
2006 JavaOneSM Conference | TS-6264 |

TS-6264

Secure XML Processing
Using Chip Multi-Threaded
Processors
Biswadeep Nag, Kim LiChong,
Pallab Bhattacharya
Java Performance Engineering
Sun Microsystems, Inc.
http://java.sun.com/performance

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.

2006 JavaOneSM Conference | TS-6264 | 2

Agenda

The Typical CMT Architecture
The XMLTest Benchmark

StAX and JAXB
CMT vs. SMP Scalability
JVM Tuning
OS Tuning

XML Signature Performance
Introduction to XML Signatures
Accelerating Signatures on UltraSPARC-T1

2006 JavaOneSM Conference | TS-6264 | 3

Agenda

The Typical CMT Architecture
The XMLTest Benchmark

StAX and JAXB
CMT vs. SMP Scalability
JVM Tuning
OS Tuning

XML Signature Performance
Introduction to XML Signatures
Accelerating Signatures on UltraSPARC-T1

2006 JavaOneSM Conference | TS-6264 | 4

Why CMT?

● Processor clocks getting faster quickly
● But memory speeds increasing slowly

● Processor pipeline spends most of the cycles
● Waiting for loads/stores to memory
● Burning power

2006 JavaOneSM Conference | TS-6264 | 5

Single Threaded
Performance

Chip Multi-threaded
(CMT) Performance

Single Threading

Thread

Memory
Latency

Compute Time

HURRY
UP AND
WAIT!

HURRY
UP AND
WAIT!

HURRY
UP AND
WAIT!

HURRY
UP AND
WAIT!

C C C

Typical Processor
Utilization:15–25%

M M M

Up to 75% Cycles Waiting for Memory

2006 JavaOneSM Conference | TS-6264 | 6

Hardware Multi-Threading

● Multiple application threads execute
simultaneously

● Multiple hardware contexts
● Efficient switching between hardware threads
● To the operating system each hardware

thread is a CPU!
● Same principle as multi-programming!

2006 JavaOneSM Conference | TS-6264 | 7

Single Threaded
Performance Chip Multi-Threaded

(CMT) Performance

 Compute

 Time

Memory
Latency

C MC MC MThread 1

Thread 2 C MC MC M
Thread 3 C MC MC M
Thread 4 C MC MC M

The Power of CMT
Processor Utilization:Up to 85%

2006 JavaOneSM Conference | TS-6264 | 8

Chip Multi-Threading

● Replicate this model several times
● Multiple processors in a single chip
● High processor throughput
● Requires heavily multi-threaded applications
● Silicon area used for multiple processing

elements
● Simpler processor design

● Relatively small caches
● In-order pipelines

2006 JavaOneSM Conference | TS-6264 | 9

Core 1

CMT—Multiple Multi-Threaded Cores

4
3
2
1

Core 2
8
7
6
5

Core 2
8
7
6
5

Core 3
12
11
10
9

16
15
14
13

Core 4

Core 3
12
11
10
9

16
15
14
13

Core 4

Core 5
20
19
18
17

Core 6
24
23
22
21

Core 7
28
27
26
25

Core 8
32
31
30
29

Core 5
20
19
18
17

Core 6
24
23
22
21

Core 7
28
27
26
25

Core 8
32
31
30
29

Time
Memory Latency Compute

Thread

2006 JavaOneSM Conference | TS-6264 | 10

● SPARC® V9 implementation
● Up to eight 4-way multi-

threaded cores for up to 32
simultaneous threads

● All cores connected through a
90GB/sec crossbar switch

● High-bandwidth 4-way shared
3MB Level-2 cache on chip

● 4 DDR2 channels
● Power: < 70W !
● ~ 300M transistors
● 378 sq. mm die

1 of 8 Cores BUS

C8C7C6C5C4C3C2C1

L2$L2$L2$L2$

Xbar

Introducing the UltraSPARC-T1
DDR-2

SDRAM
DDR-2

SDRAM
DDR-2

SDRAM
DDR-2

SDRAM

Sys I/F
Buffer Switch

Core

FPU

2006 JavaOneSM Conference | TS-6264 | 11

Agenda

The Typical CMT Architecture
The XMLTest Benchmark

StAX and JAXB
CMT vs. SMP Scalability
JVM Tuning
OS Tuning

XML Signature Performance
Introduction to XML Signatures
Accelerating Signatures on UltraSPARC-T1

2006 JavaOneSM Conference | TS-6264 | 12

Goal of This Section

What Java options increase StAX and
JAXB performance in CMT systems?
How does CMT performance compare to
SMP for JAXB and StAX?

