
2006 JavaOneSM Conference | Session TS-4915 |

Simpler, Faster, Better:
Concurrency Utilities in JDK™

Software Version 5.0
Brian Goetz
Principal Consultant, Quiotix Corp
David Holmes
Staff Engineer, Sun Microsystems, Inc.

TS-4915

2006 JavaOneSM Conference | Session TS-4915 | 2

Goal

Learn how to use the new concurrency
utilities (the java.util.concurrent
package) to replace error-prone or
inefficient code and to better structure
applications

2006 JavaOneSM Conference | Session TS-4915 | 3

Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions, and Synchronizers
Atomic Variables

2006 JavaOneSM Conference | Session TS-4915 | 4

Rationale for

● The built-in concurrency primitives—wait(),
notify(), and synchronized—
are, well, primitive
● Hard to use correctly
● Easy to use incorrectly
● Specified at too low a level for most applications
● Can lead to poor performance if used incorrectly

● Too much wheel-reinventing!

Developing Concurrent Classes Was Just Too Hard
java.util.concurrent

2006 JavaOneSM Conference | Session TS-4915 | 5

Simplify Development of Concurrent Applications
Goals for

● Provide a set of basic concurrency building blocks
● Something for everyone

● Make some problems trivial to solve by everyone
● Develop thread-safe classes, such as servlets, built on

concurrent building blocks like ConcurrentHashMap
● Make some problems easier to solve by concurrent

programmers
● Develop concurrent applications using thread pools, barriers,

latches, and blocking queues
● Make some problems possible to solve by

concurrency experts
● Develop custom locking classes, lock-free algorithms

java.util.concurrent

2006 JavaOneSM Conference | Session TS-4915 | 6

Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions, and Synchronizers
Atomic Variables

2006 JavaOneSM Conference | Session TS-4915 | 7

Concurrent vs. Synchronized
Concurrent Collections

● Pre Java™ 5 platform: Thread-safe but not
concurrent classes

● Thread-safe synchronized collections
● Hashtable, Vector,
Collections.synchronizedMap

● Monitor is source of contention under concurrent access
● Often require locking during iteration

● Concurrent collections
● Allow multiple operations to overlap each other

● Big performance advantage
● At the cost of some slight differences in semantics

● Might not support atomic operations

2006 JavaOneSM Conference | Session TS-4915 | 8

Concurrent Collections

● ConcurrentHashMap
● Concurrent (scalable) replacement for Hashtable

or Collections.synchronizedMap
● Allows reads to overlap each other
● Allows reads to overlap writes
● Allows up to 16 writes to overlap
● Iterators don’t throw
ConcurrentModificationException

● CopyOnWriteArrayList
● Optimized for case where iteration is much more

frequent than insertion or removal
● Ideal for event listeners

2006 JavaOneSM Conference | Session TS-4915 | 9

Concurrent Collections

● Synchronized collection iteration broken by
concurrent changes in another thread
● Throws ConcurrentModificationException
● Locking a collection during iteration hurts scalability

● Concurrent collections can be modified
concurrently during iteration
● Without locking the whole collection
● Without ConcurrentModificationException
● But changes may not be seen

Iteration Semantics

2006 JavaOneSM Conference | Session TS-4915 | 10

Concurrent Collection Performance
Throughput in Thread-safe Maps

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 24 32 40 48

Threads

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

ConcurrentHashMap
ConcurrentSkipListMap
SynchronizedHashMap
SynchronizedTreeMap

Java 6 B77
8-Way System
40% Read Only
60% Insert
2% Removals

2006 JavaOneSM Conference | Session TS-4915 | 11

Queues

interface Queue<E> extends Collection<E> {
boolean offer(E x);
E poll();
E remove() throws NoSuchElementException;
E peek();
E element() throws NoSuchElementException;

}

● Retrofit (non-thread-safe)—implemented by LinkedList
● Add (non-thread-safe) PriorityQueue
● Fast thread-safe non-blocking
ConcurrentLinkedQueue

● Better performance than LinkedList is possible as
random-access requirement has been removed

