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Goal 

Learn how to use the new concurrency 
utilities (the java.util.concurrent
package) to replace error-prone or 
inefficient code and to better structure 
applications
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Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions, and Synchronizers
Atomic Variables
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Rationale for 

● The built-in concurrency primitives—wait(), 
notify(), and synchronized—
are, well, primitive
● Hard to use correctly
● Easy to use incorrectly
● Specified at too low a level for most applications
● Can lead to poor performance if used incorrectly

● Too much wheel-reinventing!

Developing Concurrent Classes Was Just Too Hard
java.util.concurrent
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Simplify Development of Concurrent Applications
Goals for 

● Provide a set of basic concurrency building blocks
● Something for everyone

● Make some problems trivial to solve by everyone
● Develop thread-safe classes, such as servlets, built on 

concurrent building blocks like ConcurrentHashMap
● Make some problems easier to solve by concurrent 

programmers
● Develop concurrent applications using thread pools, barriers, 

latches, and blocking queues
● Make some problems possible to solve by 

concurrency experts
● Develop custom locking classes, lock-free algorithms

java.util.concurrent
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Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions, and Synchronizers
Atomic Variables
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Concurrent vs. Synchronized
Concurrent Collections

● Pre Java™ 5 platform: Thread-safe but not 
concurrent classes

● Thread-safe synchronized collections
● Hashtable, Vector, 
Collections.synchronizedMap

● Monitor is source of contention under concurrent access
● Often require locking during iteration

● Concurrent collections
● Allow multiple operations to overlap each other

● Big performance advantage
● At the cost of some slight differences in semantics

● Might not support atomic operations
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Concurrent Collections

● ConcurrentHashMap
● Concurrent (scalable) replacement for Hashtable

or Collections.synchronizedMap
● Allows reads to overlap each other
● Allows reads to overlap writes
● Allows up to 16 writes to overlap
● Iterators don’t throw 
ConcurrentModificationException

● CopyOnWriteArrayList
● Optimized for case where iteration is much more 

frequent than insertion or removal
● Ideal for event listeners
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Concurrent Collections

● Synchronized collection iteration broken by 
concurrent changes in another thread
● Throws ConcurrentModificationException
● Locking a collection during iteration hurts scalability

● Concurrent collections can be modified 
concurrently during iteration
● Without locking the whole collection
● Without ConcurrentModificationException
● But changes may not be seen

Iteration Semantics
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Concurrent Collection Performance
Throughput in Thread-safe Maps
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Queues

interface Queue<E> extends Collection<E> {
boolean offer(E x);
E poll();
E remove() throws NoSuchElementException;
E peek();
E element() throws NoSuchElementException;

}

● Retrofit (non-thread-safe)—implemented by LinkedList
● Add (non-thread-safe) PriorityQueue
● Fast thread-safe non-blocking 
ConcurrentLinkedQueue

● Better performance than LinkedList is possible as 
random-access requirement has been removed

New Interface Added to java.util
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Blocking Queues
● Extends Queue to provide blocking operations

● Retrieval: take—Wait for queue to become nonempty
● Insertion: put—Wait for capacity to become available

● Several implementations:
● LinkedBlockingQueue

● Ordered FIFO, may be bounded, two-lock algorithm
● PriorityBlockingQueue

● Unordered but retrieves least element, unbounded, lock-based
● ArrayBlockingQueue

● Ordered FIFO, bounded, lock-based
● SynchronousQueue

● Rendezvous channel, lock-based in Java 5 platform, lock-free 
in Java 6 platform

BlockingQueue Interface
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BlockingQueue Example
class LogWriter { 

final BlockingQueue msgQ = 
new LinkedBlockingQueue();

public void writeMessage(String msg) throws IE {
msgQ.put(msg);

}

// run in background thread
public void logServer() { 

try {
while (true) {

System.out.println(msqQ.take());
} 

}
catch(InterruptedException ie) { ... } 

}
}

Producer

Blocking
Queue

Consumer
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Producer-Consumer Pattern

● LogWriter example illustrates the producer-
consumer pattern
● Ubiquitous concurrency pattern, nearly always relies 

on some form of blocking queue
● Decouples identification of work from doing the work