2006 JavaOneSM Conference | TS-6264 | 13

Agenda

The Typical CMT Architecture
The XMLTest Benchmark

StAX and JAXB
CMT vs. SMP Scalability
JVM Tuning
OS Tuning

XML Signature Performance
Introduction to XML Signatures
Accelerating Signatures on UltraSPARC-T1

2006 JavaOneSM Conference | TS-6264 | 14

XML Processing Benchmark
XMLTest

● Standalone multi-threaded Java-based program
● No File I/O—XML is read from memory streams
● No think time
● Measures the throughput of a system

processing XML documents
● Throughput = Average number of XML

transactions executed per second
● Transaction is the time taken to parse through a

document

2006 JavaOneSM Conference | TS-6264 | 15

XMLTest

● Supports
● Various document sizes and schemas
● Fast Infoset for SAX parsing
● Java XML signature generation and validation
● Canonicalization

● https://xmltest.dev.java.net

2006 JavaOneSM Conference | TS-6264 | 16

Agenda

The Typical CMT Architecture
The XMLTest Benchmark

StAX and JAXB
CMT vs. SMP Scalability
JVM Tuning
OS Tuning

XML Signature Performance
Introduction to XML Signatures
Accelerating Signatures on UltraSPARC-T1

2006 JavaOneSM Conference | TS-6264 | 17

Streaming API for XML
What Is StAX?

● Streaming API for XML (StAX), a bi-directional
API for reading and writing XML

● Specified by JSR 173
● “Pull parsing”—Developer pulls next XML

construct in the document
● Sun’s implementation is Sun Java Streaming

XML Parser (SJSXP)

2006 JavaOneSM Conference | TS-6264 | 18

Java Architecture for XML Binding
What Is JAXB?

● Provides an API and tool that allow automatic
two-way mapping between XML documents
and Java objects

● The JAXB compiler can generate a set of
Java based classes from XML

● Developers can build applications and do not
to write any logic to process XML elements

2006 JavaOneSM Conference | TS-6264 | 19

How Is the XML Being Processed?

● Measuring parsing without serialization

JAXB Binding
● Measuring unmarshalling operation

● Building Java-based object tree in memory

StAX Parsing

2006 JavaOneSM Conference | TS-6264 | 20

Agenda

The Typical CMT Architecture
The XMLTest Benchmark

StAX and JAXB
CMT vs. SMP Scalability
JVM Tuning
OS Tuning

XML Signature Performance
Introduction to XML Signatures
Accelerating Signatures on UltraSPARC-T1

2006 JavaOneSM Conference | TS-6264 | 21

Benchmark Characteristics

● Solaris 10
● Java Web Services Developer Pack

(Java WSDP) 2.0
● Java SE 1.5.0_06

Hardware
● UltraSPARC T2000 UltraSPARC-T1 1200 MHz

● 32 GB Memory
● Sun Fire 880 UltraSPARC-III+ 1200 MHz

● 16 GB Memory

Software

2006 JavaOneSM Conference | TS-6264 | 22

JAXB 2 With 100 KB XML Document
CMT vs. SMP Throughput

1 2 3 4 5 6 7 8
50

100

150

200

250

300

350

400

450

500

550

CMT
SMP

Number of Processors (or Cores)

Th
ro

ug
hp

ut

2006 JavaOneSM Conference | TS-6264 | 23

1 2 3 4 5 6 7 8
100

200

300

400

500

600

700

800

900

1000

1100

CMT
SMP

Number of Processors (or Cores)

Th
ro

ug
hp

ut
SJSXP With 100 KB XML Document
CMT vs. SMP Throughput

2006 JavaOneSM Conference | TS-6264 | 24

Agenda

The Typical CMT Architecture
The XMLTest Benchmark

StAX and JAXB
CMT vs. SMP Scalability
JVM Tuning
OS Tuning

XML Signature Performance
Introduction to XML Signatures
Accelerating Signatures on UltraSPARC-T1