New Interface Added to java.util

2006 JavaOneSM Conference | Session TS-4915 | 12

Blocking Queues
● Extends Queue to provide blocking operations

● Retrieval: take—Wait for queue to become nonempty
● Insertion: put—Wait for capacity to become available

● Several implementations:
● LinkedBlockingQueue

● Ordered FIFO, may be bounded, two-lock algorithm
● PriorityBlockingQueue

● Unordered but retrieves least element, unbounded, lock-based
● ArrayBlockingQueue

● Ordered FIFO, bounded, lock-based
● SynchronousQueue

● Rendezvous channel, lock-based in Java 5 platform, lock-free
in Java 6 platform

BlockingQueue Interface

2006 JavaOneSM Conference | Session TS-4915 | 13

BlockingQueue Example
class LogWriter {

final BlockingQueue msgQ =
new LinkedBlockingQueue();

public void writeMessage(String msg) throws IE {
msgQ.put(msg);

}

// run in background thread
public void logServer() {

try {
while (true) {

System.out.println(msqQ.take());
}

}
catch(InterruptedException ie) { ... }

}
}

Producer

Blocking
Queue

Consumer

2006 JavaOneSM Conference | Session TS-4915 | 14

Producer-Consumer Pattern

● LogWriter example illustrates the producer-
consumer pattern
● Ubiquitous concurrency pattern, nearly always relies

on some form of blocking queue
● Decouples identification of work from doing the work

● Simpler and more flexible

● LogWriter had many producers, one consumer
● Thread pool has many producers, many consumers

● LogWriter moves IO from caller to log thread
● Shorter code paths, fewer context switches,

no contention for IO locks → more efficient

2006 JavaOneSM Conference | Session TS-4915 | 15

Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions, and Synchronizers
Atomic Variables

2006 JavaOneSM Conference | Session TS-4915 | 16

Framework for Asynchronous Execution
Executors

● Standardize asynchronous invocation
● Framework to execute Runnable and Callable tasks

● Separate submission from execution policy
● Use anExecutor.execute(aRunnable)
● Not new Thread(aRunnable).start()

● Cancellation and shutdown support
● Usually created via Executors factory class

● Configures flexible ThreadPoolExecutor
● Customize shutdown methods, before/after hooks,

saturation policies, queuing

2006 JavaOneSM Conference | Session TS-4915 | 17

Decouple Submission From Execution Policy
Executors

● Code which submits a task doesn’t have to know
in what thread the task will run
● Could run in the calling thread, in a thread pool, in a

single background thread
● Executor implementation determines execution policy

● Execution policy controls resource utilization, saturation
policy, thread usage, logging, security, etc.

● Calling code need not know the execution policy

public interface Executor {
void execute(Runnable command);

}

2006 JavaOneSM Conference | Session TS-4915 | 18

ExecutorService Adds Lifecycle Management
Executor and ExecutorService

● ExecutorService supports both graceful and
immediate shutdown
public interface ExecutorService extends Executor {

void shutdown();
List<Runnable> shutdownNow();
boolean isShutdown();
boolean isTerminated();
boolean awaitTermination(long time,TimeUnit unit)

throws InterruptedException

// other convenience methods for submitting tasks
}

● Many useful utility methods too

2006 JavaOneSM Conference | Session TS-4915 | 19

Factory Methods in the Executors Class
Creating Executors

public class Executors {
static ExecutorService

newSingleThreadedExecutor();

static ExecutorService
newFixedThreadPool(int poolSize);

static ExecutorService
newCachedThreadPool();

static ScheduledExecutorService
newScheduledThreadPool(int corePoolSize);

// additional versions specifying ThreadFactory
// additional utility methods

}

2006 JavaOneSM Conference | Session TS-4915 | 20

Executors Example
class UnstableWebServer {

public static void main(String[] args) {
ServerSocket socket = new ServerSocket(80);
while (true) {

final Socket connection = socket.accept();
Runnable r = new Runnable() {

public void run() {
handleRequest(connection);

}
};
// Don't do this!
new Thread(r).start();

}
}

}

Web Server—Poor Resource Management

2006 JavaOneSM Conference | Session TS-4915 | 21

Web Server—Better Resource Management
Executors Example

class BetterWebServer {
Executor pool = Executors.newFixedThreadPool(7);

public static void main(String[] args) {
ServerSocket socket = new ServerSocket(80);
while (true) {

final Socket connection = socket.accept();
Runnable r = new Runnable() {

public void run() {
handleRequest(connection);