● Simpler and more flexible

● LogWriter had many producers, one consumer
● Thread pool has many producers, many consumers

● LogWriter moves IO from caller to log thread
● Shorter code paths, fewer context switches, 

no contention for IO locks → more efficient
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Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions, and Synchronizers
Atomic Variables
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Framework for Asynchronous Execution
Executors

● Standardize asynchronous invocation
● Framework to execute Runnable and Callable tasks

● Separate submission from execution policy
● Use anExecutor.execute(aRunnable)
● Not new Thread(aRunnable).start()

● Cancellation and shutdown support
● Usually created via Executors factory class

● Configures flexible ThreadPoolExecutor
● Customize shutdown methods, before/after hooks, 

saturation policies, queuing
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Decouple Submission From Execution Policy
Executors

● Code which submits a task doesn’t have to know 
in what thread the task will run
● Could run in the calling thread, in a thread pool, in a 

single background thread
● Executor implementation determines execution policy

● Execution policy controls resource utilization, saturation 
policy, thread usage, logging, security, etc.

● Calling code need not know the execution policy

public interface Executor { 
void execute(Runnable command);

}



2006 JavaOneSM Conference   |   Session TS-4915   | 18

ExecutorService Adds Lifecycle Management
Executor and ExecutorService

● ExecutorService supports both graceful and 
immediate shutdown
public interface ExecutorService extends Executor {

void shutdown();
List<Runnable> shutdownNow();
boolean isShutdown();
boolean isTerminated();
boolean awaitTermination(long time,TimeUnit unit)

throws InterruptedException

// other convenience methods for submitting tasks
}

● Many useful utility methods too
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Factory Methods in the Executors Class
Creating Executors

public class Executors { 
static ExecutorService 

newSingleThreadedExecutor();

static ExecutorService 
newFixedThreadPool(int poolSize);

static ExecutorService 
newCachedThreadPool();

static ScheduledExecutorService
newScheduledThreadPool(int corePoolSize);

// additional versions specifying ThreadFactory
// additional utility methods

}
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Executors Example
class UnstableWebServer { 

public static void main(String[] args) {
ServerSocket socket = new ServerSocket(80);
while (true) {

final Socket connection = socket.accept();
Runnable r = new Runnable() {

public void run() {
handleRequest(connection);

}
};
// Don't do this!
new Thread(r).start();

}
}

}

Web Server—Poor Resource Management
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Web Server—Better Resource Management
Executors Example

class BetterWebServer { 
Executor pool = Executors.newFixedThreadPool(7);

public static void main(String[] args) {
ServerSocket socket = new ServerSocket(80);
while (true) {

final Socket connection = socket.accept();
Runnable r = new Runnable() {

public void run() {
handleRequest(connection);

}
};
pool.execute(r);

}
}

}
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Saturation Policies

● An Executor which execute tasks in a thread pool
● Can guarantee you will not run out of threads
● Can manage thread competition for CPU resources

● There is still a risk of running out of memory
● Tasks could queue up without bound

● Solution: Use a bounded task queue
● Just so happens that JUC provides several of these…

● If queue fills up, the saturation policy is applied
● Policies available: Throw, discard oldest, discard newest, 

or run-in-calling-thread
● The last has the benefit of throttling the load
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Web Server With Bounded Work Queue
Saturation Policy Example
class StableWebServer { 

Executor pool = new ThreadPoolExecutor(10, 10,
Long.MAX_VALUE, TimeUnit.SECONDS,
new LinkedBlockingQueue<Runnable>(1000),
new ThreadPoolExecutor.DiscardOldestPolicy());

public static void main(String[] args) {
ServerSocket socket = new ServerSocket(80);
while (true) {
final Socket connection = socket.accept();
Runnable r = new Runnable() {
public void run() {
handleRequest(connection);

}
};
pool.execute(r);

}
}

}
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Representing Asynchronous Tasks
Futures and Callables

● Callable is functional analog of Runnable
interface Callable<V> {

V call() throws Exception;
}

● Future holds result of asynchronous call, 
normally a Callable
interface Future<V> {

V get() throws InterruptedException,
ExecutionException;