2006 JavaOneSM Conference | TS-6264 | 25

Which Ones Did We Try?
Java VM Tunings

● -XX:+UseBiasedLocking
● -XX:+UseParallelGC
● -XX:+UseParallelGCThreads=<n>
● -XX:LargePageSizeInBytes=256m
● -Xmx -Xms -Xmn -Xss
● -XX:UseParallelOldGC
● -XX:+AggressiveOpts

2006 JavaOneSM Conference | TS-6264 | 26

Modest Improvement
And the Winner Is…

● -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX
:+UseParallelGC -XX:ParallelGCThreads=8 -XX
:+UseParallelOldGC -XX:+AggressiveOpts

● % Improvement apparent only at 8 cores
(32 threads)

● Scores were not significantly different for other
tunings for JAXB and StAX

● No major GC collection occurs during benchmark,
similar number of minor GC collections

2006 JavaOneSM Conference | TS-6264 | 27

5 %
Improvement
p<0.05
T Value = -11.533
DF: 18

3 %
Improvement
p<0.05
T Value = -4.66
DF: 18

JVM Options
0

50

100

150

200

250

300

350

400

450

500

550

JAXB Performance on CMT

-server
+AgOpts

Th
ro

ug
hp

ut

JVM Options
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

StAX Performance on CMT

-server
+AgOpts

Th
ro

ug
hp

ut

2006 JavaOneSM Conference | TS-6264 | 28

Agenda

The Typical CMT Architecture
The XMLTest Benchmark

StAX and JAXB
CMT vs. SMP Scalability
JVM Tuning
OS Tuning

XML Signature Performance
Introduction to XML Signatures
Accelerating Signatures on UltraSPARC-T1

2006 JavaOneSM Conference | TS-6264 | 29

CMT Scheduling

● Resources shared by hardware threads
within a core
● I-cache
● D-cache
● Integer unit

● Better to schedule application threads first across
hardware threads in different processor cores

● Scheduling threads across cores
● Higher throughput for lower thread counts
● Better core utilization

2006 JavaOneSM Conference | TS-6264 | 30

CMT Scheduling and Scaling

4 8 16 20 24 28 32
0

50

100

150

200

250

300

350

400

450

500

Within Core
Across Cores

Number of Threads

Th
ro

ug
hp

ut
 (D

oc
s

pe
r s

ec
on

d)

2006 JavaOneSM Conference | TS-6264 | 31

Page Coloring

● L2 cache is shared by threads across all cores
● May create conflicts for some cache lines

● set consistent_coloring=2 in /etc/system
● However no effect on Java code/XML processing

2006 JavaOneSM Conference | TS-6264 | 32

Large Page Sizes

● More pressure on TLB entries because of large
number of threads

● Using large pages requires fewer TLB entries
● Can produce undesired effects if large pages

used for wrong memory segment
● e.g., 256MB instead of 4MB pages for Java heap

● Defaults out-of-the-box work well

2006 JavaOneSM Conference | TS-6264 | 33

Process Maps (pmap -xs <pid>)
Default
 Kbytes Pgsz Mode Mapped File
 815104 4M rwx-- [anon]
 12288 4M rwx-- [anon]
 3840 64K rwx-- [heap]
 28672 4M rwx-- [heap]

-XX:LargePageSizeInBytes=268435456
 Kbytes Pgsz Mode Mapped File
 786432 256M rwx-- [anon]
 262144 256M rwx-- [anon]
 3840 64K rwx-- [heap]
36864 4M rwx-- [heap]

2006 JavaOneSM Conference | TS-6264 | 34

Large Page Results

TLB Miss Time
Throughput

5.10%
471

21.70%
418

Default
(4 MB)

Large Page
(256 MB)

2006 JavaOneSM Conference | TS-6264 | 35

Summary

● No need to change code to take advantage
of CMT

● Performance improvement can differ from
application to application as compared to SMP

● -XX:+AggressiveOpts gives a 5% improvement
in JAXB 2, and 3% for StAX at full core
utilization

● Most out of the box defaults for Solaris
works well

● No need to tweak system parameters

2006 JavaOneSM Conference | TS-6264 | 36

Agenda

The Typical CMT Architecture
The XMLTest Benchmark

StAX and JAXB
CMT vs. SMP Scalability
Java VM Tuning
OS Tuning

XML Signature Performance
Introduction to XML Signatures
Accelerating Signatures on UltraSPARC-T1