}
};
pool.execute(r);

}
}

}

2006 JavaOneSM Conference | Session TS-4915 | 22

Saturation Policies

● An Executor which execute tasks in a thread pool
● Can guarantee you will not run out of threads
● Can manage thread competition for CPU resources

● There is still a risk of running out of memory
● Tasks could queue up without bound

● Solution: Use a bounded task queue
● Just so happens that JUC provides several of these…

● If queue fills up, the saturation policy is applied
● Policies available: Throw, discard oldest, discard newest,

or run-in-calling-thread
● The last has the benefit of throttling the load

2006 JavaOneSM Conference | Session TS-4915 | 23

Web Server With Bounded Work Queue
Saturation Policy Example
class StableWebServer {

Executor pool = new ThreadPoolExecutor(10, 10,
Long.MAX_VALUE, TimeUnit.SECONDS,
new LinkedBlockingQueue<Runnable>(1000),
new ThreadPoolExecutor.DiscardOldestPolicy());

public static void main(String[] args) {
ServerSocket socket = new ServerSocket(80);
while (true) {
final Socket connection = socket.accept();
Runnable r = new Runnable() {
public void run() {
handleRequest(connection);

}
};
pool.execute(r);

}
}

}

2006 JavaOneSM Conference | Session TS-4915 | 24

Representing Asynchronous Tasks
Futures and Callables

● Callable is functional analog of Runnable
interface Callable<V> {

V call() throws Exception;
}

● Future holds result of asynchronous call,
normally a Callable
interface Future<V> {

V get() throws InterruptedException,
ExecutionException;

V get(long timeout, TimeUnit unit) throws ...;
boolean cancel(boolean mayInterrupt);
boolean isCancelled();
boolean isDone();

}

2006 JavaOneSM Conference | Session TS-4915 | 25

Implementing a Concurrent Cache
Futures Example

public class Cache<K, V> {
final ConcurrentMap<K, FutureTask<V>> map =

new ConcurrentHashMap<K, FutureTask<V>>();

public V get(final K key) throws InterruptedException {
FutureTask<V> f = map.get(key);
if (f == null) {

Callable<V> c = new Callable<V>() {
public V call() {

// return value associated with key
}

};
f = new FutureTask<V>(c);
FutureTask<V> old = map.putIfAbsent(key, f);
if (old == null)
f.run();

else
f = old;

}
try { return f.get(); }
catch(ExecutionException ex) { /* rethrow ex.getCause() */ }

}
}

2006 JavaOneSM Conference | Session TS-4915 | 26

Deferred and Recurring Tasks
ScheduledExecutorService

● ScheduledExecutorService can be used to:
● Schedule a Callable or Runnable to run once with

a fixed delay after submission
● Schedule a Runnable to run periodically at a

fixed rate
● Schedule a Runnable to run periodically with a fixed

delay between executions
● Submission returns a ScheduledFutureTask

handle which can be used to cancel the task
● Like java.util.Timer, but supports pooling

2006 JavaOneSM Conference | Session TS-4915 | 27

Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions, and Synchronizers
Atomic Variables

2006 JavaOneSM Conference | Session TS-4915 | 28

Locks

● Use of monitor synchronization is just fine for most
applications, but it has some shortcomings
● Single wait-set per lock
● No way to interrupt or time-out when waiting for a lock
● Locking must be block-structured

● Inconvenient to acquire a variable number of locks at once
● Advanced techniques, such as hand-over-hand locking,

are not possible

● Lock objects address these limitations
● But harder to use: Need finally block to ensure release
● So if you don’t need them, stick with synchronized

2006 JavaOneSM Conference | Session TS-4915 | 29

Framework for Flexible Locking
● interface Lock {

void lock();
void lockInterruptibly() throws

InterruptedException;
boolean tryLock();
boolean tryLock(long time,TimeUnit unit) throws

InterruptedException;
void unlock();
Condition newCondition() throws

UnsupportedOperationException;
}

● High-performance implementation: ReentrantLock
● Basic semantics same as use of synchronized
● Condition object semantics like wait/notify

