFactor() Object

2006 JavaOneSM Conference | Session TS-3886 | 18

How to Compile This to the
Java Virtual Machine?

This is inefficient and brittle at best.
Alternately, write your own interpreter and
run it on top of the JVM.

May Moore’s law be with you.

2006 JavaOneSM Conference | Session TS-3886 | 19

A Loosely Typed Invokevirtual
Solution: Invokedynamic

● Target need not be statically known to implement
method descriptor given in instruction
● No need for a host of synthetic interfaces

● Actual arguments need not be statically known to
match method descriptor
● Instead, cast at invocation time to ensure integrity

invokedynamic Anyclass.growthFactor() Object

2006 JavaOneSM Conference | Session TS-3886 | 20

Invokedynamic

● Actual arguments need not be statically known to
match method descriptor
● Instead, cast at invocation time to ensure integrity

● Why?

2006 JavaOneSM Conference | Session TS-3886 | 21

Invokedynamic

● Actual arguments need not be statically known to
match method descriptor
● Instead, cast at invocation time to ensure integrity

● Why? Suppose argument types are wrong:
invokedynamic LinkedList.get(int) Object
When the argument is actually an Object

2006 JavaOneSM Conference | Session TS-3886 | 22

Invokedynamic

● Actual arguments need not be statically known to
match method descriptor
● Instead, cast at invocation time to ensure integrity

● Why? Suppose argument types are wrong:
invokedynamic LinkedList.get(int) Object
When the argument is actually an Object
● This could be used to convert a pointer to an integer
● Undermines type safety, and most important,

pointer/memory safety

2006 JavaOneSM Conference | Session TS-3886 | 23

Invokedynamic

● Actual arguments need not be statically known to
match method descriptor
● Instead, cast at invocation time to ensure integrity
● No overhead when calling dynamically typed code

2006 JavaOneSM Conference | Session TS-3886 | 24

Only a Partial Solution

● No direct support for multiple inheritance or
multiple dispatch
● General support is hard—each language has its

own rules
● Calling Java platform libraries from scripting

languages brings additional problems
● How do you resolve overloading?

● However, invokedynamic is a useful primitive in
most of these complex scenarios as well

● More complicated schemes possible (OMDB)

2006 JavaOneSM Conference | Session TS-3886 | 25

Overloading

● Given the code:
class Gourmand {

Boolean eat(Food junk);
Boolean eat(Fish freddie);
Boolean eat(Mint thin);
}

● How does one determine which method this code
is calling:
var f = fetchFood();
(new Gourmand()).eat(f);

2006 JavaOneSM Conference | Session TS-3886 | 26

Overloading

● One can resolve the method at run time, using
the dynamic types of the arguments

● So, if f is an instance of Salmon, one chooses
 eat(Fish freddie);

● Some would like the VM to do this for them, but
this is too complex and brittle

2006 JavaOneSM Conference | Session TS-3886 | 27

Overloading

● Instead, the call
 eat(f);

● is compiled as
 invokedynamic Gourmand.eat(Object) Object

● If no exact match is found, the invoke instruction
traps to a user supplied handler

2006 JavaOneSM Conference | Session TS-3886 | 28

Overloading

● Handler receives a reflective descriptor of the
call, identifying:
● Call site
● Method name and descriptor at call site
● Array of actual arguments

● Handler can process call as it wishes;
in particular:
● Can invoke routine that resolves overloading

dynamically and caches results based on call site
and arguments

2006 JavaOneSM Conference | Session TS-3886 | 29

Agenda

Invokedynamic
Hotswapping

2006 JavaOneSM Conference | Session TS-3886 | 30

a.k.a. Reflective Program Change
Hotswapping

● The ability to modify code on the fly
● Originates with Lisp, APL, Smalltalk
● Common feature in many scripting languages
● Very useful for:

● Program development (e.g., fix-and-continue
debugging)

● Highly dynamic code that adapts to current conditions
● Addictive: Use it, and you’re hooked

2006 JavaOneSM Conference | Session TS-3886 | 31

Hotswapping

● Limited support in current Java VMs
● Part of JVM Tool Interface (JVMTI)

● JVMTI may allow you to change the code in a
method body
● But, not always supported

● JVMTI will not support:
● Changing method signatures
● Adding/removing methods
● Adding/removing fields
● Changing class hierarchy

2006 JavaOneSM Conference | Session TS-3886 | 32

Hotswapping

● Not a feature of statically typed programming
languages
● Complex and costly to implement while maintaining

type safety
● Pay in time and/or space

● Retypechecking codebase on every change is very time
consuming

● Incremental typechecking requires complex dependency
management
● Dependencies require space

2006 JavaOneSM Conference | Session TS-3886 | 33

Hotswapping

● So, what will JSR 292 do to change this?
● No firm commitment at this time!
● Most likely, allow hotswapping for dynamically

typed languages
● Unlikely to allow hotswapping for statically typed

languages

2006 JavaOneSM Conference | Session TS-3886 | 34

Hotswapping

● One approach:
● Distinguish class files that are “Hotswappable”
● Hotswappable classes can only be called via

invokedynamic
● No use of getfield, putfield, other invokes from outside

the class
● Unsafe use of a Hotswappable class fails dynamically

in a controlled way
● No core dumps or corruption of memory

● Hence, no need for elaborate incremental
typechecking/verification of clients of such classes

2006 JavaOneSM Conference | Session TS-3886 | 35

Hotswapping

● Too early to tell how this will play out
● Maybe we can do better, maybe we do worse
● The goal is to allow scripting languages to be

implemented “natively” on the JVM software
● Simplify implementor's lives

● Likely yield more good implementations for
programmers to use

● Potential for awesome performance over time

2006 JavaOneSM Conference | Session TS-3886 | 36

Summary

● Sun wants to see a variety of programming
languages targeting the Java platform
● Dynamically typed languages in particular; they fill a

different niche the Java programming language
● Improved support planned

● Javascript programming language and Groovy
in the pipeline

● JSR 292 starting up

2006 JavaOneSM Conference | Session TS-3886 | 37

For More Information

Useful links
● gilad.bracha@sun.com
● http://jcp.org/en/jsr/detail?id=292
● http://blogs.sun.com/gbracha/
● http://blogs.sun.com/roller/resources/gbracha/JAOO20

05.pdf

2006 JavaOneSM Conference | Session TS-3886 | 38

Q&A

2006 JavaOneSM Conference | Session TS-3886 |

TS-3886

Dynamically Typed
Languages on the
Java™ Platform
Gilad Bracha
Computational Theologist
Sun Microsystems