2006 JavaOneSM Conference | TS-6264 | 37

Goal of This Section

Learn about how to accelerate the
Java-based XML Digital Signature
performance using Cryptographic
Hardware Accelerators

2006 JavaOneSM Conference | TS-6264 | 38

Agenda of This Section

● Introduction to XML Signatures
● Accelerating Java XML Signature Performance
● Crypto Acceleration on UltraSPARC T1

2006 JavaOneSM Conference | TS-6264 | 39

Agenda of This Section

● Introduction to XML Signatures
● Accelerating Java XML Signature Performance
● Crypto Acceleration on UltraSPARC T1

2006 JavaOneSM Conference | TS-6264 | 40

Introduction
Introduction to XML Signatures

● Digital Signatures are electronic messages with
a mechanism analogous to signatures in the
paper world

● Digital Signatures provide a means for an entity
to bind its identity to a piece of information

● Digital Signatures ensures that the security
requirements (end-point authentication,
message integrity and non-repudiation) required
for exchanging electronic messages are met

2006 JavaOneSM Conference | TS-6264 | 41

Introduction
Introduction to XML Signatures

● Based on the public key cryptography
infrastructure

Sender Receiver

S-Private
Key

R-Private
Key

S-Public
Key

R-Public
Key

2006 JavaOneSM Conference | TS-6264 | 42

Introduction
Introduction to XML Signatures

● XML Digital Signatures will enable a sender to
cryptographically sign data, which can then be
used as the authentication credentials or a way
to check the data integrity

● XML Signatures can be applied to any XML
Resource, such as XML, an HTML page,
binary-encoded data such as a GIF and
XML-encoded data

● XML Digital Signature provides the flexibility to
Sign only specific portions of the XML document

2006 JavaOneSM Conference | TS-6264 | 43

Introduction
Introduction to XML Signatures

● Classified as enveloped, enveloping, or detached
● An enveloped signature is the signature, applied

over the XML content that contains the signature
as an element

● The signature element is excluded from the
calculation of the enveloped signature value

Signed XML Element

Enveloped XML Signature

XML Resource

2006 JavaOneSM Conference | TS-6264 | 44

Introduction

Introduction to Java Digital XML
Signature API Specifications

● An enveloping signature is the signature,
applied over the content found within an object
element of the signature itself

● The object (or its content) is identified via a
Reference

Enveloping XML Signature

Signed XML Element

XML Resource

2006 JavaOneSM Conference | TS-6264 | 45

Introduction

Introduction to Java Digital XML
Signature API Specifications

● A detached signature is the signature applied
over the content external to the signature
element, and can be identified via a URI or a
transform

Detached XML Signature

Signed Data

Signed Data

XML Resource

2006 JavaOneSM Conference | TS-6264 | 46

Java Digital XML Signature API Specifications
Introduction to XML Signatures

● Sun provides a standard set of Java API's to sign
and verify XML and binary documents
● These API’s were defined under Java Community

ProcessSM along with various other organizations
● Sun ships these API’s with Java Web Services

Developer Pack, Project GlassFish, and Java SE 6
● The Java XML Digital Signature Reference

Implementation (JSR 105) from SUN is a
pluggable framework built on the Java
Cryptographic Architecture (JCA)

2006 JavaOneSM Conference | TS-6264 | 47

Java Digital XML Signature API Specifications
Introduction to XML Signatures

● JSR 105 provides support for various
implementations of digital signature algorithms
and transforms as specified by W3C XML
Signature Syntax and processing specification

Application

XML Digital Signature API

JCA
JCA Provider

XML Digital Signature Provider

2006 JavaOneSM Conference | TS-6264 | 48

Introduction to XML Signatures

H
ash

C
anonicalize

S-Private
Key

Encrypt

Sign

32

1Canonicalize
Hash

Message Digest
oAOkNoDji4lckQNjhTuWKVtEaww==

XML Signature
Metadata

SignedInfo

Target

XML Signature Generation

Sender

Java XML Digital Signature API Specifications Generation

2006 JavaOneSM Conference | TS-6264 | 49

Introduction to XML Signatures

1

2

34

5
Compare

Compare

Verified
Target

SignedInfoXML Signature
Metadata

Decrypt

S-Public
Key

H
as

h
C

an
on

ic
al

iz
e

H
as

h
C

an
on

ic
al

iz
e

D
igestValue

Receiver

Java XML Digital Signature API Specifications Generation

2006 JavaOneSM Conference | TS-6264 | 50

Agenda of this Section

● Introduction to XML Signatures
● Accelerating Java XML Signature Performance
● Crypto Acceleration on UltraSPARC T1