2006 JavaOneSM Conference | Session TS-4915 | 30

Simple ExampleLock

● Used extensively within java.util.concurrent
final Lock lock = new ReentrantLock();
...
lock.lock();
try {

// perform operations protected by lock
}
catch(Exception ex) {

// restore invariants & rethrow
}
finally {

lock.unlock();
}

● Must manually ensure lock is released

2006 JavaOneSM Conference | Session TS-4915 | 31

Monitor-like Operations for Working With Locks
Conditions

● Condition is an abstraction of wait/notify
interface Condition {

void await() throws InterruptedException;
boolean await(long time, TimeUnit unit)

throws InterruptedException;
long awaitNanos(long nanosTimeout)

throws InterruptedException;
boolean awaitUntil(Date deadline)

throws InterruptedException;
void awaitUninterruptibly();

void signal();
void signalAll();

}

● Timed await versions report reason for return

2006 JavaOneSM Conference | Session TS-4915 | 32

Condition Example
class BoundedBuffer {
final Lock lock = new ReentrantLock();
final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();
...
void put(Object x)throws InterruptedException {
lock.lock(); try {
while (isFull()) notFull.await();
doPut(x);
notEmpty.signal();

} finally { lock.unlock(); }
}
Object take() throws InterruptedException {
lock.lock(); try {
while (isEmpty()) notEmpty.await();
notFull.signal();
return doTake();

} finally { lock.unlock(); }
}

}

2006 JavaOneSM Conference | Session TS-4915 | 33

Synchronizers

● Semaphore—Dijkstra counting semaphore,
managing a specified number of permits

● CountDownLatch—Allows one or more threads
to wait for a set of threads to complete an action

● CyclicBarrier—Allows a set of threads to
wait until they all reach a specified barrier point

● Exchanger—Allows two threads to rendezvous
and exchange data
● Such as exchanging an empty buffer for a full one

Utility Classes for Coordinating Access and Control

2006 JavaOneSM Conference | Session TS-4915 | 34

Semaphore Example
public class ExecutorProxy implements Executor {
private final Semaphore tasks;
private final Executor master;

ExecutorProxy(Executor master, int limit) {
this.master = master;
tasks = new Semaphore(limit);

}

public void execute(Runnable r) {
tasks.acquireUninterruptibly(); // for simplicity
try {
master.execute(r);

}
finally {
tasks.release();

}
}

}

Bound the Submission of Tasks to an Executor

2006 JavaOneSM Conference | Session TS-4915 | 35

Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions, and Synchronizers
Atomic Variables

2006 JavaOneSM Conference | Session TS-4915 | 36

Atomic Variables

● Support atomic operations
● Compare-and-set (CAS)
● Get, set, and arithmetic operations (where applicable)

● Increment, decrement operations

● Abstraction of volatile variables
● Nine main classes:

● { int, long, reference } X { value, field, array }
● e.g., AtomicInteger useful for counters,

sequence numbers, statistics gathering

Holder Classes for Scalars, References, and Fields

2006 JavaOneSM Conference | Session TS-4915 | 37

AtomicInteger Example

● Replace this: class Service {
static int services;
public Service() {

synchronized(Service.class) {
services++;

}
} // ...

}

● With this: class Service {
static AtomicInteger services =

new AtomicInteger();
public Service() {

services.getAndIncrement();
}
// ...

}

Construction Counter for Monitoring/Management

2006 JavaOneSM Conference | Session TS-4915 | 38

Atomic Compare-and-Set (CAS)

● Atomically sets value to update if currently expected
● Returns true on successful update

● Direct hardware support in all modern processors
● CAS, cmpxchg, ll/sc

● High-performance on multi-processors
● No locks, so no lock contention and no blocking
● But can fail

● So algorithms must implement retry loop

● Foundation of many concurrent algorithms

boolean compareAndSet(int expected, int
update)

2006 JavaOneSM Conference | Session TS-4915 | 39

Sneak Preview of Java 6 Platform
(Code-Named Mustang)
● Double-ended queues: Deque, BlockingDeque