V get(long timeout, TimeUnit unit) throws ...;
boolean cancel(boolean mayInterrupt);
boolean isCancelled();
boolean isDone();

}
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Implementing a Concurrent Cache
Futures Example

public class Cache<K, V> {
final ConcurrentMap<K, FutureTask<V>> map = 

new ConcurrentHashMap<K, FutureTask<V>>();

public V get(final K key) throws InterruptedException {
FutureTask<V> f = map.get(key);
if (f == null) {

Callable<V> c = new Callable<V>() {
public V call() {

// return value associated with key
}

};
f = new FutureTask<V>(c);
FutureTask<V> old = map.putIfAbsent(key, f);
if (old == null) 
f.run();

else
f = old;

}
try { return f.get(); }
catch(ExecutionException ex) { /* rethrow ex.getCause() */ }

}
}
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Deferred and Recurring Tasks
ScheduledExecutorService

● ScheduledExecutorService can be used to:
● Schedule a Callable or Runnable to run once with 

a fixed delay after submission
● Schedule a Runnable to run periodically at a 

fixed rate 
● Schedule a Runnable to run periodically with a fixed 

delay between executions
● Submission returns a ScheduledFutureTask

handle which can be used to cancel the task
● Like java.util.Timer, but supports pooling
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Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions, and Synchronizers
Atomic Variables
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Locks

● Use of monitor synchronization is just fine for most 
applications, but it has some shortcomings
● Single wait-set per lock
● No way to interrupt or time-out when waiting for a lock
● Locking must be block-structured

● Inconvenient to acquire a variable number of locks at once
● Advanced techniques, such as hand-over-hand locking, 

are not possible

● Lock objects address these limitations
● But harder to use: Need finally block to ensure release
● So if you don’t need them, stick with synchronized
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Framework for Flexible Locking
● interface Lock {

void      lock(); 
void      lockInterruptibly() throws

InterruptedException;
boolean   tryLock();
boolean   tryLock(long time,TimeUnit unit) throws

InterruptedException;
void      unlock();
Condition newCondition() throws

UnsupportedOperationException;
}

● High-performance implementation: ReentrantLock
● Basic semantics same as use of synchronized
● Condition object semantics like wait/notify
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Simple          ExampleLock

● Used extensively within java.util.concurrent
final Lock lock = new ReentrantLock();
...
lock.lock(); 
try { 

// perform operations protected by lock
}
catch(Exception ex) {

// restore invariants & rethrow
}
finally { 

lock.unlock(); 
}

● Must manually ensure lock is released
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Monitor-like Operations for Working With Locks
Conditions

● Condition is an abstraction of wait/notify
interface Condition {

void    await() throws InterruptedException;
boolean await(long time, TimeUnit unit) 

throws InterruptedException;
long    awaitNanos(long nanosTimeout)

throws InterruptedException;
boolean awaitUntil(Date deadline) 

throws InterruptedException;
void    awaitUninterruptibly();

void    signal();
void    signalAll();

}

● Timed await versions report reason for return
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Condition Example
class BoundedBuffer {
final Lock lock = new ReentrantLock();
final Condition notFull  = lock.newCondition();
final Condition notEmpty = lock.newCondition();
...
void put(Object x)throws InterruptedException {
lock.lock(); try {
while (isFull()) notFull.await();
doPut(x);
notEmpty.signal();

} finally { lock.unlock(); }
}
Object take() throws InterruptedException {
lock.lock(); try {
while (isEmpty()) notEmpty.await();
notFull.signal();
return doTake();  

} finally { lock.unlock(); }
}

}
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Synchronizers

● Semaphore—Dijkstra counting semaphore, 
managing a specified number of permits

● CountDownLatch—Allows one or more threads 
to wait for a set of threads to complete an action

● CyclicBarrier—Allows a set of threads to 
wait until they all reach a specified barrier point

● Exchanger—Allows two threads to rendezvous 
and exchange data
● Such as exchanging an empty buffer for a full one

Utility Classes for Coordinating Access and Control
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Semaphore Example
public class ExecutorProxy implements Executor {
private final Semaphore tasks;
private final Executor master;