2006 JavaOneSM Conference | TS-6264 | 51

PKCS#11 Framework

Accelerating Java XML Digital Signature
API Specification Performance
● The JSR 105 Sign/Validate operations are

computationally expensive and more than 30% of
the CPU time can be spent in these operations

● The Cryptographic Token Interface Standard,
PKCS#11, defines the native programming interfaces
to the cryptographic tokens such as hardware
cryptographic accelerators and Smartcards

● PKCS#11 provides increased performance and
scaling through transparent access to hardware
cryptographic acceleration without modification of
their applications

2006 JavaOneSM Conference | TS-6264 | 52

Sun PKCS#11 Provider

Accelerating Java XML Digital Signature
API Specification Performance

● Starting from the JDK™ 5.0 release, Java based
applications can access the cryptographic tokens
using the cryptographic provider Sun PKCS#11
shipped with the JDK™ software

● SunPKCS#11 provider is a generic provider to
utilize any PKCS#11 token

● The “Sun PKCS#11 provider”, does not
implement cryptographic algorithms by itself—
It is simply a bridge between the Java JCA,
JCE APIs [4] and the underlying PKCS#11
implementations

2006 JavaOneSM Conference | TS-6264 | 53

Sun PKCS#11 Provider

Accelerating Java XML
Signature Performance

JSR105 APIs

JCA/JCE
Framework

Sun PKCS#11
Provider

PKCS#11
Implementation

Crypto
Accelerator

2006 JavaOneSM Conference | TS-6264 | 54

Sun PKCS#11 Provider

Accelerating Java XML Digital Signature
API Specification Performance

● RSA, DSA, Diffie-Hellman, AES, DES, 3DES,
ARCFOUR, Blowfish, Keystore, MessageDigest,
SecureRandom are some of the algorithms
supported by the SunPKCS#11 provider

● The static provider installation information for the
SunPKCS#11 provider can be found in the
<javahome>/ jre/lib/security/java.security file

2006 JavaOneSM Conference | TS-6264 | 55

Sun PKCS11 Configuration

Accelerating Java XML Digital Signature
API Specification Performance

● The Sun PKCS#11 provider is configured via the
sunpkcs11 configuration file

● The sunpkcs11 configuration file contains the
required property attributes for accessing the
underlying PKCS#11 implementation

● The property “library” defines the pathname of
PKCS#11 implementation

● Mechanisms/attributes supported by the
underlying PKCS#11 implementation can be
enabled or disabled from this file

2006 JavaOneSM Conference | TS-6264 | 56

Agenda of This Section

● Introduction to XML Signatures
● Accelerating Java XML Signature Performance
● Crypto Acceleration on UltraSPARC T1

2006 JavaOneSM Conference | TS-6264 | 57

Introduction

Crypto Acceleration on UltraSPARC-T1
Microprocessor

● The UltraSPARC-T1 microprocessor comes with
8 on-chip Modular Arithmetic Unit (MAU) (1 per
core), which extends the processor’s capabilities
to act as Cryptographic Accelerators

● The utilization of MAU has to go through Niagara
Cryptographic Provider (NCP) within Solaris
Cryptographic Framework (SCF)

2006 JavaOneSM Conference | TS-6264 | 58

Solaris™ Operating System Cryptographic Framework

Crypto Acceleration on UltraSPARC-T1
Microprocessor

Cryptographic Application
JSR105

JCA/JCE Framework
Sun PKC#11 Provider

Consumer Interface (PKCS 11)

User Level Cryptographic
Framework

Provider Interface (PKCS 11)

Sun Kernel
Crypto

Provider

Sun Software
Crypto

Provider

Consumer Interface

Provider Interface

Kernel Level
Cryptographic Framework

Cryptographic Kernel Module
IPSec, KSSL...