● Implementations: ArrayDeque, LinkedBlockingDeque,
ConcurrentLinkedDeque

● Concurrent skiplists:
ConcurrentSkipList{Map|Set}

● Enhanced navigation of sorted maps/sets
● Navigable{Map|Set}

● Miscellaneous algorithmic enhancements
● More use of lock-free algorithms in utilities
● VM performance improvements for intrinsic locking

● M&M support for locks and conditions

2006 JavaOneSM Conference | Session TS-4915 | 40

java.util.concurrent

● Executors
• Executor
• ExecutorService
• ScheduledExecutorService
• Callable
• Future
• ScheduledFuture
• Delayed
• CompletionService
• ThreadPoolExecutor
• ScheduledThreadPoolExecutor
• AbstractExecutorService
• Executors
• FutureTask
• ExecutorCompletionService

● Queues
• BlockingQueue
• ConcurrentLinkedQueue
• LinkedBlockingQueue
• ArrayBlockingQueue
• SynchronousQueue
• PriorityBlockingQueue
• DelayQueue

● Concurrent collections
● ConcurrentMap
● ConcurrentHashMap
● CopyOnWriteArray{List,Set}

● Synchronizers
● CountDownLatch
● Semaphore
● Exchanger
● CyclicBarrier

● Locks: java.util.concurrent.locks
● Lock
● Condition
● ReadWriteLock
● AbstractQueuedSynchronizer
● LockSupport
● ReentrantLock
● ReentrantReadWriteLock

● Atomics: java.util.concurrent.atomic
● Atomic[Type]
● Atomic[Type]Array
● Atomic[Type]FieldUpdater
● Atomic{Markable,Stampable}Reference

2006 JavaOneSM Conference | Session TS-4915 | 41

Summary

● Whenever you are about to use
● Object.wait, notify, notifyAll
● new Thread(aRunnable).start();
● synchronized

● Check first in java.util.concurrent if there
is a class that…
● Does it already, or
● Let’s you do it a simpler, or better way, or
● Provides a better starting point for your own solution

● Don’t reinvent the wheel!

2006 JavaOneSM Conference | Session TS-4915 | 42

For More Information
● Documentation for java.util.concurrent—

In JDK™ 5.0 software download or on Sun website
● Doug Lea’s concurrency-interest mailing list

● http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

● Java Concurrency in Practice (Goetz, et al)
● Addison-Wesley, 2006, ISBN 0-321-34960-1

● Concurrent Programming in Java (Lea)
● Addison-Wesley, 1999 ISBN 0-201-31009-0

● JUC Backport to JDK 1.4 software
● http://www.mathcs.emory.edu/dcl/util/

backport-util-concurrent/

2006 JavaOneSM Conference | Session TS-4915 | 43

Q&A
Brian Goetz
David Holmes

2006 JavaOneSM Conference | Session TS-4915 |

Simpler, Faster, Better:
Concurrency Utilities in JDK™

Software Version 5.0
Brian Goetz
Principal Consultant, Quiotix Corp
David Holmes
Staff Engineer, Sun Microsystems, Inc.

TS-4915

	Simpler, Faster, Better: Concurrency Utilities in JDK™ Software Version 5.0
	Agenda
	Rationale for
	Goals for
	Agenda
	Concurrent Collections
	Concurrent Collections
	Concurrent Collections
	Concurrent Collection Performance
	Queues
	Blocking Queues
	BlockingQueue Example
	Producer-Consumer Pattern
	Agenda
	Executors
	Executors
	Executor and ExecutorService
	Creating Executors
	Executors Example
	Executors Example
	Saturation Policies
	Saturation Policy Example
	Futures and Callables
	Futures Example
	ScheduledExecutorService
	Agenda
	Locks
	Framework for Flexible Locking
	Simple Example
	Conditions
	Condition Example
	Synchronizers
	Semaphore Example
	Agenda
	Atomic Variables
	AtomicInteger Example
	Atomic Compare-and-Set (CAS)
	Sneak Preview of Java 6 Platform (Code-Named Mustang)
	java.util.concurrent
	Summary
	For More Information
	Q&A
	Simpler, Faster, Better: Concurrency Utilities in JDK™ Software Version 5.0