ExecutorProxy(Executor master, int limit) {
this.master = master;
tasks = new Semaphore(limit);

}

public void execute(Runnable r) {
tasks.acquireUninterruptibly(); // for simplicity
try {
master.execute(r);

}
finally {
tasks.release();

}
}

}

Bound the Submission of Tasks to an Executor
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Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions, and Synchronizers
Atomic Variables
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Atomic Variables

● Support atomic operations
● Compare-and-set (CAS)
● Get, set, and arithmetic operations (where applicable)

● Increment, decrement operations

● Abstraction of volatile variables
● Nine main classes: 

● { int, long, reference } X { value, field, array } 
● e.g., AtomicInteger useful for counters, 

sequence numbers, statistics gathering

Holder Classes for Scalars, References, and Fields
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AtomicInteger Example

● Replace this: class Service {
static int services;
public Service() {

synchronized(Service.class) {
services++;

}
} // ...

}

● With this:         class Service {
static AtomicInteger services =

new AtomicInteger();
public Service() {

services.getAndIncrement();
}
// ...

}

Construction Counter for Monitoring/Management
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Atomic Compare-and-Set (CAS)

● Atomically sets value to update if currently expected
● Returns true on successful update

● Direct hardware support in all modern processors
● CAS, cmpxchg, ll/sc

● High-performance on multi-processors
● No locks, so no lock contention and no blocking
● But can fail

● So algorithms must implement retry loop

● Foundation of many concurrent algorithms

boolean compareAndSet(int expected, int 
update)
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Sneak Preview of Java 6 Platform 
(Code-Named Mustang)
● Double-ended queues: Deque, BlockingDeque

● Implementations: ArrayDeque, LinkedBlockingDeque, 
ConcurrentLinkedDeque

● Concurrent skiplists: 
ConcurrentSkipList{Map|Set}

● Enhanced navigation of sorted maps/sets
● Navigable{Map|Set}

● Miscellaneous algorithmic enhancements
● More use of lock-free algorithms in utilities
● VM performance improvements for intrinsic locking

● M&M support for locks and conditions
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java.util.concurrent

● Executors
• Executor
• ExecutorService
• ScheduledExecutorService
• Callable
• Future
• ScheduledFuture
• Delayed
• CompletionService
• ThreadPoolExecutor
• ScheduledThreadPoolExecutor
• AbstractExecutorService
• Executors
• FutureTask
• ExecutorCompletionService

● Queues
• BlockingQueue
• ConcurrentLinkedQueue
• LinkedBlockingQueue
• ArrayBlockingQueue
• SynchronousQueue
• PriorityBlockingQueue
• DelayQueue

● Concurrent collections
● ConcurrentMap
● ConcurrentHashMap
● CopyOnWriteArray{List,Set}

● Synchronizers
● CountDownLatch
● Semaphore
● Exchanger
● CyclicBarrier

● Locks: java.util.concurrent.locks
● Lock
● Condition
● ReadWriteLock
● AbstractQueuedSynchronizer
● LockSupport
● ReentrantLock
● ReentrantReadWriteLock

● Atomics: java.util.concurrent.atomic
● Atomic[Type]
● Atomic[Type]Array
● Atomic[Type]FieldUpdater
● Atomic{Markable,Stampable}Reference
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Summary

● Whenever you are about to use
● Object.wait, notify, notifyAll
● new Thread(aRunnable).start();
● synchronized

● Check first in java.util.concurrent if there 
is a class that…
● Does it already, or
● Let’s you do it a simpler, or better way, or
● Provides a better starting point for your own solution

● Don’t reinvent the wheel!
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For More Information
● Documentation for java.util.concurrent—

In JDK™ 5.0 software download or on Sun website
● Doug Lea’s concurrency-interest mailing list

● http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

● Java Concurrency in Practice (Goetz, et al)
● Addison-Wesley, 2006, ISBN 0-321-34960-1  

● Concurrent Programming in Java (Lea) 
● Addison-Wesley, 1999 ISBN 0-201-31009-0

● JUC Backport to JDK 1.4 software
● http://www.mathcs.emory.edu/dcl/util/

backport-util-concurrent/
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Q&A
Brian Goetz
David Holmes
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