Sun Hardware/Software
Crypto Providers

3rd Party Hardware/Software
Crypto Providers

UltraSPARCT1
NCP

Crypto Framework

Crypto Consumers

Crypto Providers

Inrterfaces

Solaris Cryptographic Architecture

Application Level

Kernel Level

2006 JavaOneSM Conference | TS-6264 | 59

UltraSPARC-T1 Microprocessor

Crypto Acceleration on
UltraSPARC-T1 Microprocessor
● The UltraSPARC T1 microprocessor accelerates

computationally expensive modular arithmetic
operations found in public-key crypto algorithms such
as RSA, DSA

● In the context of the Solaris Operating System
Cryptographic Framework, the MAU is implemented
as a Service Provider and all the
8 MAU units are made visible as a single
device(/dev/ncp0) to the consumers

● This device implementation is highly available, it
continues to process requests as long as at least one
MAU is functional

2006 JavaOneSM Conference | TS-6264 | 60

UltraSPARC-T1 Microprocessor

Accelerating Java XML Digital Signature
API Specification Performance
● The mechanisms are supported by the UltraSPARC

T1 are CKM_DSA, CKM_RSA_X_509 and
CKM_RSA_PKCS

● On an UltraSPARCT1 based system, the shipping
Java VM, J2SE™ 1.5, has been pre-configured to
use “SunPKCS#11 Provider”

● The Sun PKCS#11 Provider configuration file (<java-
home>/jre/lib/security/sunpkcs11-solaris.cfg) contains
the required information for the Sun PKCS#11
Provider to access the Solaris Operating System
Cryptographic Framework (SCF)

2006 JavaOneSM Conference | TS-6264 | 61

UltraSPARC-T1 Microprocessor

Accelerating Java XML Digital Signature
API Specification Performance

● One can verify that the Java-based application is
indeed accessing the NCP, using the kstat
command “kstat -n ncp/0”

● The kstat output will update the rsapublic and
rsaprivate counters for every RSA sign and RSA
verify operation respectively

● Every RSA sign/verify operation will be reflected
with an increase in the kstat MAU counters

2006 JavaOneSM Conference | TS-6264 | 62

Accelerating Java XML
Signature Performance

UltraSPARC T1 1200 Mhz Intel Xeon 3591 Mhz
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

Java XML Signature Performance

Key Size 512
Key Size1024
Key Size 2048

XM
L Sign O

perations/Sec

2006 JavaOneSM Conference | TS-6264 | 63

Accelerating Java XML
Signature Performance

UltraSPARC T1 Crypto Provider SunRSASign Software Crypto Provider
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

Java XML Signature Performance

Key Size 512
Key Size1024
Key Size 2048

XM
L Sign O

perations/Sec

2006 JavaOneSM Conference | TS-6264 | 64

Accelerating Java XML Digital Signature
API Specification Performance

● From the above results one can observe the
superior performance of the Sun Fire™
T2000 server

● The performance of XML Signature generation
using RSA algorithm on Sun Fire T2000 is 4X
to 5X of Xeon

● As the key-size increases one can observer a
frog leap in the difference in performance

Java XML Digital Signature API Specification
Performance on UltraSPARC T1 Microprocessor

2006 JavaOneSM Conference | TS-6264 | 65

Java XML Signature Performance on UltraSPARC-T1
● XMLTest micro benchmark was used to measure

the Java XML Signature performance
● The Throughput is defined as XML Sign

operations/Sec.
● In addition to the actual signing operation, the

XML Sign Operations also includes the creation
of JSR 105 SignedInfo, KeyInfo, Reference,
SignContext objects

Accelerating Java XML
Signature Performance

2006 JavaOneSM Conference | TS-6264 | 66

For More Information

● David Dagastine's BOF-0623 Java™
● Developing and Tuning Applications on

UltraSPARC Chip MultiThreading Systems
http://www.sun.com/blueprints/1205/819-5144.pdf

● https://xmltest.dev.java.net

2006 JavaOneSM Conference | TS-6264 | 67

Q&A

2006 JavaOneSM Conference | TS-6264 |

TS-6264

Secure XML Processing
Using Chip Multi-Threaded
Processors
Biswadeep Nag, Kim LiChong,
Pallab Bhattacharya
Java Performance Engineering
Sun Microsystems, Inc.
http://java.sun.com/performance

